【论文阅读】Revisiting the Assumption of Latent Separability for Backdoor Defenses
https://github.com/Unispac/Circumventing-Backdoor-Defenses
摘要和介绍
在各种后门毒化攻击中,来自目标类别的毒化样本和干净样本通常在潜在空间中形成两个分离的簇。
这种潜在的分离性非常普遍,甚至在防御研究中成为了一种默认假设,我们称之为潜在分离性假设。基于这一假设设计的防御方法通过在潜在空间中进行聚类分析来识别毒化样本。具体来说,这些防御方法首先在污染数据集上训练一个基础分类器,并期望该基础模型能自然地学习到毒化样本和干净样本的可分离潜在表示。之后,它们会在基础模型的潜在空间上进行聚类分析。如果潜在分离性特征可靠地出现,这些防御方法就能够准确地识别出由毒化样本形成的异常簇,从而将这些样本从训练集中滤除。我们注意到,这类基于潜在分离的防御方法在后门防御领域尤其重要和成功。像Spectral Signature(Tran等,2018)和Activation Clustering(Chen等,2019)这样的提议已经成为不可或缺的基准,近年来,基于这一假设的最新方法,如SCAn(Tang等,2021)和SPECTRE(Hayase等,2021),甚至声称能在各种攻击中实现几乎完美的召回率,并且假阳性率极低。
鉴于潜在分离性在防御中的普遍性及其显著效果,一个自然的问题随之而来:潜在分离性对后门毒化攻击来说是否是不可避免的?
我们设计了适应性后门毒化攻击(无需控制模型的训练过程),通过这种攻击主动抑制潜在分离性,同时保持较高的攻击成功率(ASR)和极小的干净样本准确率下降。
我们适应性攻击设计的两个关键组件为:
(1)基于数据毒化的正则化。在向一组样本植入后门触发器后,我们不会将所有样本都错误地标记为目标类别,而是随机保留一部分样本(即正则化样本),并仍然正确标记为其实际语义类别。从直觉上讲,这些额外的正则化样本可以惩罚后门触发器与目标类别之间的关联。
(2)促进不对称性和多样性的触发器植入策略。我们通过不对称的触发器植入策略解决了正则化样本对后门关联的惩罚可能会显著降低攻击成功率(ASR)的问题。
如图2所示,我们在构建正则化样本和有效载荷样本时,使用了较弱的触发器,而标准触发器仅在测试时用于激活后门。这样,测试时带有标准触发器的后门样本具有比正则化样本(带弱触发器)更强的后门特征,因此,测试时的攻击能够很好地缓解正则化样本的反作用,并保持较高的攻击成功率。除了不对称性,我们的设计还鼓励触发器的多样性——不同的毒化样本可以使用来自不同触发器分区的不同部分触发器。从直觉上讲,这种多样性使得后门毒化样本在潜在表示空间中分布得更加分散,从而避免它们聚集成易于识别的簇。
相关工作
针对基于潜在分离的防御的适应性后门攻击
一类适应性后门攻击(Tan & Shokri, 2020;Xia等,2022;Doan等,2021;Ren等,2021;Cheng等,2021;Zhong等,2022)明确旨在减少毒化样本和干净样本之间的潜在分离。然而,这些攻击并不符合后门毒化攻击的范式——它们假设对整个训练过程有额外的控制,因此直接将潜在的不可分离性编码到被攻击模型的训练目标中。与之更相关的工作是Tang等(2021),他们指出其源特定的仅毒化攻击能够减少潜在分离性。然而,正如图1e所示,当基础模型与标准数据增强一起训练时,毒化样本和干净样本之间仍然存在明显的分离,实际上Tang等(2021)自己也表明,通过改进的潜在空间聚类分析,就足以完美分离这种攻击的毒化样本和干净样本。因此,目前仍不清楚仅毒化的后门攻击是否能够克服潜在分离性,从而绕过基于潜在分离的后门防御方法。本文填补了这一空白,设计了能够主动抑制潜在分离性的适应性后门毒化攻击(从而规避现有基于潜在分离的防御)。
方法
对于潜在分离现象,我们的设计受到了两个互补的启发性视角的启发。第一个视角将潜在分离归因于后门触发器在后门模型推理中的主导作用(Tran等,2018)。直观上,为了将一个(植入触发器的)后门毒化样本从其语义类推向目标类,后门模型倾向于在潜在表示空间中学习到一个过于强烈的信号,该信号可以压倒其他语义特征,从而做出决定。这种只出现在后门毒化样本中的强烈后门信号导致了潜在分离的出现。 第二个视角是,后门模型为毒化样本和干净样本学习不同的表示,仅仅因为它们倾向于为毒化样本学习一个单独的快捷规则(Geirhos等,2020),这个规则完全基于触发器模式,而不使用任何语义特征。也就是说,后门学习通常独立于(或仅与)主任务所用的语义特征相关,因此适应毒化数据集的后门模型本质上学习了两个无关(或弱相关)的任务。从这个角度来看,后门模型并没有强烈的动机去为这两个异质任务的样本学习同质的潜在表示。
受到这些视角的启发,我们认为一个理想的适应性后门毒化攻击(能够减轻潜在分离)可能需要编码某种形式的正则化,以(1)惩罚后门模型学习到对后门触发器的异常强烈信号;(2)鼓励后门学习与主任务学习之间的关联。
我们在图2中展示了我们设计的概述。与典型的后门毒化攻击不同,在我们的框架中,我们并非将所有植入触发器的样本都标记为目标类。如图所示,在将后门触发器植入一组样本(从所有类别中采样)后,我们将其随机分成两组。对于一组样本,我们仍然将它们标记为目标类(我们称这组为有效载荷样本),以建立触发器模式与目标标签之间的后门关联;而另一组(即正则化样本)则被正确地标记为其真实的语义类别(可能不同于目标类),以正则化后门关联。
此外,我们在触发器设计中引入了不对称性和多样性的思想——我们应用一组不同的弱化触发器来构建正则化样本和有效载荷样本进行数据毒化,而原始的标准触发器则在测试时用于激活后门。
正则化样本
我们注意到,正则化样本的引入很好地结合了提出的两种见解(方法开头的第一段)。首先,通过正则化样本,后门模型不再能够学习到一个对后门触发器过于强烈的信号,这样的信号会独裁性地决定目标类,否则它就无法拟合正确标记为其他类别的正则化样本。 这也解释了正则化样本命名的原因——直观地说,它们作为正则化项,有助于惩罚学习到的潜在表示中的后门信号。其次,模型也无法通过简单的快捷规则拟合所有植入触发器的样本。相反,现在它必须拟合一个更复杂的边界,该边界应该决定何时将植入触发器的输入分类为目标类,何时将其分类为真实的语义标签,而这个边界是随机生成的。 为了成功拟合这个边界,模型必须依赖于触发器模式和与触发器共存的语义特征的伪影,因此,后门样本的学习潜在表示应当是触发器模式和语义特征的平衡融合。
不对称触发器
引入不对称触发器对于我们的攻击仍能保持较高的攻击成功率(ASR)至关重要。正如我们容易注意到的那样,由于正则化样本会惩罚后门关联,其副作用可能是攻击成功率(ASR)的下降。为了缓解这个问题,我们的设计中,数据毒化时使用弱化的触发器,而测试时只使用(更强的)原始标准触发器。直觉是:在测试时,后门样本(带有标准触发器)包含比正则化样本(带有弱化触发器)更强的后门特征。这使得测试时的后门样本具有足够的“力量”来抵消正则化样本的对抗作用,从而仍能实现较高的攻击成功率。我们注意到,不对称触发器的想法最早可以追溯到Chen等人(2017),但其背景不同。为了避免人工检查毒化数据集,Chen等(2017)建议使用视觉上不太明显的弱化触发器进行数据毒化,并指出如果在测试时使用原始标准触发器,仍然可以保持较高的攻击成功率。在我们的背景下,我们主要使用弱化触发器来减轻正则化样本带来的负面影响。
触发器多样性
我们还强调,触发器多样化在我们设计中也有助于缓解潜在分离。直观上,由于不同的毒化样本可能被植入不同的触发器,这些毒化样本可能在潜在表示空间中更加分散。因此,我们期望这种更为多样化的分散可以防止这些毒化样本聚集成一个容易识别的簇。
实例化方法
我们在图2中展示的框架是通用的,可以与现有技术创造性地结合,从而实例化出强大的自适应攻击。根据这一框架,我们通过直接调整常用的图像融合和补丁基毒化策略,实例化了两种具体攻击,分别是自适应融合攻击(Adaptive-Blend)和自适应补丁攻击(Adaptive-Patch)。
只看了核心方法部分,其他部分没怎么看 (只看了1/3左右) 消融实验什么的。空了看下后面的
相关文章:
【论文阅读】Revisiting the Assumption of Latent Separability for Backdoor Defenses
https://github.com/Unispac/Circumventing-Backdoor-Defenses 摘要和介绍 在各种后门毒化攻击中,来自目标类别的毒化样本和干净样本通常在潜在空间中形成两个分离的簇。 这种潜在的分离性非常普遍,甚至在防御研究中成为了一种默认假设,我…...
【深入探讨 ResNet:解决深度神经网络训练问题的革命性架构】
深入探讨 ResNet:解决深度神经网络训练问题的革命性架构 随着深度学习的快速发展,卷积神经网络(CNN)已经成为图像识别、目标检测等计算机视觉任务的主力军。然而,随着网络层数的增加,训练深层网络变得愈加…...
【C】链表算法题7 -- 环形链表||
leetcode链接https://leetcode.cn/problems/linked-list-cycle-ii/description/ 问题描述 给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。如果链表中有某个节点,可以通过连续跟踪 next 指针再次到…...
设备智能化无线通信,ESP32-C2物联网方案,小尺寸芯片实现大功能
在科技飞速发展的当下,我们的生活正被各类智能设备悄然改变,它们如同一位位无声的助手,渗透到我们生活的每一个角落,让生活变得更加便捷和丰富多彩。 智能插座、智能照明和简单家电设备在家居领域的应用,为我们的生活…...
【嵌入式Linux应用开发基础】read函数与write函数
目录 一、read 函数 1.1. 函数原型 1.2. 参数说明 1.3. 返回值 1.4. 示例代码 二、write 函数 2.1. 函数原型 2.2. 参数说明 2.3. 返回值 2.4. 示例代码 三、关键注意事项 3.1 部分读写 3.2 错误处理 3.3 阻塞与非阻塞模式 3.4 数据持久化 3.5 线程安全 四、嵌…...
从 X86 到 ARM :工控机迁移中的核心问题剖析
在工业控制领域,技术的不断演进促使着工控机从 X86 架构向 ARM 架构迁移。然而,这一过程并非一帆风顺,面临着诸多关键挑战。 首先,软件兼容性是一个重要问题。许多基于 X86 架构开发的工业控制软件可能无法直接在 ARM 架构上运行…...
【数据结构】(7) 栈和队列
一、栈 Stack 1、什么是栈 栈是一种特殊的线性表,它只能在固定的一端(栈顶)进行出栈、压栈操作,具有后进先出的特点。 2、栈概念的例题 答案为 C,以C为例进行讲解: 第一个出栈的是3,那么 1、…...
android设置添加设备QR码信息
摘要:客户衍生需求,通过扫QR码快速获取设备基础信息,并且基于POS SDK进行打印。 1. 定位至device info的xml添加相关perference Index: vendor/mediatek/proprietary/packages/apps/MtkSettings/res/xml/my_device_info.xml--- vendor/medi…...
进程状态
目录 1.进程排队 硬件的队列 进程排队 2.进程的三大状态 什么是状态 运行状态 阻塞状态 挂起状态 3.Linux系统中的进程状态 4.僵尸状态 5.孤儿进程 1.进程排队 硬件的队列 计算机是由很多硬件组成的,操作系统为了管理这些硬件,通常需要为这…...
【linux学习指南】模拟线程封装与智能指针shared_ptr
文章目录 📝线程封装🌉 Thread.hpp🌉 Makefile 🌠线程封装第一版🌉 Makefile:🌉Main.cc🌉 Thread.hpp: 🌠线程封装第二版🌉 Thread.hpp:🌉 Main.cc …...
智慧物流新引擎:ARM架构工控机在自动化生产线中的应用
工业自动化程度的不断提升,对高性能、低功耗和高可靠性的计算设备需求日益增长。ARM架构工控机因其独特的优势,在多个工业领域得到了广泛应用。本文将深入探讨ARM架构工控机的特点及其在具体工业场景中的应用。 ARM架构工控机的主要优势 高效能与低功耗…...
OpenGL的基础光照知识
光照模型 常见的光照模型:ADS模型 A:环境光反射(ambient reflection):模拟低级光照,影响场景中的所有物体。D:漫反射(diffuse reflection):根据光线的入射角…...
centos 10 离线安装dnf 和 设置dnf镜像源
离线安装dnf可用kimi搜索, centos 使用curl 下载dnf 的rpm包 mkdir ~/dnf_packages cd ~/dnf_packages# CentOS 7 示例 curl -O http://springdale.math.ias.edu/data/puias/unsupported/7/x86_64/dnf-0.6.4-2.sdl7.noarch.rpm curl -O http://springdale.math.ias.edu/data/pu…...
redis 缓存击穿问题与解决方案
前言1. 什么是缓存击穿?2. 如何解决缓存击穿?怎么做?方案1: 定时刷新方案2: 自动续期方案3: 定时续期 如何选? 前言 当我们使用redis做缓存的时候,查询流程一般是先查询redis,如果redis未命中,再查询MySQL,将MySQL查询的数据同步到redis(回源),最后返回数据 流程图 为什…...
Linux下的进程切换与调度
目录 1.进程的优先级 优先级是什么 Linux下优先级的具体做法 优先级的调整为什么要受限 2.Linux下的进程切换 3.Linux下进程的调度 1.进程的优先级 我们在使用计算机的时候,通常会启动多个程序,这些程序最后都会变成进程,但是我们的硬…...
开源模型应用落地-Qwen1.5-MoE-A2.7B-Chat与vllm实现推理加速的正确姿势(一)
一、前言 在人工智能技术蓬勃发展的当下,大语言模型的性能与应用不断突破边界,为我们带来前所未有的体验。Qwen1.5-MoE-A2.7B-Chat 作为一款备受瞩目的大语言模型,以其独特的架构和强大的能力,在自然语言处理领域崭露头角。而 vllm 作为高效的推理库,为模型的部署与推理提…...
阿里云IOT设备管理
本文主要介绍了阿里云IOT设备管理的基本概念、功能特点以及应用场景。阐述了如何利用阿里云IOT平台实现设备的连接、监控和控制,以及如何借助其丰富的数据分析功能提升设备管理效率。 一、IOT工作原理 二、创建模拟设备 1.创建产品 2.物模型 3.设备 4.设备数据上报…...
图像处理技术和应用
图像处理技术是一种依托计算机和相关算法,对图像进行深度处理、分析及改变的技术。主要包括图像数字化、图像增强和复原、图像数据编码、图像分割和图像识别等。它不仅能够从静态图像中提取关键信息,还能改变图像的外观或特征,并进一步检测、…...
格式化字符串漏洞详解
一、漏洞原理 格式化字符串漏洞(Format String Vulnerability)是由于程序使用用户可控的输入作为格式化字符串参数(如 printf、sprintf 等函数)时未正确过滤导致的漏洞。攻击者可通过构造特殊格式字符串实现以下操作:…...
java项目之基于web的中国古诗词的设计与实现源码(ssm+mysql)
风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的基于web的中国古诗词的设计与实现。项目源码以及部署相关请联系风歌,文末附上联系信息 。 项目简介: 基于web的中国…...
网络初识-
网络的相关概念 一、局域网和广域网 将各种计算机、外部设备等相互连接起来,实现在这个范围内数据通信和资源共享的计算机网络。它的覆盖范围通常在几百米到几公里之内。例如,一个小型企业的办公室,通过交换机将多台电脑连接在一起…...
AOS安装及操作演示
文章目录 一、安装node1.1 在 macOS 上管理 Node版本1.1.1 安装 nvm1.1.2 验证 nvm 是否安装成功1.1.3 使用 nvm 安装/切换 Node.js 版本1.1.4 卸载 Node.js 版本 1.2 在 windows 上管理 Node版本1.2.1 安装 nvm-windows1.2.2 安装 Node.js 版本1.2.3 切换 Node.js 版本1.2.4 卸…...
vue学习8
1.pinia(更优) 是vue最新的状态管理工具,是vuex的替代品 pinia: state actions(支持异步,可以直接修改state) getters 优点: 提供更加简单的API(去掉了mutation)提供符合,组合式的API语法(和v…...
【竞技宝】电竞世界杯:无畏契约首次入选正式项目!
北京时间2月12日,电竞世界杯基金会(EWCF)与知名游戏开发商拳头游戏(Riot Games)在近日共同宣布达成三年合作伙伴关系。同时,三大顶级电竞项目——《英雄联盟》《英雄联盟:云顶之弈》(…...
Bigemap Pro地图配置文件包
配置文件获取 配置文件下载后,直接拖入软件中自动识别导入图源,一键完成加载。...
有哪些免费的SEO软件优化工具
随着2025年互联网的不断发展,越来越多的企业意识到在数字营销中,网站的曝光度和排名至关重要。无论是想要提高品牌知名度,还是想要通过在线销售增加收益,SEO(搜索引擎优化)都是一项不可忽视的关键策略。而要…...
第二天:工具的使用
每天上午9点左右更新一到两篇文章到专栏《Python爬虫训练营》中,对于爬虫有兴趣的伙伴可以订阅专栏一起学习,完全免费。 键盘为桨,代码作帆。这趟为期30天左右的Python爬虫特训即将启航,每日解锁新海域:从Requests库的…...
分享在职同时准备系统分析师和教资考试的时间安排
(在职、时间有限、同时备考系统分析师考试和小学信息技术教资面试),以下是详细的备考计划,确保计划的可行性和通过性。 一、总体安排 时间分配: 每周周末(2天)用于系统分析师考试备考。工作日晚…...
从Word里面用VBA调用NVIDIA的免费DeepSeekR1
看上去能用而已。 选中的文字作为输入,运行对应的宏即可;会先MSGBOX提示一下,然后相关内容追加到word文档中。 需要自己注册生成好用的apikey Option ExplicitSub DeepSeek()Dim selectedText As StringDim apiKey As StringDim response A…...
3.2 > Bash
概览 在上一节中我们了解了关于 Shell 的执行流程,知道了在 Linux 环境中一般有哪些常用的 Shell。而在本节中,将会学习到 Linux 中最常见的一个 Shell —— Bash,了解到 bash 的相关知识和用法。 本节目录 概览相关知识bash 命令提示符bas…...
游戏引擎学习第100天
仓库:https://gitee.com/mrxiao_com/2d_game_2 昨天的回顾 今天的工作重点是继续进行反射计算的实现。昨天,我们开始了反射和环境贴图的工作,成功地根据法线显示了反射效果。然而,我们还没有实现反射向量的计算,导致反射交点的代…...
新一代SCADA: 宏集Panorama Suite 2025 正式发布,提供更灵活、符合人体工学且安全的应用体验
宏集科技宣布正式推出全新Panorama Suite 2025 SCADA软件!全新版本标志着 Panorama Suite的一个重要里程碑,代表了从 Panorama Suite 2022 开始并跨越三个版本(2022、2023、2025)的开发过程的顶峰。 此次重大发布集中在六个核心主…...
Visual Studio 进行单元测试【入门】
摘要:在软件开发中,单元测试是一种重要的实践,通过验证代码的正确性,帮助开发者提高代码质量。本文将介绍如何在VisualStudio中进行单元测试,包括创建测试项目、编写测试代码、运行测试以及查看结果。 1. 什么是单元测…...
Notepad++ 中删除所有以 “pdf“ 结尾的行
Notepad 中删除所有以 “pdf” 结尾的行 操作步骤 1.打开文件: 在 Notepad 中打开你需要处理的文本文件。 2.打开查找和替换对话框: 按快捷键 Ctrl F,打开“查找和替换”对话框。 3.启用正则表达式模式: 在对话框的底部…...
Java 使用腾讯翻译 API 实现含 HTML 标签文本,json值,精准翻译工具
注意:需搭配标题二的腾讯翻译工具使用 一-1、翻译标签文本工具 package org.springblade.common.utils;import java.util.ArrayList; import java.util.List; import java.util.regex.Matcher; import java.util.regex.Pattern;public class TencentTranslationFor…...
DeepSeek R1+Open WebUI +SearXNG 本地化部署与联网功能
GitHub - searxng/searxng-docker: The docker-compose files for setting up a SearXNG instance with docker....
数据科学之数据管理|NumPy数据管
一、Numpy介绍 (一) 什么是numpy NumPy是Python中科学计算的基础包。它是一个Python库,提供多维数组对象,各种派生对象(如掩码数组和矩阵),以及用于数组快速操作的各种API,有包括数学、逻辑、形状操作、排序、选择、输入输出、离散傅立叶变换、基本线性代数,基本统计运…...
零基础玩转 DeepSeek API实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学…...
【GPIO】5.理解保护二极管在GPIO过电压保护中的作用
在电子电路设计中,保护二极管是常见的保护元件,用于防止过电压对敏感电路的损害。本文将探讨当GPIO输入电压大于3.3V时,保护二极管如何工作,并解释为什么大部分过电压引起的电流会通过二极管流向VDD而不是流入内部电路。 1.背景 …...
2.5 模块化迁移策略:从传统项目到模块化系统
模块化迁移策略:从传统项目到模块化系统 将传统 Java 项目迁移至 JDK 9 模块化系统是一项系统性工程,需分阶段实施以降低风险。以下是详细的迁移策略、工具使用和实战示例。 1. 迁移阶段划分 阶段目标关键操作阶段1:兼容性验证确保项目能在…...
Tortoise Git
TortoiseGit 是一个 Windows Shell 与 Git 的接口,它提供了文件状态的覆盖图标,强大的 Git 上下文菜单等。你可以在官方网站 (tortoisegit.org) 轻松使用安装程序进行下载。TortoiseGit 的当前稳定版本是 2.14.0 ,根据你的机器配置࿰…...
Maven Spring框架依赖包
Maven中添加Spring框架依赖包 Spring核心工具包SpringJDBCSpring配置文件头信息 Spring核心工具包 在pom.xml文件中添加 <!-- Spring的核心工具包--><dependencies><dependency><groupId>org.springframework</groupId><artifactId>spr…...
【Cocos TypeScript 零基础 15.1】
目录 见缝插针UI脚本针脚本球脚本心得_旋转心得_更改父节点心得_缓动动画成品展示图 见缝插针 本人只是看了老师的大纲,中途不明白不会的时候再去看的视频 所以代码可能与老师代码有出入 SIKI_学院_点击跳转 UI脚本 import { _decorator, Camera, color, Component, directo…...
Linux库制作与原理:【静态库】【动态库】【目标文件】【ELF文件】【ELF从形成到假造轮廓】【理解链接和加载】
目录 一.什么是库 二.静态库 2.1创建静态库 我们在之前的路径下新建lib使用我们自己的库 2.2 使用makefile生成静态库 三.动态库 3.1动态库生成 3.2动态库使用 3.3库运行搜索路径 四.目标文件 五.ELF文件 六.ELF从形成到加载轮廓 6.1ELF形成可执行 6.2 ELF可执行文…...
中间件-redis-(ubantu)
1、安装依赖包 sudo apt-get update sudo apt-get install redis 一旦安装完成,Redis 服务将会自动启动。想要检查服务的状态,输入下面的命令: rootvims:/etc/redis# sudo systemctl status redis-server ● redis-server.service - Adva…...
ubuntu20.04+ROS+Gazebo+px4+QGC+MAVROS
目录 前言 一、安装ROS 二、安装PX4 编译 三、QGC安装 四、安装MAVROS 命令记得加sudo! 前言 在安装ubuntu20.04ROSGazebopx4QGCMAVROS时,参考了很多网上的资料,总结一个较为顺利的流程。 官方指南PX4 自动驾驶仪用户指南 | PX4 Gui…...
基于 openEuler 构建 LVS-DR 群集(同网段)。
一、LVS相关原理 1.LVS简介 LVS是Linux Virtual Server的简称,也就是Linux虚拟服务器, 是一个由章文嵩博士发起的自由软件项 目,它的官方站点是www.linuxvirtualserver.org。现在LVS已经是 Linux标准内核的一部分,在 Linux2.4内核以前&…...
计算机毕业设计PySpark+Hadoop+Hive机票预测 飞机票航班数据分析可视化大屏 航班预测系统 机票爬虫 飞机票推荐系统 大数据毕业设计
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...
【设计模式】【行为型模式】观察者模式(Observer)
👋hi,我不是一名外包公司的员工,也不会偷吃茶水间的零食,我的梦想是能写高端CRUD 🔥 2025本人正在沉淀中… 博客更新速度 📫 欢迎V: flzjcsg2,我们共同讨论Java深渊的奥秘 …...
机器学习: 逻辑回归
概念与定义 逻辑回归是一种用于分类问题的统计方法。它通过计算目标变量的概率来预测类别归属,并假设数据服从伯努利分布(二分类)或多项式分布(多分类)。逻辑回归模型输出的是概率值,通常使用sigmoid函数将线性组合映射到0和1之间。 1. 概念 逻辑回归用于解决分类问题…...