Qwen2-VL 的重大省级,Qwen 发布新旗舰视觉语言模型 Qwen2.5-VL
Qwen2.5-VL 是 Qwen 的新旗舰视觉语言模型,也是上一代 Qwen2-VL 的重大飞跃。
Qwen2.5-VL主要特点
-
视觉理解事物:Qwen2.5-VL不仅能够熟练识别花、鸟、鱼、昆虫等常见物体,而且还能够分析图像中的文本、图表、图标、图形和布局。
-
代理性:Qwen2.5-VL直接扮演视觉代理的角色,具有推理和动态指挥工具的功能,可用于电脑和手机。
-
理解长视频并捕捉事件:Qwen2.5-VL 可以理解超过 1 小时的视频,这次它还具有通过精确定位相关视频片段来捕捉事件的新功能。
-
能够进行不同格式的视觉定位:Qwen2.5-VL 可以通过生成边界框或点来准确定位图像中的对象,并且可以为坐标和属性提供稳定的 JSON 输出。
-
生成结构化输出:对于发票、表格、表格等扫描件数据,Qwen2.5-VL 支持其内容的结构化输出,有利于金融、商业等领域的用途。
相关链接
-
主页:https://chat.qwenlm.ai/
-
GitHub:https://github.com/QwenLM/Qwen2-VL
-
Huggingface:https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5
-
ModelScope: https://modelscope.cn/collections/Qwen25-VL-58fbb5d31f1d47
表现
我们用 SOTA 模型以及类似模型大小的最佳模型来评估我们的模型。就旗舰模型 Qwen2.5-VL-72B-Instruct 而言,它在一系列涵盖领域和任务的基准测试中取得了有竞争力的表现,包括大学水平的问题、数学、文档理解、一般问答、数学、视频理解和视觉代理。值得注意的是,Qwen2.5-VL 在理解文档和图表方面取得了显著的优势,并且它能够充当视觉代理而无需针对特定任务进行微调。
在较小的模型方面,Qwen2.5-VL-7B-Instruct 在多项任务上的表现优于 GPT-4o-mini,而作为边缘 AI 解决方案的 Qwen2.5-VL-3B 甚至优于我们上一版本 Qwen2-VL 的 7B 模型。
模型功能
1. 全球范围的图像识别
Qwen2.5-VL通用图像识别能力大幅提升,图像类别扩展至超大量,不仅包括植物、动物、名山大川地标,还包括影视IP以及种类丰富的商品。 - 示例:景点识别 这些景点是什么?请给出它们的中文和英文名称。
- Qwen2.5-VL
```
这些景点是:左上:吉萨大金字塔(埃及的吉萨大金字塔)
右上:中国的长城
左下:自由女神像(美国的自由女神像)
右下:中国的秦始皇兵马俑
```
2. 精确的物体接地
Qwen2.5-VL 利用边界框和基于点的表示进行定位,实现分层定位和标准化 JSON 输出。这种增强的定位能力为视觉推理奠定了基础。
-
检测图像中的所有摩托车手并以坐标形式返回其位置。输出格式应为 {“bbox_2d”: [x1, y1, x2, y2], “label”: “motorcyclist”, “sub_label”: “wearing helmat” # or “not wearing helmat”}。
[{"bbox_2d": [341, 258, 397, 360], "label": "motorcyclist", "sub_label": "not wearing helmat "},{"bbox_2d": [212, 332, 274, 448], "label": "motorcyclist", "sub_label": "not wearing helmat "},{"bbox_2d": [66, 124, 112, 198], "label": "motorcyclist", "sub_label": "not wearing helmat "},{"bbox_2d": [5, 235, 63, 320], "label": "motorcyclist", "sub_label": "wearing helmat "} ]
3.增强文本识别和理解
Qwen2.5-VL将OCR识别能力提升到全新高度,多场景、多语言、多方向的文字识别和文本本地化性能增强,信息提取能力大幅提升,满足资质审核、金融业务等领域日益提升的数字化、智能化需求。
-
读取图片中所有文字,按行输出。
-
Qwen2.5-VL回答:平安喜乐 八方来财 顺风顺 水顺财神 暴富 大吉诸事皆顺 福时来运转 发财如意 有钱有势 有前程 好运来
4. 强大的文档解析功能
Qwen2.5-VL 设计了一种独特的文档解析格式,称为 QwenVL HTML 格式,该格式基于 HTML 提取布局信息。QwenVL HTML 可以在各种场景中进行文档解析,例如杂志、研究论文、网页,甚至移动端截图。
<html>
<body>
<h1 data-bbox="879 283 1605 348">Qwen2.5 Technical Report</h1>
<p data-bbox="1124 406 1360 456"></p>
<address class="author"><p>Qwen Team</p></address>
<div class="image" data-bbox="778 491 850 541"><img data-bbox="778 491 850 541"/></div>
<p data-bbox="885 491 1460 541">https://huggingface.co/Qwen</p>
<div class="image" data-bbox="778 541 850 589"><img data-bbox="778 541 850 589"/></div>
<p data-bbox="885 541 1708 589">https://modelscope.cn/organization/qwen</p>
<div class="image" data-bbox="792 589 850 639"><img data-bbox="792 589 850 639"/></div>
<p data-bbox="885 589 1584 639">https://github.com/QwenLM/Qwen2.5</p>
<h2 data-bbox="1143 681 1344 733">Abstract</h2>
<p data-bbox="434 785 2050 1252">In this report, we introduce Qwen2.5, a comprehensive series of large language models (LLMs) designed to meet diverse needs. Compared to previous iterations, Qwen 2.5 has been significantly improved during both the pre-training and post-training stages. In terms of pre-training, we have scaled the high-quality pre-training datasets from the previous 7 trillion tokens to 18 trillion tokens. This provides a strong foundation for common sense, expert knowledge, and reasoning capabilities. In terms of post-training, we implement intricate supervised finetuning with over 1 million samples, as well as multistage reinforcement learning, including offline learning DPO and online learning GRPO. Post-training techniques significantly enhance human preference, and notably improve long text generation, structural data analysis, and instruction following.</p>
<p data-bbox="434 1262 2050 1587">To handle diverse and varied use cases effectively, we present Qwen2.5 LLM series in rich configurations. The open-weight offerings include base models and instruction-tuned models in sizes of $0.5 \mathrm{~B}, 1.5 \mathrm{~B}, 3 \mathrm{~B}, 7 \mathrm{~B}, 14 \mathrm{~B}, 32 \mathrm{~B}$, and $72 \mathrm{~B}$ parameters. Quantized versions of the instruction-tuned models are also provided. Over 100 models can be accessed from Hugging Face Hub, ModelScope, and Kaggle. In addition, for hosted solutions, the proprietary models currently include two mixture-of-experts (MoE) variants: Qwen2.5-Turbo and Qwen2.5-Plus, both available from Alibaba Cloud Model Studio.</p>
<p data-bbox="434 1587 2050 2052">Qwen2.5 has demonstrated top-tier performance on a wide range of benchmarks evaluating language understanding, reasoning, mathematics, coding, human preference alignment, etc. Specifically, the open-weight flagship Qwen2.5-72B-Instruct outperforms a number of open and proprietary models and demonstrates competitive performance to the state-of-the-art open-weight model, Llama-3-405B-Instruct, which is around 5 times larger. Qwen2.5-Turbo and Qwen2.5-Plus offer superior cost-effectiveness while performing competitively against GPT-4o-mini and GPT-4o respectively. Additionally, as the foundation, Qwen2.5 models have been instrumental in training specialized models such as Qwen2.5-Math (Yang et al., 2024b), Qwen2.5-Coder (Hui et al., 2024), QwQ (Qwen Team, 2024d), and multimodal models.</p>
<div class="image" data-bbox="408 2275 2086 2800"><img data-bbox="408 2275 2086 2800"/></div>
<p data-bbox="289 2864 2202 3058">Figure 1: In the iterative development of the Qwen series, data scaling has played a crucial role. Qwen 2.5, which leverages 18 trillion tokens for pre-training, has demonstrated the most advanced capabilities within the Qwen series, especially in terms of domain expertise, underscoring the importance of scale together with mixture in enhancing the model’s capabilities.</p>
</body>
</html>
5. 增强视频理解能力
Qwen2.5-VL 的视频理解能力全面升级,在时序处理方面,我们引入了动态帧率(FPS)训练和绝对时间编码技术,使得模型不仅能够支持小时级超长视频理解,还能实现秒级事件定位,能够精准理解数小时级长视频内容,搜索视频中的特定事件,总结不同时间段的关键点,帮助用户快速高效地提取视频中蕴含的关键信息。
模型更新
Qwen2.5-VL相较于Qwen2-VL,增强了模型对时间和空间尺度的感知,并进一步简化了网络结构,提高模型效率。
时间和图像大小的感知
在空间维度上,Qwen2.5-VL不仅能将不同大小的图片动态转换为不同长度的token,还直接用图片的实际尺寸尺度来表示检测框、点等坐标,而无需进行传统的坐标归一化,让模型能够直接学习到图片的尺度。在时间维度上,引入了动态FPS(Frames Per Second)训练和绝对时间编码,将mRoPE的id直接与时间的快慢对齐,让模型能够通过时间维度id的间隔来学习到时间的节奏。
更简洁高效的视觉编码器
视觉编码器在多模态大型模型中起着至关重要的作用。我们从头开始训练了一个原生动态分辨率 ViT,包括 CLIP、视觉语言模型对齐和端到端训练阶段。为了解决多模态大型模型训练和测试阶段 ViT 负载不平衡的问题,我们引入了窗口注意,以有效减少 ViT 端的计算负载。在我们的 ViT 设置中,只有四层是全注意层,其余层使用窗口注意。最大窗口大小为 8x8,小于 8x8 的区域不需要填充;相反,它们保留其原始比例,确保模型保持原生分辨率。此外,为了简化整体网络结构,我们通过采用 RMNSorm 和 SwiGLU 结构使 ViT 架构与 LLM 更加一致。
下一步
在不久的将来,我们将进一步增强模型的解决问题和推理能力,同时融入更多模态。这将使模型更加智能,并使我们朝着能够处理多种类型输入和任务的集成式全能模型迈进。
相关文章:
Qwen2-VL 的重大省级,Qwen 发布新旗舰视觉语言模型 Qwen2.5-VL
Qwen2.5-VL 是 Qwen 的新旗舰视觉语言模型,也是上一代 Qwen2-VL 的重大飞跃。 Qwen2.5-VL主要特点 视觉理解事物:Qwen2.5-VL不仅能够熟练识别花、鸟、鱼、昆虫等常见物体,而且还能够分析图像中的文本、图表、图标、图形和布局。 代理性&…...
关系数据库标准语言SQL
1.SOL称为结构化查询语言,它是由1974年由Boyce和Chamberlin提出的,1975年至1979年IBM公司的San Jose Research Laboratory研制了关系数据库管理系统的原型系统SystemR,并实现了这种语言。 2.SQL(Structured Ouery Language)称为结构化查询语言 3.SQL数…...
mysql8.0使用MGR实现高可用与利用MySQL Router构建读写分离MGR集群
MGR是MySQL Group Replication的缩写,即MySQL组复制。 在以往,我们一般是利用MySQL的主从复制或半同步复制来提供高可用解决方案,但这存在以下几个比较严重的问题: 主从复制间容易发生复制延迟,尤其是在5.6以前的版本…...
《AI大模型开发笔记》MoE模型技术对比(Mixtral,Qwen2-MoE,DeepSeek-v3)
MoE模型技术对比(Mixtral,Qwen2-MoE,DeepSeek-v3) MoE(混合专家)大模型进入爆发期!本期我们对比三大开源MoE LLM:Mixtral、Qwen2-MoE 和最新爆火的 DeepSeek-V3。从 2023 年 Mixtral 开启风潮,到 2024 年 DeepSeek-V3 让全球瞩目,MoE 模型到底经历了怎样的进化? De…...
Vue.js 组件开发深入解析:Vue 2 vs Vue 3
Vue.js 是一个渐进式框架,旨在通过声明式渲染和组件化开发来提高开发效率和可维护性。组件是 Vue 应用的基本组成部分,几乎所有的功能都可以通过组件来实现。随着 Vue 3 的发布,Vue.js 引入了许多新的特性,使得组件的开发变得更加…...
DeepSeek大模型一键部署解决方案:全平台多机分布式推理与国产硬件优化异构计算私有部署
DeepSeek R1 走红后,私有部署需求也随之增长,各种私有部署教程层出不穷。大部分教程只是简单地使用 Ollama、LM Studio 单机运行量化蒸馏模型,无法满足复杂场景需求。一些操作配置也过于繁琐,有的需要手动下载并合并分片模型文件&…...
多个用户如何共用一根网线传输数据
前置知识 一、电信号 网线(如以太网线)中传输的信号主要是 电信号,它携带着数字信息。这些信号用于在计算机和其他网络设备之间传输数据。下面是一些关于网线传输信号的详细信息: 1. 电信号传输 在以太网中,数据是…...
DeepSeek官方推荐的AI集成系统
DeepSeek模型虽然强大先进,但是模型相当于大脑,再聪明的大脑如果没有输入输出以及执行工具也白搭,所以需要有配套工具才能让模型发挥最大的作用。下面是一个典型AI Agent架构图,包含核心组件与数据流转关系: #mermaid-…...
el-select 添加icon
Element-ui-plus 新版本:Select 选择器 | Element Plus 要实现如上的效果 ,要用到具名插槽 prefix,看代码: <template><el-dialog ref"dialogRef" v-model"dialogVisible" :title"title"…...
Qt的QPushButton样式设置
在Qt中,可以通过样式表(QSS)为QPushButton设置丰富的样式。以下是常见样式设置方法的详细说明: 1. 基础样式 // 设置背景色、文字颜色、圆角边框 button->setStyleSheet("QPushButton {"" background-color…...
Java函数计算冷启动从8s到800ms的优化实录
在函数计算场景中,冷启动性能对用户体验至关重要。本文将分享如何将 Java 函数计算的冷启动时间从 8 秒优化到 800 毫秒,包括具体的技术手段和代码示例。 一、背景介绍 函数计算是一种事件驱动的计算服务,用户只需上传代码,无需管理服务器。但在实际使用中,函数计算的冷…...
通过例子学 rust 个人精简版 1-1
1-1 Hello World fn main() {println!("Hello World!");// 动手试一试println!("Im a Rustacean!"); }Hello World! Im a Rustacean!要点1 :println 自带换行符 注释 fn main() {let x 5 /* 90 */ 5;println!("Is x 10 or 100? x …...
STM32、GD32驱动TM1640原理图、源码分享
一、原理图分享 二、源码分享 /************************************************* * copyright: * author:Xupeng * date:2024-07-18 * description: **************************************************/ #include "smg.h"#define DBG_TAG "smg&…...
Centos安装php-8.0.24.tar
查看系统环境 cat /etc/redhat-release 预先安装必要的依赖 yum install -y \ wget \ gcc \ gcc-c \ autoconf \ automake \ libtool \ make \ libxml2 \ libxml2-devel \ openssl \ openssl-devel \ sqlite-devel yum update 1、下载解压 cd /data/ wget https:/…...
VNC远程控制Mac
前言 macOS系统自带有VNC远程桌面,我们可以在控制端上安装配置VNC客户端,以此来实现远程控制macOS。但通常需要在不同网络下进行远程控制,为此,我们可以在macOS被控端上使用cpolar做内网穿透,映射VNC默认端口5…...
基于大数据的北京市天气数据分析系统的设计与实现
【Flask】基于Flask的北京市天气数据分析系统的设计与实现(完整系统源码开发笔记详细部署教程)✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 该系统采用Python和Flask框架,结合Pandas、NumPy等数据处理库及Echarts进…...
20250214在ubuntu20.04下使用obs studio录制外挂的1080p的USB摄像头【下载安装】
20250214在ubuntu20.04下使用obs studio录制外挂的1080p的USB摄像头 2025/2/14 9:10 缘起:笔记本电脑在ubuntu20.04下使用Guvcview录制自带的摄像头,各种问题。 1、降帧率。WIN10/11自带的相机应用可以满速30fps,马上重启到ubuntu20.04&#…...
OpenEuler学习笔记(三十):在OpenEuler上搭建3D建模环境
在OpenEuler上搭建3D建模环境,通常可以选择一些常见的3D建模软件,如Blender、FreeCAD等。以下以搭建Blender和FreeCAD这两款软件的使用环境为例,为你详细介绍搭建步骤。 搭建Blender 3D建模环境 1. 更新系统软件包 首先,确保系…...
Deepseek R1模型本地化部署+API接口调用详细教程:释放AI生产力
文章目录 前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装ollama2部署DeepSeek R1模型删除已存在模型,以7b模型为例 三、DeepSeek API接口调用Cline配置 前言 随着最近人工智能 DeepSeek 的爆火,越来越多的技术大佬们开始关注如…...
Ubuntu添加桌面快捷方式
以idea为例 一. 背景 在ubuntu中,很多时候是自己解压的文件并没有桌面快捷方式,需要自己找到对应的目录的执行文件手动打开,很麻烦 而只需要在 /usr/share/applications 中创建自定义的desktop文件就能自动复制到桌面 二. 添加方法 创建desk…...
教程:使用 Vue 3 和 arco 实现表格合并
1. 功能概述 本教程将介绍如何使用 Vue 3 和 arco 组件库实现表格合并功能。具体来说,我们会根据表格数据中的某个字段(如 type)对表格的某一列(如入库类型列)进行合并,同时将质检说明列合并为一列。 2. …...
【MySQL数据库】Ubuntu下的mysql
目录 1,安装mysql数据库 2,mysql默认安装路径 3,my.cnf配置文件? 4,mysql运用的相关指令及说明 5,数据库、表的备份和恢复 mysql是一套给我们提供数据存取的,更加有利于管理数据的服务的网络程序。下…...
Java实现MinIO上传PDF文件并配置浏览器在线打开而非下载
在Minio中上传PDF文件后,通常文件的访问方式(即URL)是配置为允许下载文件的,因为大多数Web服务器和存储服务默认将PDF文件视为应下载的内容类型(Content-Type: application/pdf)。但是,如果你想…...
CSV格式和普通EXCEL格式文件的区别
CSV 文件(.csv) 普通的 Excel 文件(.xlsx 或 .xls) 主要体现在 文件格式、数据存储、功能支持 等方面: 文件格式 比较项CSV 文件 (.csv)Excel 文件 (.xlsx/.xls)文件类型纯文本文件二进制或 XML 格式数据分隔逗号(,)…...
安卓基础(持续更新的笔记)
为什么要这样: // 创建请求体RequestBody body RequestBody.create(MediaType.parse("application/json; charsetutf-8"),jsonObject.toString()); jsonObject 就包含了一个 JSON 数据,它其实就是: {"name": "张…...
大模型Deepseek的使用_基于阿里云百炼和Chatbox
目录 前言1. 云服务商2. ChatBox参考 前言 上篇博文中探索了(本地)部署大语言模型,适合微调、数据高隐私性等场景。随着Deepseek-R1的发布,大语言模型的可及性得到极大提升,应用场景不断增加,对高可用的方…...
数学建模基础训练-1:概念解析
文章目录 数学建模基础训练-1:概念解析问题一:如何找到“概念”?问题二:如何全面理解概念的基础含义?问题三:如何深刻理解概念并作出创新点发掘?实际举例问题一 :研究并给出寒假开学某大学返校交…...
【mybatis】基本操作:详解Spring通过注解和XML的方式来操作mybatis
mybatis 的常用配置 配置数据库连接 #驱动类名称 spring.datasource.driver-class-namecom.mysql.cj.jdbc.Driver #数据库连接的url spring.datasource.urljdbc:mysql://127.0.0.1:3306/mybatis_test characterEncodingutf8&useSSLfalse #连接数据库的名 spring.datasourc…...
联邦学习中的“参数聚合“机制详解:医疗数据隐私保护的技术实现路径
一、技术原理:参数聚合的数学本质 1.1 核心数学公式 联邦平均算法(FedAvg): \theta_{global}^{t1} \sum_{k1}^K \frac{n_k}{N} \theta_k^t其中: K K K:参与本轮训练的客户端数量 n k n_k nkÿ…...
LVS 负载均衡集群(NAT模式)
一、环境准备 四台主机(一台 LVS、两台 RS、一台客户端) 注意每个虚拟机都需要关闭防火墙和 selinux 1.1.LVS 主机 LVS 主机(两块网卡) 第一块:NAT模式(内网) 第二块:添加网卡&am…...
Rocky Linux系统修改网卡全攻略
Rocky Linux系统修改网卡全攻略 Rocky Linux系统修改网卡全攻略一、了解网卡相关知识二、查看当前网卡配置(一)使用ip命令(二)使用ifconfig命令(需安装)三、修改网卡配置文件(一)修改IP地址(二)修改网关和DNS服务器(三)保存并退出配置文件四、重启网络服务使配置生…...
常用查找算法整理(顺序查找、二分查找、哈希查找、二叉排序树查找、平衡二叉树查找、红黑树查找、B树和B+树查找、分块查找)
常用的查找算法: 顺序查找:最简单的查找算法,适用于无序或数据量小的情况,逐个元素比较查找目标值。二分查找:要求数据有序,通过不断比较中间元素与目标值,将查找范围缩小一半,效率…...
自动化办公|xlwings 数据类型和转换
xlwings 数据类型和转换:Python 与 Excel 的桥梁 在使用 xlwings 进行 Python 和 Excel 数据交互时,理解两者之间的数据类型对应关系至关重要。本篇将详细介绍 Python 数据类型与 Excel 数据类型的对应关系,以及如何进行数据类型转换。 一、…...
Edge浏览器清理主页
我们都知道,Microsoft Edge浏览器是微软创造的搜索浏览器,Windows10、11自带。但是你可以看到,每次你打开Edge浏览器的时候都可以看到许多的广告,如图: 导致打开Edge浏览器的时候会遭受卡顿,广告骚扰&#…...
RedHat8安装postgresql15和 postgis3.4.4记录及遇到的问题总结
安装包对照版本参考 UsersWikiPostgreSQLPostGIS – PostGIS 如果Red Hat系统上有旧版本的PostgreSQL需要卸载 在较新的Red Hat版本,使用dnf包管理器卸载:sudo dnf remove postgresql-server postgresql 旧版本,使用yum包管理器卸载 sudo y…...
Java 大视界 -- 绿色大数据:Java 技术在节能减排中的应用与实践(90)
💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…...
Python 文本探秘:正则表达式的易错迷宫穿越 -- 7. 正则表达式
正则表达式是 Python 中处理文本的强大武器,但它复杂的语法和规则构成了一个易错迷宫。本文深入剖析了正则表达式模式编写的错误、匹配规则的误解、性能优化的忽视等问题。通过大量的文本处理实例,展示了错误的正则表达式使用方式以及正确的解决方案。帮…...
Ubuntu22.04通过Docker部署Jeecgboot
程序发布环境包括docker、mysql、redis、maven、nodejs、npm等。 一、安装docker 1、用如下命令卸载旧Docker: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done 2、安装APT环境依赖包…...
数据结构 二叉树
一、⼆叉树的定义 ⼆叉树是⼀种特殊的树型结构,它的特点是每个结点⾄多只有2棵⼦树(即⼆叉树中不存在度⼤于2的结点),并且⼆叉树的⼦树有左右之分,其次序不能任意颠倒。 ⼆叉的意思是这种树的每⼀个结点最多只有两个孩…...
基于python sanic框架,使用Nacos进行微服务管理
微服务软件系统构建方式,已经很普及了,通过开源的sanic进行微服务管理,便捷,技术也比较成熟,而在项目实际应用过程中,微服务类型不仅有java的,还有nodejs、python等,尤其是结合算法模型构建的python接口,需要在Nacos进行注册管理。本文内容耗时2天踏坑,亲测一切ok。 …...
hbase合并队列超长问题分析
问题现象 hbase集群合并队列超长,有节点上合并任务已经运行超过1天未结束,合并队列总长不断增加。 问题分析 参数配置: 配置参数默认值含义hbase.hregion.memstore.flush.size128MMemStore达到该值会Flush成StoreFilehbase.hregion.memstore.block.multiplier4当region中…...
【设计模式】【行为型模式】解释器模式(Interpreter)
👋hi,我不是一名外包公司的员工,也不会偷吃茶水间的零食,我的梦想是能写高端CRUD 🔥 2025本人正在沉淀中… 博客更新速度 👍 欢迎点赞、收藏、关注,跟上我的更新节奏 🎵 当你的天空突…...
DeepSeek-R1 蒸馏 Qwen 和 Llama 架构 企业级RAG知识库
“DeepSeek-R1的输出,蒸馏了6个小模型”意思是利用DeepSeek-R1这个大模型的输出结果,通过知识蒸馏技术训练出6个参数规模较小的模型,以下是具体解释: - **知识蒸馏技术原理**:知识蒸馏是一种模型压缩技术,核…...
无人机航迹规划:互联银行系统优化(Connected Banking System Optimizer,CBSO)求解无人机路径规划MATLAB
一、互联银行系统优化算法 互联银行系统优化(Connected Banking System Optimizer,CBSO)算法是2024年由Mehrdad Nemati等人提出的一种智能优化算法,其灵感来源于银行系统之间的连接和交易过程。在银行系统中,核心银行…...
学习web数据埋点
什么是埋点,以及为什么需要埋点 通过代码主动收集用户行为数据(如点击、浏览、停留时长等),用于数据分析驱动产品优化。 一、前端埋点 在客户端(浏览器、移动端应用)直接采集用户行为数据,通…...
Windows 11 安装 Docker
1.以管理员身份打开 Windows PowerShell 2.执行下面三行命令来启动WSL和虚拟机平台 dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestartdism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norest…...
深度学习框架探秘|Keras:深度学习的魔法钥匙
一、引言:深度学习浪潮中的 Keras 前面的文章我们探秘了深度学习框架中的两大明星框架 —— TensorFlow 和 PyTorch 以及 两大框架的对比 在深度学习的众多框架中,还有一款框架备受开发者们的喜爱 —— Keras 。它就像是一位贴心的助手,为我…...
HTML【详解】input 标签
input 标签主要用于接收用户的输入,随 type 属性值的不同,变换其具体功能。 通用属性 属性属性值功能name字符串定义输入字段的名称,在表单提交时,服务器通过该名称来获取对应的值disabled布尔值禁用输入框,使其无法被…...
在vscode中拉取gitee里的项目并运行
拉取项目: 方法一:vscode点击查看--->终端(或者直接通过快捷键ctrol+ `打开) 在终端内通过cd命令定位到你想存放项目的文件夹 例如:cd h: 通过命令:git clone 地址 例如:git clone newbee-mall-vue-app: 前端代码 等待拉取完成即可在对应文件夹下看到项目啦 方…...
Spring Cloud微服务
一、定义 微服务,又叫微服务架构,也就是分布式架构,是软件架构的一种方式。它将一个大的单体架构应用拆分成一系列按业务领域划分模块的、小的自治服务。 如开发部有很多任务,如果把任务给了一个组的话,效率肯定会降低…...