当前位置: 首页 > news >正文

大数据学习之SparkStreaming、PB级百战出行网约车项目一

一.SparkStreaming

163.SparkStreaming概述

Spark Streaming is an extension of the core Spark API that
enables scalable, high-throughput, fault-tolerant stream
processing of live data streams.
Spark Streaming 是核心 Spark API 的扩展,支持实时数据流的
可扩展、高吞吐量、容错流处理。
Spark Streaming 用于流式数据的处理。 Spark Streaming 支持
的数据输入源很多,例如: Kafka Flume HDFS Kinesis TCP
套接字等等。数据输入后可以用 Spark 的高级函数(如 map
reduce join window 等进行运算。而结果也能保存在很多地方,
HDFS ,数据库和实时仪表板等。还可以可以在数据流上应用
Spark 的机器学习和图形处理算法。
Spark Streaming 接收实时输入数据流,并将数据分为多个批
次,然后由 Spark 引擎进行处理,以批量生成最终结果流。在内部,
它的工作原理如下:

164.SparkStreaming_架构

背压机制 ( 了解 ) Spark 1.5 以前版本,用户如果要限制 Receiver 的数据接收速
率,可以通过设置静态配制参数
“spark.streaming.receiver.maxRate” 的值来实现,此举虽然可以通
过限制接收速率,来适配当前的处理能力,防止内存溢出,但也会
引入其它问题。比如: producer 数据生产高于 maxRate ,当前集群
处理能力也高于 maxRate ,这就会造成资源利用率下降等问题。
为了更好的协调数据接收速率与资源处理能力, 1.5 版本开始
Spark Streaming 可以动态控制数据接收速率来适配集群数据处理
能力。背压机制(即 Spark Streaming Backpressure : 根据
JobScheduler 反馈作业的执行信息来动态调整 Receiver 数据接收
率。
通过属性 “spark.streaming.backpressure.enabled” 来控制是
否启用 backpressure 机制,默认值 false ,即不启用。

165.SparkStreaming_创建项目

<dependency>
<groupId> org.apache.spark </groupId>
<artifactId> spark-core_2.12 </artifactId>
<version> 3.2.1 </version>
</dependency>
<dependency>
<groupId> org.apache.spark </groupId>
<artifactId> spark
streaming_2.12 </artifactId>
<version> 3.2.1 </version>
</dependency>

166.SparkStreaming_WORDCOUNT

package com . itbaizhan . streaming
import org . apache . spark . SparkConf
import org . apache . spark . streaming . dstream .
{ DStream , ReceiverInputDStream }
import org . apache . spark . streaming .{ Seconds ,
StreamingContext }
object StreamingWordCount {
def main ( args : Array [ String ]): Unit = {
//1. 初始化 SparkConf 类的对象
val conf : SparkConf = new SparkConf ()
    . setMaster ( "local[*]" )
    . setAppName ( "StreamingWordCount" )
//2. 创建 StreamingContext 对象
val ssc = new StreamingContext ( conf ,
Seconds ( 5 ))
//3. 通过监控 node1 9999 端口创建 DStream 对象
val lines : ReceiverInputDStream [ String ]
=
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
7 测试
1
node1
2
IDEA 中运行程序
3
node1
4
查看 IDEA 控制台
ssc . socketTextStream ( "node1" , 9999 )
//4. 将每一行数据做切分,形成一个个单词
val wordsDS : DStream [ String ] =
lines . flatMap ( _ . split ( " " ))
//5.word=>(word,1)
val wordOne : DStream [( String , Int )] =
wordsDS . map (( _ , 1 ))
//6. 将相同的 key value 做聚合加
val wordCount : DStream [( String , Int )] =
wordOne . reduceByKey ( _ + _ )
//7. 打印输出
wordCount . print ()
//8. 启动
ssc . start ()
//9. 等待执行停止
ssc . awaitTermination ()
}
}

167.SparkStreaming_数据抽象

168.SparkStreaming_RDD队列创建DSTREAM

169.SparkStreaming_自定义数据源一

需求:自定义数据源,实现监控指定的端口号,获取该端口号
内容。
需要继承 Receiver ,并实现 onStart onStop 方法来自定义数据源采集。
package com . itbaizhan . streaming
import org . apache . spark . storage . StorageLevel
import
org . apache . spark . streaming . receiver . Receiver
import java . io .{ BufferedReader ,
InputStreamReader }
import java . net . Socket
import java . nio . charset . StandardCharsets
1
2
3
4
5
6
7
8
9
13 class ReceiverCustomer ( host : String , port :
Int ) extends Receiver [ String ]
( StorageLevel . MEMORY_ONLY ) {
// 最初启动的时候,调用该方法
// 作用:读数据并将数据发送给 Spark
override def onStart (): Unit = {
new Thread ( "Socket Receiver" ) {
override def run () {
receive ()
    }
  }. start ()
}
override def onStop (): Unit = {}
// 读数据并将数据发送给 Spark
def receive (): Unit = {
// 创建一个 Socket
var socket : Socket = new Socket ( host ,
port )
// 定义一个变量,用来接收端口传过来的数据
var input : String = null
// 创建一个 BufferedReader 用于读取端口传来的数
val reader = new BufferedReader ( new
InputStreamReader ( socket . getInputStream ,
StandardCharsets . UTF_8 ))
// 读取数据
input = reader . readLine ()
// receiver 没有关闭并且输入数据不为空,则循环
发送数据给 Spark
while ( ! isStopped () && input != null ) {
store ( input )
input = reader . readLine ()
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
14 使用自定义的数据源采集数据
  }
// 跳出循环则关闭资源
reader . close ()
socket . close ()
// 重启任务
restart ( "restart" )
}
}

170.SparkStreaming_自定义数据源二

package com . itbaizhan . streaming
import org . apache . spark . SparkConf
import org . apache . spark . streaming .{ Seconds ,
StreamingContext }
object CustomerSource {
def main ( args : Array [ String ]): Unit = {
//1. 初始化 Spark 配置信息
val sparkConf = new SparkConf ()
    . setMaster ( "local[*]" )
    . setAppName ( "CustomerSource" )
//2. 初始化
val ssc = new
StreamingContext ( sparkConf , Seconds ( 5 ))
//3. 创建自定义 receiver Streaming
val lines = ssc . receiverStream ( new
ReceiverCustomer ( "node1" , 9999 ))
lines . print ()
//4. 启动
ssc . start ()
ssc . awaitTermination ()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
15 测试
1
node1
2
IDEA 中运行程序
3
node1
4
查看 IDEA 控制台
实时效果反馈
1. 关于 SparkStreaming 接收器自定义数据源的描述,错误的
是:
A
需要继承 Receiver ,并实现 onStart onStop 方法来自定义
数据源采集。
B
Xxx extends Receiver[String](StorageLevel.MEMORY_ONLY)
接收到数据仅保存在
内存中。
C
onStart()
最初启动的时候,调用该方法;作用是读数据并将数
据发给 Spark
D
onStop()
不能空实现。
答案:
1=>D 可以空实现
SparkStreaming_DStream 无状态转换
}
}
20
21
[root@node1 ~] # nc -lk 9999
1
[root@node1 ~] # nc -lk 9999
aa
bb
cc

171.SparkStreaming_DSTREAM无状态转换

172.SparkStreaming_DSTREAM无状态转换transform

173.SparkStreaming_DSTREAM有状态转换

174.SparkStreaming_窗口操作reducebykeyandwidow概述

//reduceFunc– 结合和交换 reduce 函数
//windowDuration– 窗口长度;必须是此数据流批处理间
隔的倍数
//slideDuration– 窗口的滑动间隔 , 即新数据流生成 RDD
的间隔
def reduceByKeyAndWindow (
reduceFunc : ( V , V ) => V ,
windowDuration : Duration ,
slideDuration : Duration
): DStream [( K , V )] = ssc . withScope {
//partitioner– 用于控制新数据流中每个 RDD 分区的
分区器
reduceByKeyAndWindow ( reduceFunc ,
windowDuration , slideDuration ,
defaultPartitioner ())
}

175.SparkStreaming_窗口操作reducebykeyandwidow实战

176.SparkStreaming_窗口操作reducebykeyandwidow优化

177.SparkStreaming_窗口操作WINDOW

178.SparkStreaming_输出

179.SparkStreaming_优雅关闭一

流式任务需要 7*24 小时执行,但是有时涉及到升级代码需要主
动停止程序,但是分布式程序,没办法做到一个个进程去杀死,所
以配置优雅的关闭就显得至关重要了。使用外部文件系统来控制内
部程序关闭。
package com . itbaizhan . streaming
import org . apache . spark . SparkConf
import
org . apache . spark . streaming . dstream . ReceiverI
nputDStream
import org . apache . spark . streaming .{ Seconds ,
StreamingContext }
object StreamingStopDemo {
def createSSC (): StreamingContext = {
val sparkConf : SparkConf = new
SparkConf (). setMaster ( "local[*]" ). setAppName
( "StreamingStop" )
// 设置优雅的关闭
sparkConf . set ( "spark.streaming.stopGraceful
lyOnShutdown" , "true" )
1
2
3
4
5
6
7
8
9
34    
val ssc = new
StreamingContext ( sparkConf , Seconds ( 5 ))
ssc . checkpoint ( "./ckp" )
ssc
}
def main ( args : Array [ String ]): Unit = {
val ssc : StreamingContext =
StreamingContext . getActiveOrCreate ( "./ckp" ,
() => createSSC ())
new Thread ( new
StreamingStop ( ssc )). start ()
val line : ReceiverInputDStream [ String ] =
ssc . socketTextStream ( "node1" , 9999 )
line . print ()
ssc . start ()
ssc . awaitTermination ()
}
}
10
11
12
13
14
15
16
17
18
19
20
21
22
package com . itbaizhan . streaming
import org . apache . hadoop . conf . Configuration
import org . apache . hadoop . fs .{ FileSystem ,
Path }
import org . apache . spark . streaming .
{ StreamingContext , StreamingContextState }
import java . net . URI
class StreamingStop ( ssc : StreamingContext )
extends Runnable {
override def run (): Unit = {
val fs : FileSystem = FileSystem . get ( new
URI ( "hdfs://node2:9820" ),
new Configuration (), "root" )
1
2
3
4
5
6
7
8
9
35 测试
1
启动 hadoop 集群
2
node1 上: nc -lk 9999
3
运行程序
4
node2
5
node1 上:
while ( true ) {
try
Thread . sleep ( 5000 )
catch {
case e : InterruptedException =>
e . printStackTrace ()
    }
val state : StreamingContextState =
ssc . getState
if ( state ==
StreamingContextState . ACTIVE ) {
val bool : Boolean = fs . exists ( new
Path ( "hdfs://node2:9820/stopSpark" ))
if ( bool ) {
ssc . stop ( stopSparkContext = true ,
stopGracefully = true )
System . exit ( 0 )
      }
    }
  }
}
}

180.SparkStreaming_优雅关闭二

181.SparkStreaming_优雅关闭测试

182.SparkStreaming_整合KAFKA模式

183.SparkStreaming_整合kafka开发一

导入依赖:
代码编写:
<dependency>
<groupId> org.apache.spark </groupId>
<artifactId> spark-streaming-kafka-0-
10_2.12 </artifactId>
<version> 3.2.1 </version>
</dependency>
<dependency>
<groupId> com.fasterxml.jackson.core </groupI
d>
<artifactId> jackson-core </artifactId>
<version> 2.12.7 </version>
</dependency>
1
2
3
4
5
6
7
8
9
10
package com . itbaizhan . streaming
import org . apache . kafka . clients . consumer .
{ ConsumerConfig , ConsumerRecord }
import org . apache . spark . SparkConf
import org . apache . spark . streaming . dstream .
{ DStream , InputDStream }
1
2
3
4
40 import org . apache . spark . streaming . kafka010 .
{ ConsumerStrategies , KafkaUtils ,
LocationStrategies }
import org . apache . spark . streaming .{ Seconds ,
StreamingContext }
object DirectAPIDemo {
def main ( args : Array [ String ]): Unit = {
//1. 创建 SparkConf
val sparkConf : SparkConf = new
SparkConf ()
    . setMaster ( "local[*]" )
    . setAppName ( "DirectAPIDemo" )
//2. 创建 StreamingContext
val ssc = new
StreamingContext ( sparkConf , Seconds ( 3 ))
//3. 定义 Kafka 参数
val kafkaPara : Map [ String , Object ] =
Map [ String , Object ](
ConsumerConfig . BOOTSTRAP_SERVERS_CONFIG ->
"node2:9092,node3:9092,node4:9092" ,
ConsumerConfig . GROUP_ID_CONFIG ->
"itbaizhan" ,
"key.deserializer" ->
"org.apache.kafka.common.serialization.Strin
gDeserializer" ,
"value.deserializer" ->
"org.apache.kafka.common.serialization.Strin
gDeserializer"
  )
//4. 读取 Kafka 数据创建 DStream
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
41 SparkStreaming_ 整合 Kafka 测试
val kafkaDStream :
InputDStream [ ConsumerRecord [ String , String ]]
=
KafkaUtils . createDirectStream [ String ,
String ]( ssc ,
// 由框架自动选择位置匹配
LocationStrategies . PreferConsistent ,
// 消费者策略 主题: topicKafka,kafka
数: kafkaPara
ConsumerStrategies . Subscribe [ String ,
String ]( Set ( "topicKafka" ), kafkaPara ))
//5. 将每条消息的 KV 取出
//val valueDStream: DStream[String] =
kafkaDStream.map(record => record.value())
val valueDStream : DStream [ String ] =
kafkaDStream . map ( _ . value ())
//6. 计算 WordCount
valueDStream . flatMap ( _ . split ( " " ))
    . map (( _ , 1 ))
    . reduceByKey ( _ + _ )
    . print ()
//7. 开启任务
ssc . start ()
ssc . awaitTermination ()
}
}

184.SparkStreaming_整合kafka开发二

185.SparkStreaming_整合kafka测试

二.PB级百战出行网约车项目一

1.百战出行

项目需求分析
数据采集平台搭建
1
订单数据实时分析计算乘车人数和订单数
2
虚拟车站
3
订单交易数据统计分析
4
司机数据统计分析
5
用户数据统计分析
6
1 名称
框架
数据采集传输
MaxWell Kafka
数据存储
Hbase MySQL Redis
数据计算
Spark
数据库可视化
Echarts
项目技术点
掌握数据从终端 (APP) 的产生到数据中台处理再到大数据后台处理的整个链路技术。
1
Spark 自定义数据源实现 HBase 数据进行剪枝分析计算。
2
基于 Phoenix 实战海量数据秒查询。
3
平台新用户和留存用户分析。
4
空间索引算法 Uber h3 分析与蜂窝六边形区域订单分析。

2.百战出行架构设计

3.环境搭建_HBASE安装部署

4.环境搭建_KAFKA安装部署

5.环境搭建_MYSQL安装部署

6.环境搭建_REDIS安装部署

7.构建父工程

8.订单监控_收集订单数据

9.订单监控_订单数据分析

10.订单监控_存储数据之读取数据

11.订单监控_存储数据之保持数据至MYSQL

12.订单监控_MAXWELL介绍

13.订单监控_MAXWELL安装

14.订单监控_SPARK_STREAMING整合KAFKA_上

15.订单监控_SPARK_STREAMING整合KAFKA_下

16.订单监控_实时统计订单总数之消费订单数据

17.订单监控_实时统计订单总数之构建订单解析器

18.订单监控_实时统计订单总数之解析订单JSON数据

19.订单监控_实时统计订单总数

20.订单监控_实时统计乘车人数统计

相关文章:

大数据学习之SparkStreaming、PB级百战出行网约车项目一

一.SparkStreaming 163.SparkStreaming概述 Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput, fault-tolerant stream processing of live data streams. Spark Streaming 是核心 Spark API 的扩展&#xff0c;支持实时数据…...

介绍两个个电池充电管理芯片(TP4057、ME4069)

第一个是TP4057。 输入电压是4~6.5V TP4056&#xff0c;它们之间最大的区别就是TP4056最高是1A的充电电流&#xff0c;而TP4057是500ma&#xff0c;适用于更小一点的电池。 TP4057停机模式的静态电流也更小&#xff08;上图列的是待机模式&#xff0c;但查看后面的表格发现实际…...

Debezium日常分享系列之:解码逻辑解码消息内容

Debezium日常分享系列之&#xff1a;解码逻辑解码消息内容 示例配置选项 DecodeLogicalDecodingMessageContent SMT将PostgreSQL逻辑解码消息的二进制内容转换为结构化形式。当Debezium PostgreSQL连接器捕获逻辑解码消息时&#xff0c;它会将消息事件记录发送到Kafka。默认情况…...

【Linux】smp_mb__after_atomic

文章目录 背景知识smp_mb__after_atomic 的作用具体应用场景为什么需要 smp_mb__after_atomic相关宏总结 背景知识 在现代多核处理器和并发编程中&#xff0c;编译器优化和CPU乱序执行可能导致程序指令的实际执行顺序与源代码中的顺序不一致。这种现象可能会破坏多线程或进程间…...

关于conda换镜像源,pip换源

目录 1. 查看当前下载源2. 添加镜像源2.1清华大学开源软件镜像站2.2上海交通大学开源镜像站2.3中国科学技术大学 3.删除镜像源4.删除所有镜像源&#xff0c;恢复默认5.什么是conda-forge6.pip换源 1. 查看当前下载源 conda config --show channels 如果发现多个 可以只保留1个…...

【JavaEE进阶】依赖注入 DI详解

目录 &#x1f334;什么是依赖注入 &#x1f384;依赖注入的三种方法 &#x1f6a9;属性注⼊(Field Injection) &#x1f6a9;Setter注入 &#x1f6a9;构造方法注入 &#x1f6a9;三种注⼊的优缺点 &#x1f333;Autowired存在的问题 &#x1f332;解决Autowired存在的…...

鸿蒙HarmonyOS NEXT开发:横竖屏切换开发实践

文章目录 一、概述二、窗口旋转说明1、配置module.json5的orientation字段2、调用窗口的setPreferredOrientation方法 四、性能优化1、使用自定义组件冻结2、对图片使用autoResize3、排查一些耗时操作 四、常见场景示例1、视频类应用横竖屏开发2、游戏类应用横屏开发 五、其他常…...

自己部署 DeepSeek 助力 Vue 开发:打造丝滑的折叠面板(Accordion)

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 自己…...

程序员升级进阶之路

熟悉业务、项目代码、工作流程&#xff0c;积极吸取技术资料接需求&#xff0c;画流程图&#xff0c;&#xff08;伪代码&#xff09;&#xff0c;详细设计明确职业发展方向【很重要】求精&#xff1a;写代码前的技术方案设计 写代码并不难&#xff0c;关键是要明确为什么要写…...

C/C++后端开发面经

字节跳动 客户端开发 实习 一面(50min) 自我介绍是否愿意转语言,是否只愿意搞后端选一个项目来详细谈谈HTTP和HTTPS有什么区别?谈一下HTTPS加密的具体过程&#xff1a; 非对称加密 对称加密 证书认证的方式 非对称加密是为了保证对称密钥的安全性。 对称…...

【C++】策略模式

使用场景 主要目的是定义一系列可互换的算法或行为&#xff0c;并使它们在运行时可以根据不同的情况动态地替换。它侧重于算法的封装和替换&#xff0c;让客户端可以灵活地选择不同的策略来完成特定的任务。 例如&#xff0c;在一个游戏角色的行为系统中&#xff0c;角色的攻击…...

Baklib剖析企业内容管理与内容中台的主要区别解析

内容概要 在当今数字化转型的浪潮中&#xff0c;企业内容管理和内容中台这两种系统日益受到关注。两者虽均旨在提升企业的内容管理效率与协同能力&#xff0c;但却存在明显差异。企业内容管理&#xff08;ECM&#xff09;主要聚焦于文档的创建、存储、检索和管理&#xff0c;旨…...

深入了解 MySQL:从基础到高级特性

引言 在当今数字化时代&#xff0c;数据的存储和管理至关重要。MySQL 作为一款广泛使用的开源关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;凭借其高性能、可靠性和易用性&#xff0c;成为众多开发者和企业的首选。本文将详细介绍 MySQL 的基础概念、安装启…...

从零到一:基于Rook构建云原生Ceph存储的全面指南(上)

文章目录 一.Rook简介二.Rook与Ceph架构2.1 Rook结构体系2.2 Rook包含组件1&#xff09;Rook Operator2&#xff09;Rook Discover3&#xff09;Rook Agent 2.3 Rook与kubernetes结合的架构图如下2.4 ceph特点2.5 ceph架构2.6 ceph组件 三.Rook部署Ceph集群3.1 部署条件3.3 获取…...

嵌入式经常用到串口,如何判断串口数据接收完成?

说起通信&#xff0c;首先想到的肯定是串口&#xff0c;日常中232和485的使用比比皆是&#xff0c;数据的发送、接收是串口通信最基础的内容。这篇文章主要讨论串口接收数据的断帧操作。 空闲中断断帧 一些mcu&#xff08;如&#xff1a;stm32f103&#xff09;在出厂时就已经在…...

OpenGL-基础知识(更新中)

本文基于The Cherno在Youtube上的OpenGL系列视频总结出的笔记&#xff0c;等这个系列视频学习完后&#xff0c;将更加系统详细的学习《计算机图形学编程&#xff08;使用OpenGL和C 第二版&#xff09;》这本书。个人认为看cherno的视频上手速度更快&#xff0c;而且他对基本概念…...

【多模态大模型】系列2:Transformer Encoder-Decoder——BLIP、CoCa、BEITv3

目录 1 BLIP2 CoCa3 BEITv3 1 BLIP BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation BLIP是 ALBEF 原班人马做的&#xff0c;基本可以看做吸收了 VLMo 思想的 ALBEF。训练的 loss 和技巧都与 ALBEF一致&#xff…...

基于CanMV IDE 开发软件对K210图像识别模块的开发

简介 CanMV IDE 是一款专为 K210 芯片设计的图形识别 Python 软件&#xff0c;它提供了强大的功能&#xff0c;帮助开发者轻松实现基于 K210 芯片的图形识别应用。无论你是初学者还是经验丰富的开发者&#xff0c;CanMV IDE 都能为你提供便捷的开发环境和丰富的资源。 硬件资…...

如何准备软考高级系统分析师考试

以下是针对软考高级系统分析师考试的详细备考方案&#xff0c;结合学习周期、阶段任务、习题选择和通过概率分析&#xff0c;帮助考生高效备考。 一、备考周期建议&#xff08;4-6个月&#xff09; 建议分为 基础阶段&#xff08;2个月&#xff09;→ 强化阶段&#xff08;2个…...

解析RK3588无线边缘盒子为工业自动化边缘推理带来的 AI 突破

在工业自动化领域&#xff0c;边缘推理的高效性和准确性对于提升生产效率和质量至关重要。RK3588 凭借强大的 AI 算力&#xff0c;为工业自动化边缘推理带来了显著的赋能效果。 RK3588 拥有出色的多核架构和高性能的 GPU &#xff0c;能够快速处理大量的数据。在工业生产线上&…...

初一说明文:我的护眼灯

本文转自&#xff1a;AI范文助手网 原文链接&#xff1a;https://www.aazhushou.com/czzw/5023.html 自爱迪生发明了灯以来&#xff0c;各种各样的灯相继问世了&#xff0c;给人一种新景象&#xff0c;其中护眼灯也问世了。 我有一盏台灯叫麦迪格护眼灯。那天我和母亲去商场&…...

归并排序(C# C++)

目录 1 归并排序的基本概念 2 算法步骤 2-1 分解阶段 2-2 合并阶段 3 代码实现 3-1 C#代码示例&#xff08;该代码在unity环境下&#xff09; 3-2 C代码示例 1 归并排序的基本概念 归并排序&#xff08;Merge Sort&#xff09;是一种经典的分治算法&#xff0c;由约翰…...

【Linux】Ubuntu Linux 系统 ——PHP开发环境

ℹ️大家好&#xff0c;我是练小杰&#xff0c;元宵节到了&#xff0c;在此祝大家元宵节快乐&#x1f606; 新的一年里&#xff0c;愿你步步高升&#xff0c;事事如意&#xff0c;心想事成&#xff01;! 本文是关于Linux 操作系统中部署PHP开发环境这部分基础内容&#xff0c;后…...

TDengine 性能测试工具 taosBenchmark

简介工具获取运行 无参数模式命令行模式配置文件模式 命令行参数配置文件参数 通用配置参数写入配置参数 数据库相关超级表相关标签列与数据列写入行为相关 查询配置参数 执行指定查询语句查询超级表 订阅配置参数数据类型对照表 配置文件示例 写入 JSON 示例查询 JSON 示例订阅…...

校园网绕过认证上网很简单

校园网绕过认证就是不用通过校园WiFi的WEB页面登录&#xff0c;这个WEB登录页面就是认证页面. 所谓绕过认证&#xff0c;就是不通过校园WiFi WEB登录页面直接上网&#xff0c;校园WiFi没有密码&#xff0c;直接就能连接上&#xff0c;我们连上这个WiFi的时候&#xff0c;它会给…...

C++ Primer 迭代语句

欢迎阅读我的 【CPrimer】专栏 专栏简介&#xff1a;本专栏主要面向C初学者&#xff0c;解释C的一些基本概念和基础语言特性&#xff0c;涉及C标准库的用法&#xff0c;面向对象特性&#xff0c;泛型特性高级用法。通过使用标准库中定义的抽象设施&#xff0c;使你更加适应高级…...

World of Warcraft [CLASSIC][Grandel] FOR THE HORDE

《World of Warcraft [CLASSIC][80猎人][Grandel]维克尼拉斯大型纪录片2025年元宵节击杀联盟主城4BOSS[为了部落&#xff01;]》 World of Warcraft [CLASSIC][80猎人][Grandel]维克尼拉斯大型纪录片2025年元宵节击杀联盟主城4BOSS[为了部落&#xff01;]_魔兽...

【ESP32指向鼠标】——icm20948与esp32通信

【ESP32指向鼠标】——icm20948与esp32通信 ICM-20948介绍 ICM-20948 是一款由 InvenSense&#xff08;现为 TDK 的一部分&#xff09;生产的 9 轴传感器集成电路。它结合了 陀螺仪、加速度计和磁力计。 内置了 DMP&#xff08;Digital Motion Processor&#xff09;即负责执…...

随手记:小程序setData 数据传输长度为 XXXKB,存在有性能问题!小程序长列表性能优化,uni.createIntersectionObserver

在一些小程序列表的页面&#xff0c;总是会看到小程序控制台的黄色警告&#xff1a; 这是由于data 数据过大&#xff0c;导致的问题 方法&#xff1a; 1.避免setData的数据过大&#xff0c;小于1024kb。 2.避免调用频繁&#xff0c;保证数据实时性。 3.避免未绑定在WXML的…...

双ESP8266-01S通讯UDP配置

第一台ESP8266(发送命令需要勾---发送新行) ATCWMODE3 ATCWSAP_DEF"CAR_wifi_Master","12345678",5,3 //设置本地wifi名称以及密码 ATCIPSTA_DEF"192.168.4.1" //设置本地IP ATCIFSR …...

记忆模块概述

文章目录 记忆模块概述记忆组件的定义记忆组件、链组件和Agent组件的关系设置第一个记忆组件内置记忆组件自定义记忆组件 本文将LangChain框架内所有与记忆功能有关的组件统一称为“记忆模块”。简而言之&#xff0c;记忆模块是一个集合体&#xff0c;由多个不同的记忆组件构成…...

计算机网络结课设计:通过思科Cisco进行中小型校园网搭建

上学期计算机网络课程的结课设计是使用思科模拟器搭建一个中小型校园网&#xff0c;当时花了几天时间查阅相关博客总算是做出来了&#xff0c;在验收后一直没管&#xff0c;在寒假想起来了简单分享一下&#xff0c;希望可以给有需求的小伙伴一些帮助 目录 一、设计要求 二、…...

算法之 数论

文章目录 质数判断质数3115.质数的最大距离 质数筛选204.计数质数2761.和等于目标值的质数对 2521.数组乘积中的不同质因数数目 质数 质数的定义&#xff1a;除了本身和1&#xff0c;不能被其他小于它的数整除&#xff0c;最小的质数是 2 求解质数的几种方法 法1&#xff0c;根…...

【论文阅读】Revisiting the Assumption of Latent Separability for Backdoor Defenses

https://github.com/Unispac/Circumventing-Backdoor-Defenses 摘要和介绍 在各种后门毒化攻击中&#xff0c;来自目标类别的毒化样本和干净样本通常在潜在空间中形成两个分离的簇。 这种潜在的分离性非常普遍&#xff0c;甚至在防御研究中成为了一种默认假设&#xff0c;我…...

【深入探讨 ResNet:解决深度神经网络训练问题的革命性架构】

深入探讨 ResNet&#xff1a;解决深度神经网络训练问题的革命性架构 随着深度学习的快速发展&#xff0c;卷积神经网络&#xff08;CNN&#xff09;已经成为图像识别、目标检测等计算机视觉任务的主力军。然而&#xff0c;随着网络层数的增加&#xff0c;训练深层网络变得愈加…...

【C】链表算法题7 -- 环形链表||

leetcode链接https://leetcode.cn/problems/linked-list-cycle-ii/description/ 问题描述 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到…...

设备智能化无线通信,ESP32-C2物联网方案,小尺寸芯片实现大功能

在科技飞速发展的当下&#xff0c;我们的生活正被各类智能设备悄然改变&#xff0c;它们如同一位位无声的助手&#xff0c;渗透到我们生活的每一个角落&#xff0c;让生活变得更加便捷和丰富多彩。 智能插座、智能照明和简单家电设备在家居领域的应用&#xff0c;为我们的生活…...

【嵌入式Linux应用开发基础】read函数与write函数

目录 一、read 函数 1.1. 函数原型 1.2. 参数说明 1.3. 返回值 1.4. 示例代码 二、write 函数 2.1. 函数原型 2.2. 参数说明 2.3. 返回值 2.4. 示例代码 三、关键注意事项 3.1 部分读写 3.2 错误处理 3.3 阻塞与非阻塞模式 3.4 数据持久化 3.5 线程安全 四、嵌…...

从 X86 到 ARM :工控机迁移中的核心问题剖析

在工业控制领域&#xff0c;技术的不断演进促使着工控机从 X86 架构向 ARM 架构迁移。然而&#xff0c;这一过程并非一帆风顺&#xff0c;面临着诸多关键挑战。 首先&#xff0c;软件兼容性是一个重要问题。许多基于 X86 架构开发的工业控制软件可能无法直接在 ARM 架构上运行…...

【数据结构】(7) 栈和队列

一、栈 Stack 1、什么是栈 栈是一种特殊的线性表&#xff0c;它只能在固定的一端&#xff08;栈顶&#xff09;进行出栈、压栈操作&#xff0c;具有后进先出的特点。 2、栈概念的例题 答案为 C&#xff0c;以C为例进行讲解&#xff1a; 第一个出栈的是3&#xff0c;那么 1、…...

android设置添加设备QR码信息

摘要&#xff1a;客户衍生需求&#xff0c;通过扫QR码快速获取设备基础信息&#xff0c;并且基于POS SDK进行打印。 1. 定位至device info的xml添加相关perference Index: vendor/mediatek/proprietary/packages/apps/MtkSettings/res/xml/my_device_info.xml--- vendor/medi…...

进程状态

目录 1.进程排队 硬件的队列 进程排队 2.进程的三大状态 什么是状态 运行状态 阻塞状态 挂起状态 3.Linux系统中的进程状态 4.僵尸状态 5.孤儿进程 1.进程排队 硬件的队列 计算机是由很多硬件组成的&#xff0c;操作系统为了管理这些硬件&#xff0c;通常需要为这…...

【linux学习指南】模拟线程封装与智能指针shared_ptr

文章目录 &#x1f4dd;线程封装&#x1f309; Thread.hpp&#x1f309; Makefile &#x1f320;线程封装第一版&#x1f309; Makefile:&#x1f309;Main.cc&#x1f309; Thread.hpp: &#x1f320;线程封装第二版&#x1f309; Thread.hpp:&#x1f309; Main.cc &#x1f…...

智慧物流新引擎:ARM架构工控机在自动化生产线中的应用

工业自动化程度的不断提升&#xff0c;对高性能、低功耗和高可靠性的计算设备需求日益增长。ARM架构工控机因其独特的优势&#xff0c;在多个工业领域得到了广泛应用。本文将深入探讨ARM架构工控机的特点及其在具体工业场景中的应用。 ARM架构工控机的主要优势 高效能与低功耗…...

OpenGL的基础光照知识

光照模型 常见的光照模型&#xff1a;ADS模型 A&#xff1a;环境光反射&#xff08;ambient reflection&#xff09;&#xff1a;模拟低级光照&#xff0c;影响场景中的所有物体。D&#xff1a;漫反射&#xff08;diffuse reflection&#xff09;&#xff1a;根据光线的入射角…...

centos 10 离线安装dnf 和 设置dnf镜像源

离线安装dnf可用kimi搜索, centos 使用curl 下载dnf 的rpm包 mkdir ~/dnf_packages cd ~/dnf_packages# CentOS 7 示例 curl -O http://springdale.math.ias.edu/data/puias/unsupported/7/x86_64/dnf-0.6.4-2.sdl7.noarch.rpm curl -O http://springdale.math.ias.edu/data/pu…...

redis 缓存击穿问题与解决方案

前言1. 什么是缓存击穿?2. 如何解决缓存击穿?怎么做?方案1: 定时刷新方案2: 自动续期方案3: 定时续期 如何选? 前言 当我们使用redis做缓存的时候,查询流程一般是先查询redis,如果redis未命中,再查询MySQL,将MySQL查询的数据同步到redis(回源),最后返回数据 流程图 为什…...

Linux下的进程切换与调度

目录 1.进程的优先级 优先级是什么 Linux下优先级的具体做法 优先级的调整为什么要受限 2.Linux下的进程切换 3.Linux下进程的调度 1.进程的优先级 我们在使用计算机的时候&#xff0c;通常会启动多个程序&#xff0c;这些程序最后都会变成进程&#xff0c;但是我们的硬…...

开源模型应用落地-Qwen1.5-MoE-A2.7B-Chat与vllm实现推理加速的正确姿势(一)

一、前言 在人工智能技术蓬勃发展的当下,大语言模型的性能与应用不断突破边界,为我们带来前所未有的体验。Qwen1.5-MoE-A2.7B-Chat 作为一款备受瞩目的大语言模型,以其独特的架构和强大的能力,在自然语言处理领域崭露头角。而 vllm 作为高效的推理库,为模型的部署与推理提…...

阿里云IOT设备管理

本文主要介绍了阿里云IOT设备管理的基本概念、功能特点以及应用场景。阐述了如何利用阿里云IOT平台实现设备的连接、监控和控制&#xff0c;以及如何借助其丰富的数据分析功能提升设备管理效率。 一、IOT工作原理 二、创建模拟设备 1.创建产品 2.物模型 3.设备 4.设备数据上报…...