用大模型学大模型05-线性回归
deepseek.com:多元线性回归的目标函数,损失函数,梯度下降 标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示, 模型应用场景和优缺点,及如何改进解决及改进方法数据推导。
一、数学推导
1. 模型定义
- 输入:
- 样本数 n n n,特征数 m m m。
- 特征矩阵 X ∈ R n × ( m + 1 ) X \in \mathbb{R}^{n \times (m+1)} X∈Rn×(m+1)(含截距项全1列)。
- 参数向量 β = [ β 0 , β 1 , … , β m ] T ∈ R ( m + 1 ) × 1 \beta = [\beta_0, \beta_1, \dots, \beta_m]^T \in \mathbb{R}^{(m+1) \times 1} β=[β0,β1,…,βm]T∈R(m+1)×1。
- 预测值:
y ^ = X β 或标量形式 y ^ i = β 0 + ∑ j = 1 m β j x i j \hat{y} = X \beta \quad \text{或标量形式} \quad \hat{y}_i = \beta_0 + \sum_{j=1}^m \beta_j x_{ij} y^=Xβ或标量形式y^i=β0+j=1∑mβjxij
2. 目标函数与损失函数
- 目标:最小化预测值与真实值的平方误差。
- 损失函数(MSE):
L ( β ) = 1 2 n ∑ i = 1 n ( y ^ i − y i ) 2 = 1 2 n ∥ X β − y ∥ 2 2 L(\beta) = \frac{1}{2n} \sum_{i=1}^n (\hat{y}_i - y_i)^2 = \frac{1}{2n} \| X \beta - y \|_2^2 L(β)=2n1i=1∑n(y^i−yi)2=2n1∥Xβ−y∥22- 系数 1 2 n \frac{1}{2n} 2n1:简化梯度计算,避免平方项导数的系数干扰。
3. 梯度下降推导
标量形式
对每个参数 β j \beta_j βj 求偏导:
- 截距项 β 0 \beta_0 β0:
∂ L ∂ β 0 = 1 n ∑ i = 1 n ( y ^ i − y i ) \frac{\partial L}{\partial \beta_0} = \frac{1}{n} \sum_{i=1}^n (\hat{y}_i - y_i) ∂β0∂L=n1i=1∑n(y^i−yi) - 特征权重 β j \beta_j βj( j ≥ 1 j \geq 1 j≥1):
∂ L ∂ β j = 1 n ∑ i = 1 n ( y ^ i − y i ) x i j \frac{\partial L}{\partial \beta_j} = \frac{1}{n} \sum_{i=1}^n (\hat{y}_i - y_i) x_{ij} ∂βj∂L=n1i=1∑n(y^i−yi)xij
矩阵形式
利用矩阵微分法则:
∇ β L = 1 n X T ( X β − y ) \nabla_\beta L = \frac{1}{n} X^T (X \beta - y) ∇βL=n1XT(Xβ−y)
- 推导过程:
L ( β ) = 1 2 n ( X β − y ) T ( X β − y ) ⟹ ∂ L ∂ β = 1 n X T ( X β − y ) L(\beta) = \frac{1}{2n} (X \beta - y)^T (X \beta - y) \implies \frac{\partial L}{\partial \beta} = \frac{1}{n} X^T (X \beta - y) L(β)=2n1(Xβ−y)T(Xβ−y)⟹∂β∂L=n1XT(Xβ−y)
梯度下降更新公式
β ( t + 1 ) = β ( t ) − η ∇ β L = β ( t ) − η n X T ( X β ( t ) − y ) \beta^{(t+1)} = \beta^{(t)} - \eta \nabla_\beta L = \beta^{(t)} - \frac{\eta}{n} X^T (X \beta^{(t)} - y) β(t+1)=β(t)−η∇βL=β(t)−nηXT(Xβ(t)−y)
- 学习率 η \eta η:控制参数更新步长。
二、应用场景
- 连续值预测:
- 房价预测、销售额预测、股票价格趋势分析。
- 因果关系分析:
- 研究广告投入与销量的量化关系。
- 基线模型:
- 作为复杂模型(如神经网络)的性能对比基准。
三、优缺点及解决方法
优点
- 简单高效:计算复杂度低(( O(nm) ) 每轮梯度下降)。
- 可解释性强:参数直接反映特征对目标的影响程度。
- 闭式解存在:当 X T X X^T X XTX可逆时,可直接求解 β = ( X T X ) − 1 X T y \beta = (X^T X)^{-1} X^T y β=(XTX)−1XTy。
缺点及解决方法
缺点 | 解决方法 |
---|---|
线性假设限制 | 引入多项式特征或使用非线性模型(如决策树、神经网络)。 |
多重共线性 | 正则化(岭回归、Lasso)、主成分分析(PCA)降维。 |
对异常值敏感 | 使用鲁棒损失函数(Huber损失)、数据清洗或加权最小二乘法。 |
异方差性(方差不均) | 加权回归、Box-Cox变换稳定方差。 |
特征维度高时不稳定 | 正则化、逐步回归、特征选择(如基于p值或AIC准则)。 |
改进方法与数学推导
1. 正则化(Ridge 回归)
目标函数:
L = 1 2 m ∥ X w − y ∥ 2 + λ ∥ w ∥ 2 L = \frac{1}{2m} \|Xw - y\|^2 + \lambda \|w\|^2 L=2m1∥Xw−y∥2+λ∥w∥2
梯度更新:
∇ w L = 1 m X T ( X w − y ) + 2 λ m w \nabla_w L = \frac{1}{m} X^T (Xw - y) + \frac{2\lambda}{m} w ∇wL=m1XT(Xw−y)+m2λw
PyTorch 实现:
optimizer = torch.optim.SGD(model.parameters(), lr=0.1, weight_decay=1.0) # weight_decay 对应 λ
2. 数据预处理
- 标准化:使特征均值为 0,方差为 1,加速收敛。
- 异常值处理:使用 IQR 或 Z-Score 过滤离群点。
3. 特征工程
- 多项式扩展:将 x 1 , x 2 x_1, x_2 x1,x2 扩展为 x 1 2 , x 2 2 , x 1 x 2 x_1^2, x_2^2, x_1x_2 x12,x22,x1x2 等,再用线性回归。
数学形式:
y ^ = w 1 x 1 + w 2 x 2 + w 3 x 1 2 + w 4 x 2 2 + w 5 x 1 x 2 + b \hat{y} = w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2 + w_5 x_1x_2 + b y^=w1x1+w2x2+w3x12+w4x22+w5x1x2+b
四、关键公式总结
内容 | 标量形式 | 矩阵形式 |
---|---|---|
预测值 | y ^ i = β 0 + β 1 x i 1 + ⋯ + β m x i m \hat{y}_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_m x_{im} y^i=β0+β1xi1+⋯+βmxim | y ^ = X β \hat{y} = X \beta y^=Xβ |
损失函数 | L = 1 2 n ∑ i = 1 n ( y ^ i − y i ) 2 L = \frac{1}{2n} \sum_{i=1}^n (\hat{y}_i - y_i)^2 L=2n1∑i=1n(y^i−yi)2 | L = 1 2 n ∣ X β − y ∣ 2 2 L = \frac{1}{2n} | X \beta - y |_2^2 L=2n1∣Xβ−y∣22 |
梯度 | ∂ L ∂ β j = 1 n ∑ i = 1 n ( y ^ i − y i ) x i j \frac{\partial L}{\partial \beta_j} = \frac{1}{n} \sum_{i=1}^n (\hat{y}_i - y_i) x_{ij} ∂βj∂L=n1∑i=1n(y^i−yi)xij | ∇ β L = 1 n X T ( X β − y ) \nabla_\beta L = \frac{1}{n} X^T (X \beta - y) ∇βL=n1XT(Xβ−y) |
五、实际应用示例
- 房价预测:
- 特征:房屋面积、卧室数量、地理位置。
- 输出:房价。
- 方法:通过梯度下降拟合参数,预测新样本价格。
- 广告效果分析:
- 特征:电视、网络、报纸广告投入。
- 输出:销售额增长。
- 结论:参数正负性指示广告渠道的有效性。
六、扩展:正则化改进
- 岭回归(L2正则化):
L ( β ) = 1 2 n ∥ X β − y ∥ 2 2 + λ ∥ β ∥ 2 2 L(\beta) = \frac{1}{2n} \| X \beta - y \|_2^2 + \lambda \| \beta \|_2^2 L(β)=2n1∥Xβ−y∥22+λ∥β∥22- 解决多重共线性,防止过拟合。
- Lasso(L1正则化):
L ( β ) = 1 2 n ∥ X β − y ∥ 2 2 + λ ∥ β ∥ 1 L(\beta) = \frac{1}{2n} \| X \beta - y \|_2^2 + \lambda \| \beta \|_1 L(β)=2n1∥Xβ−y∥22+λ∥β∥1- 自动特征选择,稀疏解。
完整代码示例
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt# 生成随机数据
n_samples = 100
n_features = 2
X = torch.randn(n_samples, n_features)
true_w = torch.tensor([[3.0], [4.0]])
true_b = torch.tensor([2.0])
y = X @ true_w + true_b + torch.randn(n_samples, 1) * 0.1# 定义模型
class LinearRegression(nn.Module):def __init__(self, input_dim, output_dim):super(LinearRegression, self).__init__()self.linear = nn.Linear(input_dim, output_dim)def forward(self, x):return self.linear(x)model = LinearRegression(n_features, 1)# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练模型
n_epochs = 1000
losses = [] # 初始化一个空列表来存储损失值for epoch in range(n_epochs):# 前向传播y_pred = model(X)# 计算损失loss = criterion(y_pred, y)losses.append(loss.item()) # 将损失值添加到列表中# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()if (epoch+1) % 100 == 0:print(f'Epoch [{epoch+1}/{n_epochs}], Loss: {loss.item():.4f}')# 可视化损失函数
plt.plot(losses) # 绘制损失函数随训练轮数的变化
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss')
plt.savefig("lr.png")
plt.show()
七、总结
多元线性回归是机器学习的基石模型,优势在于简单性和可解释性,但受限于线性假设。实际应用中需结合数据预处理、正则化或非线性扩展方法以提升性能。矩阵形式计算高效,适合编程实现;标量形式便于理解梯度下降的微观机制。
相关文章:
用大模型学大模型05-线性回归
deepseek.com:多元线性回归的目标函数,损失函数,梯度下降 标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示, 模型应用场景和优缺点,及如何改进解决及改进方法数据推…...
苹果CMS站群插件的自动生成功能:提升网站流量的秘诀
引言 在数字营销的浪潮中,站群技术因其强大的流量引导能力而备受青睐。苹果CMS作为一款优秀的内容管理系统,凭借其灵活性和可扩展性,成为了站群管理的理想选择。本文将详细介绍苹果CMS站群插件的自动生成功能,探讨如何通过这一功…...
大语言模型中one-hot编码和embedding之间的区别?
1. 维度与稀疏性 One-Hot编码 定义:每个词被表示为一个高维稀疏向量,维度等于词汇表大小。例如,词汇表有10,000个词,每个词对应一个10,000维的向量,其中仅有一个位置为1(表示当前词)࿰…...
【Bluedroid】 BLE连接源码分析(一)
BLE链接过程分析见【Bluedroid】BLE连接过程详解-CSDN博客,本篇主要围绕HCI_LE_Create_Connection展开。基于Android14源码进行分析。在蓝牙低功耗技术中,设备之间建立连接是进行数据传输等操作的前提。HCI LE Extended Create Connection Command 提供了一种更灵活、功能更丰…...
【C语言】移除元素
移除元素 给你一个数组 nums 和一个值 val,你需要原地移除所有数值等于 val 的元素,并返回移除后数组的新长度。不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并原地修改输入数组。元素的顺序可以改变。你不需要考虑数组中超出新长度后…...
SQL与数据库程序设计
1.1986年,10月美国国家标准局颁布了SQL语言的美国标准,称为SQL86 2.SQL(Structured Query Language)又称为结构化查询语言 3.建立索引的主要目的是加快查找的速度 4.在基本表上建立一个或者多个索引 5. 一个基本表是最多只能建立一个聚簇索引 6.CAL…...
基于Java企业项目管理系统设计与实现(LW+源码+讲解)
专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…...
Blazor-设置组件焦点
在Razor中设置焦点我们需要用到ElementReference类型的变量,使用ref指令引用到设置焦点HTML的元素。 在Blazor中,ElementReference类型的作用是提供对HTML DOM元素的引用,以便在C#代码中通过JavaScript互操作(JS Interopÿ…...
信用违约掉期(Credit Default Swap, CDS):金融市场的“保险”还是“定时炸弹”?(中英双语)
信用违约掉期(CDS):金融市场的“保险”还是“定时炸弹”? 引言 信用违约掉期(Credit Default Swap, CDS) 是金融市场中一种重要的衍生品,它最初被设计为债务违约的保险工具,但在实…...
Deepseek R1模型本地化部署与API实战指南:释放企业级AI生产力
摘要 本文深入解析Deepseek R1开源大模型的本地化部署流程与API集成方案,涵盖从硬件选型、Docker环境搭建到模型微调及RESTful接口封装的完整企业级解决方案。通过电商评论分析和智能客服搭建等案例,展示如何将前沿AI技术转化为实际生产力。教程支持Lin…...
核货宝多语言订货系统:打破语言障碍,拓展全球市场
在经济全球化的大背景下,企业的业务版图不断向全球扩张,国际贸易活动日益频繁。对于众多从事跨境贸易、跨国批发零售以及拥有广泛海外客户群体的企业而言,一款能够跨越语言障碍的多语言订货系统,已成为其在全球市场竞争中脱颖而出…...
【prompt示例】智能客服+智能质检业务模版
本文原创作者:姚瑞南 AI-agent 大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权&am…...
在linux系统中安装Anaconda,并使用conda
系统 : ubuntu20.04 显卡:NVIDIA GTX1650 目录 安装Anaconda第一步:下载合适版本的Anconda1. 查看自己Linux的操作系统及架构命令:uname -a2. 下载合适版本的Anconda 第二步:安装Aanconda1. 为.sh文件设置权限2. 执行.sh文件2.1 .…...
基于 openEuler 构建 LVS-DR 群集
1、环境准备 准备好下面四台台服务器: 主机名IP角色openEuler-1192.168.121.11Director ServeropenEuler-2192.168.121.12Real Server1openEuler-3192.168.121.13Real Server2Rocky8192.168.121.51Client 2、Web服务器配置 在两台RS上安装并配置nginx服务&#…...
委托构造函数与继承构造函数
委托构造函数 允许同一类中的构造函数调用另一个构造函数,以复用初始化逻辑。 委托构造函数不能同时初始化成员变量,只能委托给其他构造函数。 避免循环委托(如构造函数A委托给B,B又委托给A)。 class MyClass { pu…...
EPLAN 自定义图框
一 , 还是先打开系统自带的图框,作为参考 二, 自定义图框 1. 新建图框 2. 绘制。下图描述有误,直接将系统默认图框文件复制,然后重命名,在这个基础上来进行编辑。 三, 使用 1. 更改默认图框 2…...
c++ gcc工具链
GCC(GNU Compiler Collection)是一套广泛使用的开源编译工具链,支持多种编程语言(如 C、C、Objective-C、Fortran 等),主要用于 Linux 和嵌入式开发环境。 组成 GCC 工具链主要由以下几个核心工具组成&am…...
基于51单片机的的鸡笼补光和恒温系统的设计与实现(源程序+Protues仿真+电路图+元件清单+器件手册)
编号:71 基于51单片机的的鸡笼补光和恒温系统的设计与实现 功能描述: 本设计由89C52单片机液晶12864显示模块声光报警电路温湿度传感器电路风扇电路LED照明电路光照检测电路GSM电路DS1302时钟电路 1.实现的功能 (1)采用DHT11温湿传感器、光敏电阻捕捉…...
es-head 正则查询和标准正则查询的差异
在es-head里面查询,需要查询字符串是一个json串,因此就要符合json串的格式,在es-head里面可以通过regexp做正则查询,而这里的正则表达式其实是写成字符串的形式的,因此就要面对字符串转义的问题,比如你想匹…...
【深度学习】深度学习和强化学习算法——深度 Q 网络DQN
深度 Q 网络(Deep Q-Network, DQN) 详解 什么是DQNDQN 的背景DQN 训练流程 2 DQN 的核心思想2.1 经验回放(Experience Replay)2.2 目标网络(Target Network)2.3 ε-贪心策略(ε-Greedy Policy&a…...
matlab模拟风场的随机脉动风
1、内容简介 matlab137-模拟风场的随机脉动风 可以交流、咨询、答疑 2、内容说明 略 模拟风场的随机脉动风,并进行相关的统计分析和计算,包括风速谱、空间相关性、自谱、互谱、以及POD(Proper Orthogonal Decomposition)分解等…...
2025年2月16日(numpy-deepseek)
嗯,用户让我介绍一下这段使用numpy的代码。首先,我需要确认用户的需求是什么。他们可能刚开始学习Python或者数据科学,所以需要基础的解释。让我仔细看一下代码。 第一行是import numpy as np,这应该是导入numpy库,并…...
x64和ARM的区别
x64和ARM是两种不同的处理器架构,它们在指令集、设计理念、应用场景和能耗效率等方面存在显著差异。以下是它们之间的主要区别: 1. **指令集架构**: * **x64**:x64架构,也称为x86-64或AMD64,是x86架…...
电解电容的参数指标
容量 这个值通常是室温25℃,在一定频率和幅度的交流信号下测得的容量。容量会随着温度、直流电压、交流电压值的变化而改变。 额定电压 施加在电容上的最大直流电压,通常要求降额使用。 例如额定电压是4V,降额到70%使用,最高施…...
如何在 Mac 上解决 Qt Creator 安装后应用程序无法找到的问题
在安装Qt时,遇到了一些问题,尤其是在Mac上安装Qt后,发现Qt Creator没有出现在应用程序中。通过一些搜索和操作,最终解决了问题。以下是详细的记录和解决方法。 1. 安装Qt后未显示Qt Creator 安装完成Qt后,启动应用程…...
Spring——Spring开发实战经验(1)
摘要 文章主要介绍了 Swagger 作为 API 文档生成和测试工具的功能,包括自动生成 API 文档、提供可视化调试界面、促进前后端协作、支持 OpenAPI 规范等。同时,还提及了 Spring Boot 与 Swagger3 的实战应用,以及 Spring 开发中其他相关技术内…...
设计模式:代理模式
代理模式是很常见的设计模式,即使没有专门学习过这种设计模式,在工作中也一定用过这种设计模式。在实际生活中,代理模式也是常见的,比如内阁首辅相对于皇帝,前者是后者的代理,内阁首辅收到奏折时࿰…...
【NLP】循环神经网络RNN
目录 一、认识RNN 二、RNN模型分类 三、传统RNN模型 3.1 结构分析 3.2 Pytorch构建RNN模型 3.3 优缺点 一、认识RNN RNN(Recurrent Neural Network),中文称作循环神经网络,一般以序列数据为输入,通过网络内部的结构设计有效捕捉序列之…...
深度解析HTTP/HTTPS协议:从原理到实践
深入浅出HTTP/HTTPS协议:从原理到实践 前言 在当今互联网世界中,HTTP和HTTPS协议如同空气般存在于每个网页请求的背后。作为开发者或技术爱好者,理解这些基础协议至关重要。本文将用六大板块,配合原理示意图和实操案例࿰…...
AF3 MmcifObject类解读
AlphaFold3 中 MmcifObject类 是 解析 mmCIF 文件的核心数据结构,用于存储解析后的蛋白质结构信息,包含PDB 头部信息、Biopython 解析的结构、链序列信息等。 下面代码包含 Monomer 、AtomSite、ResiduePosition、ResidueAtPosition、 MmcifObject以及ParsingResult数据类的…...
大数据SQL调优专题——Hive执行原理
引入 Apache Hive 是基于Hadoop的数据仓库工具,它可以使用SQL来读取、写入和管理存在分布式文件系统中的海量数据。在Hive中,HQL默认转换成MapReduce程序运行到Yarn集群中,大大降低了非Java开发者数据分析的门槛,并且Hive提供命令…...
MySQL常见错误码及解决方法(1130、1461、2003、1040、2000、1049、1062、1129、2002、1690等)
目录 【问题1】、FATAL: error 1130: Unknown error 1130 【问题2】、FATAL: error: 1461 【问题3】、ERROR 2003 (HY000): Cant connect to MySQL server on "" (113) 【问题4】、FATAL: error 2003: Cant connect to MySQL server on 172.19.111.151 (111) 【问…...
类和对象详解(下)-----运算符重载
目录 1.运算符重载 2.赋值运算符重载 3.取地址运算符重载 3.1const成员函数 3.2取地址运算符重载 1.运算符重载 什么是运算符重载呢?简单举个例子就懂了。 就是我想实现日期的加法,而“”这个运算符C只实现了内置类型的加法,而我们要想实…...
Visonpro 检测是否有缺齿
一、效果展示 二、上面是原展开工具CogPolarUnwrapTool; 第二种方法: 用Blob 和 CogCopyRegionTool 三、 用预处理工具 加减常数,让图片变得更亮点 四、圆展开工具 五、模板匹配 六、代码分解 1.创建集合和文子显示工具 CogGraphicCollec…...
(萌新入门)如何从起步阶段开始学习STM32 ——2 我应该学习HAL库还是寄存器库?
概念 笔者下面需要介绍的是库寄存器和HAL库两个重要的概念,在各位看完之后,需要决定自己的学习路线到底是学习HAL呢?还是寄存器呢?还是两者都学习呢? 库寄存器 库寄存器就是简单的封装了我们对寄存器的操作…...
【SQL技术】不同数据库引擎 SQL 优化方案剖析
一、引言 在数据处理和分析的世界里,SQL 是不可或缺的工具。不同的数据库系统,如 MySQL、PostgreSQL(PG)、Doris 和 Hive,在架构和性能特点上存在差异,因此针对它们的 SQL 优化策略也各有不同。这些数据库…...
什么是原型?
在 JavaScript 中,原型(Prototype)是每个 JavaScript 对象都有的一个属性,用来实现对象之间的继承。原型是 JavaScript 面向对象编程的核心概念之一,通过原型链(prototype chain),一…...
【第10章:自然语言处理高级应用—10.4 NLP领域的前沿技术与未来趋势】
各位技术探险家们,今天我们要开启一场穿越语言智能奇点的时空之旅。从正在改写物理定律的万亿参数大模型,到能看懂《星际穿越》剧本的跨模态AI,再到正在颠覆编程方式的神经-符号混合系统……这篇万字长文将带你摸清NLP技术进化的七块关键拼图。(建议边读边做笔记,文末有技…...
41.日常算法
1.面试题 02.04. 分割链表 题目来源 给你一个链表的头节点 head 和一个特定值 x ,请你对链表进行分隔,使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。你不需要 保留 每个分区中各节点的初始相对位置。 示例 1: 输入:…...
CPP集群聊天服务器开发实践(五):nginx负载均衡配置
1 负载均衡器的原理与功能 单台Chatserver可以容纳大约两万台客户端同时在线聊天,为了提升并发量最直观的办法需要水平扩展服务器的数量,三台服务器可以容纳六万左右的客户端。 负载均衡器的作用: 把client的请求按照负载均衡算法分发到具体…...
Java 中的 HashSet 和 HashMap 有什么区别?
一、核心概念与用途 特性HashSetHashMap接口实现实现 Set 接口(存储唯一元素)实现 Map 接口(存储键值对)数据存储存储单个对象(元素唯一)存储键值对(键唯一,值可重复)典…...
AI大模型的技术突破与传媒行业变革
性能与成本:AI大模型的“双轮驱动” 过去几年,AI大模型的发展经历了从实验室到产业化的关键转折。2025年初,以DeepSeek R1为代表的模型在数学推理、代码生成等任务中表现超越国际头部产品,而训练成本仅为传统模型的几十分之一。这…...
Golang学习01:Go安装和配置+Vscode、GoLand安装激活+Go环境变量避坑的超详细教程
🪁🍁 希望本文能给您带来帮助,如果有任何问题,欢迎批评指正!🐅🐾🍁🐥 文章目录 一、背景二、Go语言安装2.1 Go语言环境安装2.2 Go语言环境验证2.3 其他配置 三、开发环境…...
案例-06.部门管理-根据ID查询
一.根据ID查询-接口文档 二.根据ID查询-Controller层 package com.gjw.controller;/*** 部门管理Controller*/import com.gjw.anno.Log; import com.gjw.pojo.Dept; import com.gjw.pojo.Result; import com.gjw.service.DeptService; import com.gjw.service.impl.DeptServi…...
解决No matching client found for package name xxx编译报错的问题
如果Android工程编译报错,并且信息如下: Execution failed for task :app:processDebugGoogleServices. > No matching client found for package name com.demo.test可能的原因为google-services.json中定义的package_name属性跟app当前的包名不符&…...
基于deepseek api和openweather 天气API实现Function Calling技术讲解
以下是一个结合DeepSeek API和OpenWeather API的完整Function Calling示例,包含意图识别、API调用和结果整合: import requests import json import os# 配置API密钥(从环境变量获取) DEEPSEEK_API_KEY os.getenv("DEEPSEE…...
什么是全局污染,怎么避免全局污染?
具体表现: 全局变量:当变量在全局作用域(通常是 window 对象)中定义时,它会在整个应用程序中都可访问。这个变量可能会被其他部分的代码意外修改或覆盖,导致难以追踪和调试错误。 命名冲突:全局…...
机器视觉--switch语句
引言 在 Halcon 这个强大的机器视觉软件里,编程控制结构对于高效处理图像任务至关重要。其中,Switch 语句作为一种多分支选择结构,能够根据不同的条件值执行不同的代码块,让程序的逻辑更加清晰和简洁。本文将全面深入地介绍 Halc…...
C++ std::atomic可以使用复杂类型(类和结构体)吗
目录 1.引言 2.std::atomic 支持的复杂类型 3.std::atomic与无锁 4.如何使用 std::atomic 保护复杂类型 4.1.使用互斥锁(Mutex) 4.2.使用 std::atomic_flag 和自旋锁 4.3.原子共享指针(Atomic Shared Pointers) 4.4.使用高…...
音乐随想、日语认识
Rapport的日文歌词(初) Rapport - キタニタツヤ 词:キタニタツヤ 《《 ki ta ni ta tsu ya 歌手的名字,全是片假名,不是本土的平假名(为了国外市场的做法?) 》》 曲:キタニタツヤ 编曲&am…...