【STM32】HAL库USB虚拟U盘MSC配置及采用自带的Flash作为文件系统
【STM32】HAL库USB虚拟U盘MSC实现配置及采用自带的Flash作为文件系统
本文将自带的Flash作为文件系统 通过配置USB的MSC功能实现虚拟U盘
没有单独建立FATFS文件系统 仅仅是配置USB和Flash读写而已
当然 这里也可以用外部Flash等等 也可以配置文件系统来进行套壳
但总体而言不如FATFS下的USB Disk方便(USB需要配置为Host Only)
想要了解USB Disk 可以看另外一篇文章
文章目录
- MSC
- 工程配置
- Flash读写函数
- 测试
- 附录:Cortex-M架构的SysTick系统定时器精准延时和MCU位带操作
- SysTick系统定时器精准延时
- 延时函数
- 阻塞延时
- 非阻塞延时
- 位带操作
- 位带代码
- 位带宏定义
- 总线函数
- 一、位带操作理论及实践
- 二、如何判断MCU的外设是否支持位带
MSC
本文以STM32F407为开发环境进行测试 用的板子为极海的F407板子
其USB引脚连接如下:
开启USB_FS即可 这里选择Device_Only
NVIC中开启中断 其他不用改
如果使用HS(高速) 需要物理芯片
而FS则上拉电阻即可
具体看手册
在外设中配置MSC 并配置扇区大小(最好与Flash的最小读写单元保持一致)
这里是用的最大值4096
因为407的Flash扇区是128K 但如果超过了4096 则无法进行格式化
这里我用到了从扇区5开始的7个扇区
总共大小就是4*7=28K
工程配置
添加如下文件
并添加USB内核和MSC的头文件路径:
最后编译就行了
然后修改usbd_storage_if.c
文件
设备初始化:
读写锁(判断是否繁忙):
读写函数:
另外 头部定义修改为cubemx中一致
这样就可以在电脑中搜索到了 如果需要使用 还需要格式化操作
在格式化时 则会调用读写函数
Flash读写函数
此MCU的Flash如下:
注意 不同的芯片扇区分区不一样 譬如F407系列(这里截图的是极海的F407) 扇区大小前面几个都是16k 后面则是64k 128k
那么就需要修改flash_dat.Page
以及其他参数
在HAL库中 FLASH_EraseInitTypeDef
的定义完全不一样
这里是用扇区SECTOR来进行操作的 而不是页Page
擦除类型则变成了FLASH_TYPEERASE_SECTORS
另外还有一个电压选择VoltageRange
根据MCU本身来进行配置
在这里 我是每次操作4字节
所以读写函数可以如下:
#define Flash_Page_Size 4096
//读取SPI FLASH
//在指定地址开始读取指定长度的数据
//pBuffer:数据存储区
//ReadAddr:开始读取的地址(24bit)
//NumByteToRead:要读取的字节数(最大65535)
void Read_Flash(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead)
{if(Flag_Flash_Busy==1)return;Flag_Flash_Busy=1;uint32_t Current_ADD = 0x08020000+0x20000*(ReadAddr/Flash_Page_Size)+ReadAddr%Flash_Page_Size;uint8_t page = (Current_ADD-0x08020000)/0x20000+5;uint32_t read_dat = 0;uint16_t i =0;uint16_t j = NumByteToRead/4;uint32_t add =0;uint32_t first_add = Current_ADD;uint32_t judg_add = (page-5)*0x20000+0x08020000+Flash_Page_Size;for(i=0;i<j;i++){add = Current_ADD+i*4;if(add>judg_add){Flag_Flash_Busy=0;Read_Flash(pBuffer+i*4,add-first_add,NumByteToRead-i*4);return;}read_dat = *(__I uint32_t *)(add);pBuffer[i*4+0]=(uint8_t)(read_dat&0xFF);pBuffer[i*4+1]=(uint8_t)((read_dat>>8)&0xFF);pBuffer[i*4+2]=(uint8_t)((read_dat>>16)&0xFF);pBuffer[i*4+3]=(uint8_t)((read_dat>>24)&0xFF);}Flag_Flash_Busy=0;
}//读取SPI FLASH
//在指定地址开始读取指定长度的数据
//pBuffer:数据存储区
//ReadAddr:开始读取的地址(24bit)
//NumByteToWrite:要读取的字节数(最大65535)
void Write_Flash(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead)
{if(Flag_Flash_Busy==1)return;Flag_Flash_Busy=1;uint32_t Current_ADD = 0x08020000+0x20000*(ReadAddr/Flash_Page_Size)+ReadAddr%Flash_Page_Size;uint8_t page = (Current_ADD-0x08020000)/0x20000+5;uint32_t error = 0;uint32_t read_dat = 0;uint16_t i =0;uint16_t j = NumByteToRead/4;uint32_t add =0;uint32_t first_add = Current_ADD;uint32_t judg_add = (page-5)*0x20000+0x08020000+Flash_Page_Size;FLASH_EraseInitTypeDef flash_dat; //定义一个结构体变量,里面有擦除操作需要定义的变量HAL_FLASH_Unlock(); //第二步:解锁 flash_dat.TypeErase = FLASH_TYPEERASE_SECTORS; //擦除类型是“Page Erase” 仅删除页面 另外一个参数是全部删除flash_dat.Sector = page; //擦除地址对应的页flash_dat.NbSectors = 1; //一次性擦除1页,可以是任意页flash_dat.Banks=FLASH_BANK_1;flash_dat.VoltageRange=FLASH_VOLTAGE_RANGE_3;HAL_FLASHEx_Erase(&flash_dat,&error); //第三步:参数写好后调用擦除函数FLASH_WaitForLastOperation(0xFFFF); for(i=0;i<j;i++){add = Current_ADD+i*4;if(add>judg_add){HAL_FLASH_Lock(); //第五步:上锁Flag_Flash_Busy=0;Write_Flash(pBuffer+i*4,add-first_add,NumByteToRead-i*4);return;}read_dat = pBuffer[i*4+0]|(pBuffer[i*4+1]<<8)+(pBuffer[i*4+2]<<16)+(pBuffer[i*4+3]<<24); error = HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, add, read_dat);//第四步:写入数据}HAL_FLASH_Lock(); //第五步:上锁Flag_Flash_Busy=0;
}
实际上 每个扇区的128K只用到了4K
但如果想全部用完 那么在写入时 就必须先将128K全部缓存 然后4K为一个单位整合后 再将128K写入
代码实现比较麻烦 所以这里测试就干脆以4K来进行测试
其中 在读写时 需要进行上锁
为了防止地址溢出 要进行地址超出判断
并且由于两个扇区之间的地址不连续 需要进行地址转换
测试
以4K为扇区大小测试如下:
注意 这里跑起来后 由于MSC会频繁读取状态繁忙的标志 所以无法调试
只能在完全进入U盘模式前进行调试
格式化只在第一次需要(建立FAT文件系统) 所以掉电不会重新格式化 也不会删除文件
其中 第一个扇区存放U盘信息:
格式化后 除了第一个扇区外 其他都是0
新建一个文件:
第4个扇区数据发生变化
若增加文件则:
若再删除文件(其实就是在文件前面打一个标志位):
附录:Cortex-M架构的SysTick系统定时器精准延时和MCU位带操作
SysTick系统定时器精准延时
延时函数
SysTick->LOAD中的值为计数值
计算方法为工作频率值/分频值
比如工作频率/1000 则周期为1ms
以ADuCM4050为例:
#include "ADuCM4050.h"void delay_ms(unsigned int ms)
{SysTick->LOAD = 26000000/1000-1; // Count from 255 to 0 (256 cycles) 载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag 清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能52MHz的系统定时器while(ms--){while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待}SysTick->CTRL = 0; // Disable SysTick 关闭系统定时器
}
void delay_us(unsigned int us)
{SysTick->LOAD = 26000000/1000/1000-1; // Count from 255 to 0 (256 cycles) 载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag 清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能52MHz的系统定时器while(us--){while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待}SysTick->CTRL = 0; // Disable SysTick 关闭系统定时器
}
其中的52000000表示芯片的系统定时器频率 32系列一般为外部定时器频率的两倍
Cortex-M架构SysTick系统定时器阻塞和非阻塞延时
阻塞延时
首先是最常用的阻塞延时
void delay_ms(unsigned int ms)
{SysTick->LOAD = 50000000/1000-1; // Count from 255 to 0 (256 cycles) 载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag 清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系统定时器while(ms--){while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待}SysTick->CTRL = 0; // Disable SysTick 关闭系统定时器
}
void delay_us(unsigned int us)
{SysTick->LOAD = 50000000/1000/1000-1; // Count from 255 to 0 (256 cycles) 载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag 清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系统定时器while(us--){while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待}SysTick->CTRL = 0; // Disable SysTick 关闭系统定时器
}
50000000表示工作频率
分频后即可得到不同的延时时间
以此类推
那么 不用两个嵌套while循环 也可以写成:
void delay_ms(unsigned int ms)
{SysTick->LOAD = 50000000/1000*ms-1; // Count from 255 to 0 (256 cycles) 载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag 清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系统定时器while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待SysTick->CTRL = 0; // Disable SysTick 关闭系统定时器
}
void delay_us(unsigned int us)
{SysTick->LOAD = 50000000/1000/1000*us-1; // Count from 255 to 0 (256 cycles) 载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag 清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系统定时器while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待SysTick->CTRL = 0; // Disable SysTick 关闭系统定时器
}
但是这种写法有个弊端
那就是输入ms后,最大定时不得超过计数值,也就是不能超过LOAD的最大值,否则溢出以后,则无法正常工作
而LOAD如果最大是32位 也就是4294967295
晶振为50M的话 50M的计数值为1s 4294967295计数值约为85s
固最大定时时间为85s
但用嵌套while的话 最大可以支持定时4294967295*85s
非阻塞延时
如果采用非阻塞的话 直接改写第二种方法就好了:
void delay_ms(unsigned int ms)
{SysTick->LOAD = 50000000/1000*ms-1; // Count from 255 to 0 (256 cycles) 载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag 清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系统定时器//while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待//SysTick->CTRL = 0; // Disable SysTick 关闭系统定时器
}
void delay_us(unsigned int us)
{SysTick->LOAD = 50000000/1000/1000*us-1; // Count from 255 to 0 (256 cycles) 载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag 清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系统定时器//while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待//SysTick->CTRL = 0; // Disable SysTick 关闭系统定时器
}
将等待和关闭定时器语句去掉
在使用时加上判断即可变为阻塞:
delay_ms(500);
while ((SysTick->CTRL & 0x00010000)==0);
SysTick->CTRL = 0;
在非阻塞状态下 可以提交定时器后 去做别的事情 然后再来等待
不过这样又有一个弊端 那就是定时器会自动重载 可能做别的事情以后 定时器跑过了 然后就要等85s才能停下
故可以通过内部定时器来进行非阻塞延时函数的编写
基本上每个mcu的内部定时器都可以配置自动重载等功能 网上资料很多 这里就不再阐述了
位带操作
位带代码
M3、M4架构的单片机 其输出口地址为端口地址+20 输入为+16
M0架构的单片机 其输出口地址为端口地址+12 输入为+8
以ADuCM4050为列:
位带宏定义
#ifndef __GPIO_H__
#define __GPIO_H__
#include "ADuCM4050.h"
#include "adi_gpio.h"#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
#define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))#define GPIO0_ODR_Addr (ADI_GPIO0_BASE+20) //0x40020014
#define GPIO0_IDR_Addr (ADI_GPIO0_BASE+16) //0x40020010#define GPIO1_ODR_Addr (ADI_GPIO1_BASE+20) //0x40020054
#define GPIO1_IDR_Addr (ADI_GPIO1_BASE+16) //0x40020050#define GPIO2_ODR_Addr (ADI_GPIO2_BASE+20) //0x40020094
#define GPIO2_IDR_Addr (ADI_GPIO2_BASE+16) //0x40020090#define GPIO3_ODR_Addr (ADI_GPIO3_BASE+20) //0x400200D4
#define GPIO3_IDR_Addr (ADI_GPIO3_BASE+16) //0x400200D0#define P0_O(n) BIT_ADDR(GPIO0_ODR_Addr,n) //输出
#define P0_I(n) BIT_ADDR(GPIO0_IDR_Addr,n) //输入 #define P1_O(n) BIT_ADDR(GPIO1_ODR_Addr,n) //输出
#define P1_I(n) BIT_ADDR(GPIO1_IDR_Addr,n) //输入 #define P2_O(n) BIT_ADDR(GPIO2_ODR_Addr,n) //输出
#define P2_I(n) BIT_ADDR(GPIO2_IDR_Addr,n) //输入 #define P3_O(n) BIT_ADDR(GPIO3_ODR_Addr,n) //输出
#define P3_I(n) BIT_ADDR(GPIO3_IDR_Addr,n) //输入 #define Port0 (ADI_GPIO_PORT0)
#define Port1 (ADI_GPIO_PORT1)
#define Port2 (ADI_GPIO_PORT2)
#define Port3 (ADI_GPIO_PORT3)#define Pin0 (ADI_GPIO_PIN_0)
#define Pin1 (ADI_GPIO_PIN_1)
#define Pin2 (ADI_GPIO_PIN_2)
#define Pin3 (ADI_GPIO_PIN_3)
#define Pin4 (ADI_GPIO_PIN_4)
#define Pin5 (ADI_GPIO_PIN_5)
#define Pin6 (ADI_GPIO_PIN_6)
#define Pin7 (ADI_GPIO_PIN_7)
#define Pin8 (ADI_GPIO_PIN_8)
#define Pin9 (ADI_GPIO_PIN_9)
#define Pin10 (ADI_GPIO_PIN_10)
#define Pin11 (ADI_GPIO_PIN_11)
#define Pin12 (ADI_GPIO_PIN_12)
#define Pin13 (ADI_GPIO_PIN_13)
#define Pin14 (ADI_GPIO_PIN_14)
#define Pin15 (ADI_GPIO_PIN_15)void GPIO_OUT(unsigned int port,unsigned int pin,unsigned int flag);
void GPIO_BUS_OUT(unsigned int port,unsigned int num);void P0_BUS_O(unsigned int num);
unsigned int P0_BUS_I(void);void P1_BUS_O(unsigned int num);
unsigned int P1_BUS_I(void);void P2_BUS_O(unsigned int num);
unsigned int P2_BUS_I(void);void P3_BUS_O(unsigned int num);
unsigned int P3_BUS_I(void);#endif
总线函数
#include "ADuCM4050.h"
#include "adi_gpio.h"
#include "GPIO.h"void GPIO_OUT(unsigned int port,unsigned int pin,unsigned int flag)
{switch(port){case 0:{switch(pin){case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_0));};break;case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_1));};break;case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_2));};break;case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_3));};break;case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_4));};break;case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_5));};break;case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_6));};break;case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_7));};break;case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_8));};break;case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_9));};break;case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_10));};break;case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_11));};break;case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_12));};break;case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_13));};break;case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_14));};break;case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_15));};break;default:pin=0;break;}}break;case 1:{switch(pin){case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_0));};break;case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_1));};break;case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_2));};break;case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_3));};break;case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_4));};break;case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_5));};break;case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_6));};break;case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_7));};break;case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_8));};break;case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_9));};break;case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_10));};break;case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_11));};break;case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_12));};break;case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_13));};break;case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_14));};break;case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_15));};break;default:pin=0;break;}}break;case 2:{switch(pin){case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_0));};break;case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_1));};break;case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_2));};break;case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_3));};break;case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_4));};break;case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_5));};break;case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_6));};break;case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_7));};break;case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_8));};break;case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_9));};break;case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_10));};break;case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_11));};break;case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_12));};break;case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_13));};break;case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_14));};break;case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_15));};break;default:pin=0;break;}}break;case 3:{switch(pin){case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_0));};break;case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_1));};break;case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_2));};break;case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_3));};break;case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_4));};break;case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_5));};break;case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_6));};break;case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_7));};break;case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_8));};break;case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_9));};break;case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_10));};break;case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_11));};break;case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_12));};break;case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_13));};break;case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_14));};break;case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_15));};break;default:pin=0;break;}}break;default:port=0;break;}
}void GPIO_BUS_OUT(unsigned int port,unsigned int num) //num最大为0xffff
{int i;for(i=0;i<16;i++){GPIO_OUT(port,i,(num>>i)&0x0001);}
}void P0_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){P0_O(i)=(num>>i)&0x0001;}
}
unsigned int P0_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(P0_I(i)<<i)&0xFFFF;}return num;
}void P1_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){P1_O(i)=(num>>i)&0x0001;}
}
unsigned int P1_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(P1_I(i)<<i)&0xFFFF;}return num;
}void P2_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){P2_O(i)=(num>>i)&0x0001;}
}
unsigned int P2_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(P2_I(i)<<i)&0xFFFF;}return num;
}void P3_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){P3_O(i)=(num>>i)&0x0001;}
}
unsigned int P3_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(P3_I(i)<<i)&0xFFFF;}return num;
}
一、位带操作理论及实践
位带操作的概念其实30年前就有了,那还是 CM3 将此能力进化,这里的位带操作是 8051 位寻址区的威力大幅加强版
位带区: 支持位带操作的地址区
位带别名: 对别名地址的访问最终作 用到位带区的访问上(注意:这中途有一个 地址映射过程)
位带操作对于硬件 I/O 密集型的底层程序最有用处
支持了位带操作后,可以使用普通的加载/存储指令来对单一的比特进行读写。在CM4中,有两个区中实现了位带。其中一个是SRAM区的最低1MB范围,第二个则是片内外设区的最低1MB范围。这两个区中的地址除了可以像普通的RAM一样使用外,它们还都有自己的“位带别名区”,位带别名区把每个比特膨胀成一个32位的字。当你通过位带别名区访问这些字时,就可以达到访问原始比特的目的。
位操作就是可以单独的对一个比特位读和写,类似与51中sbit定义的变量,stm32中通过访问位带别名区来实现位操作的功能
STM32中有两个地方实现了位带,一个是SRAM,一个是片上外设。
(1)位带本质上是一块地址区(例如每一位地址位对应一个寄存器)映射到另一片地址区(实现每一位地址位对应一个寄存器中的一位),该区域就叫做位带别名区,将每一位膨胀成一个32位的字。
(2)位带区的4个字节对应实际寄存器或内存区的一个位,虽然变大到4个字节,但实际上只有最低位有效(代表0或1)
只有位带可以直接用=赋值的方式来操作寄存器 位带是把寄存器上的每一位 膨胀到32位 映射到位带区 比如0x4002 0000地址的第0个bit 映射到位带区的0地址 那么其对应的位带映射地址为0x00 - 0x04 一共32位 但只有LSB有效 采用位带的方式用=赋值时 就是把位带区对应的LSB赋值 然后MCU再转到寄存器对应的位里面 寄存器操作时 如果不改变其他位上面的值 那就只能通过&=或者|=的方式进行
要设置0x2000 0000这个字节的第二个位bit2为1,使用位带操作的步骤有:
1、将1写入位 带别名区对应的映射地址(即0x22000008,因为1bit对应4个byte);
2、将0x2000 0000的值 读取到内部的缓冲区(这一步骤是内核完成的,属于原子操作,不需要用户操作);
3、将bit2置1,再把值写 回到0x2000 0000(属于原子操作,不需要用户操作)。
关于GPIO引脚对应的访问地址,可以参考以下公式
寄存器位带别名 = 0x42000000 + (寄存器的地址-0x40000000)32 + 引脚编号4
如:端口F访问的起始地址GPIOF_BASE
#define GPIOF ((GPIO_TypeDef *)GPIOF_BASE)
但好在官方库里面都帮我们定义好了 只需要在BASE地址加上便宜即可
例如:
GPIOF的ODR寄存器的地址 = GPIOF_BASE + 0x14
寄存器位带别名 = 0x42000000 + (寄存器的地址-0x40000000)32 + 引脚编号4
设置PF9引脚的话:
uint32_t *PF9_BitBand =
*(uint32_t *)(0x42000000 + ((uint32_t )&GPIOF->ODR– 0x40000000) *32 + 9*4)
封装一下:
#define PFout(x) *(volatile uint32_t *)(0x42000000 + ((uint32_t )&GPIOF->ODR – 0x40000000) *32 + x*4)
现在 可以把通用部分封装成一个小定义:
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
#define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))
那么 设置PF引脚的函数可以定义:
#define GPIOF_ODR_Addr (GPIOF_BASE+20) //0x40021414
#define GPIOF_IDR_Addr (GPIOF_BASE+16) //0x40021410 #define PF_O(n) BIT_ADDR(GPIOF_ODR_Addr,n) //输出
#define PF_I(n) BIT_ADDR(GPIOF_IDR_Addr,n) //输入
若使PF9输入输出则:
PF_O(9)=1; //输出高电平
uint8_t dat = PF_I(9); //获取PF9引脚的值
总线输入输出:
void PF_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PF_O(i)=(num>>i)&0x0001;}
}
unsigned int PF_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PF_I(i)<<i)&0xFFFF;}return num;
}
STM32的可用下面的函数:
#ifndef __GPIO_H__
#define __GPIO_H__
#include "stm32l496xx.h"#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
#define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))#define GPIOA_ODR_Addr (GPIOA_BASE+20) //0x40020014
#define GPIOB_ODR_Addr (GPIOB_BASE+20) //0x40020414
#define GPIOC_ODR_Addr (GPIOC_BASE+20) //0x40020814
#define GPIOD_ODR_Addr (GPIOD_BASE+20) //0x40020C14
#define GPIOE_ODR_Addr (GPIOE_BASE+20) //0x40021014
#define GPIOF_ODR_Addr (GPIOF_BASE+20) //0x40021414
#define GPIOG_ODR_Addr (GPIOG_BASE+20) //0x40021814
#define GPIOH_ODR_Addr (GPIOH_BASE+20) //0x40021C14
#define GPIOI_ODR_Addr (GPIOI_BASE+20) //0x40022014 #define GPIOA_IDR_Addr (GPIOA_BASE+16) //0x40020010
#define GPIOB_IDR_Addr (GPIOB_BASE+16) //0x40020410
#define GPIOC_IDR_Addr (GPIOC_BASE+16) //0x40020810
#define GPIOD_IDR_Addr (GPIOD_BASE+16) //0x40020C10
#define GPIOE_IDR_Addr (GPIOE_BASE+16) //0x40021010
#define GPIOF_IDR_Addr (GPIOF_BASE+16) //0x40021410
#define GPIOG_IDR_Addr (GPIOG_BASE+16) //0x40021810
#define GPIOH_IDR_Addr (GPIOH_BASE+16) //0x40021C10
#define GPIOI_IDR_Addr (GPIOI_BASE+16) //0x40022010 #define PA_O(n) BIT_ADDR(GPIOA_ODR_Addr,n) //输出
#define PA_I(n) BIT_ADDR(GPIOA_IDR_Addr,n) //输入 #define PB_O(n) BIT_ADDR(GPIOB_ODR_Addr,n) //输出
#define PB_I(n) BIT_ADDR(GPIOB_IDR_Addr,n) //输入 #define PC_O(n) BIT_ADDR(GPIOC_ODR_Addr,n) //输出
#define PC_I(n) BIT_ADDR(GPIOC_IDR_Addr,n) //输入 #define PD_O(n) BIT_ADDR(GPIOD_ODR_Addr,n) //输出
#define PD_I(n) BIT_ADDR(GPIOD_IDR_Addr,n) //输入 #define PE_O(n) BIT_ADDR(GPIOE_ODR_Addr,n) //输出
#define PE_I(n) BIT_ADDR(GPIOE_IDR_Addr,n) //输入#define PF_O(n) BIT_ADDR(GPIOF_ODR_Addr,n) //输出
#define PF_I(n) BIT_ADDR(GPIOF_IDR_Addr,n) //输入#define PG_O(n) BIT_ADDR(GPIOG_ODR_Addr,n) //输出
#define PG_I(n) BIT_ADDR(GPIOG_IDR_Addr,n) //输入#define PH_O(n) BIT_ADDR(GPIOH_ODR_Addr,n) //输出
#define PH_I(n) BIT_ADDR(GPIOH_IDR_Addr,n) //输入#define PI_O(n) BIT_ADDR(GPIOI_ODR_Addr,n) //输出
#define PI_I(n) BIT_ADDR(GPIOI_IDR_Addr,n) //输入void PA_BUS_O(unsigned int num);
unsigned int PA_BUS_I(void);void PB_BUS_O(unsigned int num);
unsigned int PB_BUS_I(void);void PC_BUS_O(unsigned int num);
unsigned int PC_BUS_I(void);void PD_BUS_O(unsigned int num);
unsigned int PD_BUS_I(void);void PE_BUS_O(unsigned int num);
unsigned int PE_BUS_I(void);void PF_BUS_O(unsigned int num);
unsigned int PF_BUS_I(void);void PG_BUS_O(unsigned int num);
unsigned int PG_BUS_I(void);void PH_BUS_O(unsigned int num);
unsigned int PH_BUS_I(void);void PI_BUS_O(unsigned int num);
unsigned int PI_BUS_I(void);#endif
#include "GPIO.h"void PA_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PA_O(i)=(num>>i)&0x0001;}
}
unsigned int PA_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PA_I(i)<<i)&0xFFFF;}return num;
}void PB_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PB_O(i)=(num>>i)&0x0001;}
}
unsigned int PB_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PB_I(i)<<i)&0xFFFF;}return num;
}void PC_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PC_O(i)=(num>>i)&0x0001;}
}
unsigned int PC_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PC_I(i)<<i)&0xFFFF;}return num;
}void PD_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PD_O(i)=(num>>i)&0x0001;}
}
unsigned int PD_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PD_I(i)<<i)&0xFFFF;}return num;
}void PE_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PE_O(i)=(num>>i)&0x0001;}
}
unsigned int PE_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PE_I(i)<<i)&0xFFFF;}return num;
}void PF_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PF_O(i)=(num>>i)&0x0001;}
}
unsigned int PF_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PF_I(i)<<i)&0xFFFF;}return num;
}void PG_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PG_O(i)=(num>>i)&0x0001;}
}
unsigned int PG_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PG_I(i)<<i)&0xFFFF;}return num;
}void PH_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PH_O(i)=(num>>i)&0x0001;}
}
unsigned int PH_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PH_I(i)<<i)&0xFFFF;}return num;
}void PI_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PI_O(i)=(num>>i)&0x0001;}
}
unsigned int PI_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PI_I(i)<<i)&0xFFFF;}return num;
}
二、如何判断MCU的外设是否支持位带
根据《ARM Cortex-M3与Cortex-M4权威指南(第3版)》中第6章第7节描述
也就是说 要实现对GPIO的位带操作 必须保证GPIO位于外设区域的第一个1MB中
第一个1MB应该是0x4010 0000之前 位带不是直接操作地址 而是操作地址映射 地址映射被操作以后 MCU自动会修改对应寄存器的值
位带区只有1MB 所以只能改0x4000 0000 - 0x400F FFFF的寄存器
像F4系列 GPIO的首地址为0x4002 0000 就可以用位带来更改
STM32L476的GPIO就不行:
AHB2的都不能用位带
ABP 还有AHB1都可以用
但是L476的寄存器里面 GPIO和ADC都是AHB2
相关文章:
【STM32】HAL库USB虚拟U盘MSC配置及采用自带的Flash作为文件系统
【STM32】HAL库USB虚拟U盘MSC实现配置及采用自带的Flash作为文件系统 本文将自带的Flash作为文件系统 通过配置USB的MSC功能实现虚拟U盘 没有单独建立FATFS文件系统 仅仅是配置USB和Flash读写而已 当然 这里也可以用外部Flash等等 也可以配置文件系统来进行套壳 但总体而言不如…...
Math Reference Notes: 符号函数
1. 符号函数的定义 符号函数(Sign Function) sgn ( x ) \text{sgn}(x) sgn(x) 是一个将实数 ( x ) 映射为其 符号值(即正数、负数或零)的函数。 它的定义如下: sgn ( x ) { 1 如果 x > 0 0 如果 x 0 − 1 如…...
拉格朗日乘数法算法详解Python实现
目录 一、拉格朗日乘数法算法详解1.1 基本思想1.2 数学推导1.3 算法步骤1.4 算法在编程中的实现 二、案例分析案例一:二维最优化问题——求 f ( x , y ) x 2 y 2 f(x,y)x^2y^2 f(x,y)x2y2 在约束 x y 1 xy1 xy1 下的极值2.1.1 问题描述2.1.2 数学模型构建2.1.…...
ip属地是手机号还是手机位置?一文理清
在数字化和网络化的今天,IP属地这一概念逐渐成为了人们关注的焦点。特别是在社交媒体和在线平台上,IP属地的显示往往让人联想到用户的地理位置。然而,关于IP属地到底与手机号还是手机位置有关,却存在着不少误解和混淆。本文将深入…...
C++常用拷贝和替换算法
算法简介: copy // 容器内指定的元素拷贝到另一容器replace // 将容器内指定范围的旧元素改为新元素replace_if // 容器内指定范围满足条件的元素替换为新元素swap //互换两个容器的元素 1. copy 功能描述: 将容器内指定范围的数据拷贝到另一容器中函…...
vue项目搭建
1.准备工作,按照下面的安装一下脚手架vue-cli node16安装vue-cli时报错:需要node>20(但根本就不是版本问题)-CSDN博客文章浏览阅读157次,点赞4次,收藏2次。这种情况我碰到不下5次了,…...
Java进阶面试八股文
1、Java SE和Java EE区别? Java SE 是 Java 的基础版本,Java EE 是 Java 的高级版本。Java SE 更适合开发桌面应用程序或简单的服务器应用程序,Java EE 更适合开发复杂的企业级应用程序或 Web 应用程序。 2、JVM和JRE和JDK区别?…...
Python Django 嵌入 Grafana Dashboard(随手记)
作为一名网络工程师/运维工程师,现在都在往DevOps的方向发展。其中大家都不可避免的会往自己开发平台的方向发展。 那么如何将自己制作的 Grafana 面板 引入到自己的平台上? 一般来说,大家都会选择Python来作为自己开发的语言,并会…...
[Android] IKTV专享版
[Android] IKTV专享版 链接:https://pan.xunlei.com/s/VOILXXuEd3ASo93c88UW79sxA1?pwd4tsw# 2025年2月最新免费K歌神器!家庭KTV软件,手机平板电视盒子电脑都可用...
阿里 Java 岗个人面经分享(技术三面 + 技术 HR 面):Java 基础 +Spring+JVM+ 并发编程 + 算法 + 缓存
技术一面 20 分钟 1、自我介绍 说了很多遍了,很流畅捡重点介绍完。 2、问我数据结构算法好不好 挺好的(其实心还是有点虚,不过最近刷了很多题也只能壮着胆子充胖子了) 3、找到单链表的三等分点,如果单链表是有环的…...
C++多线程编程——call_once和单例模式
目录 1. 前言 2. call_once和once_flag 3. 后记 3.1 单例类的析构问题 3.2 饿汉式单例模式的线程安全问题 1. 前言 之前在讲解单例模式时,有提到懒汉式单例模式使用了双重检测Double-Checked Locking Pattern (DCLP)来解决多线程的安全访问问题。但是该方法也…...
vue2-为啥data属性是一个函数而不是对象
vue2-为啥data属性是一个函数而不是对象 1. data在vue实例和组件中的表现差异 vue实例的时候,data既可以是一个对象也可以是一个函数 new Vue({data:{//对象name:tom},data(){//函数return{name:tom}} })而在组件中定义data,只能是函数,如…...
Spark--算子执行原理
一、sortByKey SortByKey是一个transformation算子,但是会触发action,因为在sortByKey方法内部,会对每个分区进行采样,构建分区规则(RangePartitioner)。 内部执行流程 1、创建RangePartitioner part&…...
keil 单步调试
一、常见错误分析 warningerror警告错误 不影响编译过程 能够输出Hex文件 无法完成编译 不输出Hex文件 注意的是,warning的信息是要去关注的。 下面的UNCALLED SEGMENT除外 二、单步调试配置 1、在keil中添加单片机型号 本文不详细介绍,如有需要可查看这篇文章:...
html的字符实体和颜色表示
在HTML中,颜色可以通过以下几种方式表示,以下是具体的示例: 1. 十六进制颜色代码 十六进制颜色代码以#开头,后面跟随6个字符,每两个字符分别表示红色、绿色和蓝色的强度。例如: • #FF0000:纯红…...
[数据结构] 线性表和顺序表
目录 线性表 顺序表的实现 顺序表各个方法的实现 boolean isFull() -- 判断数组是否放满 : void add(int data) -- 在数组末尾插入新元素 : void add(int pos,int data) -- 在指定位置插入元素 : boolean contain(int toFind) -- 判断是否包含某个元素 int indexOf(in…...
第12章:基于TransUnet和SwinUnet网络实现的医学图像语义分割:腹部13器官分割(网页推理)
目录 1. 前言 2. TransUnet 和 SwinUnet 3. 腹部多器官分割 4. 训练 5. 推理 6. 项目下载 1. 前言 TransUNet 是一种用于医学图像分割的混合架构,结合了 Transformer 和 U-Net 的优势。它利用 Transformer 的全局上下文建模能力和 U-Net 的精确定位特性&…...
DS图(下)(19)
文章目录 前言一、最短路径的概念二、单源最短路径-Dijkstra算法三、单源最短路径-Bellman-Ford算法四、多源最短路径-Floyd-Warshall算法总结 前言 加油,今天就是图的最后一篇了,撑住!! 今天我们要学的就是最短路径问题&…...
鸿蒙Harmony-Progress组件概述
鸿蒙Harmony-Progress组件概述 1.1Progress组件概述 作用:显示操作或任务的进度,支持线性,环形,刻度等多种样式适用场景:文件上传/下载、任务完成度、系统状态反馈等 2.1基础属性(参考官方文档ÿ…...
流数据库中的RisingWave和Materialize
流数据库(Streaming Database)是一种专门设计用于处理大量实时流数据的数据库,它能够在数据生成时立即进行处理,从而实现实时洞察和分析。RisingWave和Materialize都是这一领域的代表性技术。RisingWave和Materialize都是强大的流…...
【C++】多态详细讲解
本篇来聊聊C面向对象的第三大特性-多态。 1.多态的概念 多态通俗来说就是多种形态。多态分为编译时多态(静态多态)和运⾏时多态(动态多态)。 编译时多态:主要就是我们前⾯讲的函数重载和函数模板,他们传不同类型的参数就可以调⽤不同的函数,通…...
防火墙的安全策略
1.VLAN 2属于办公区;VLAN 3属于生产区,创建时间段 [FW]ip address-set BG type object [FW-object-address-set-BG]address 192.168.1.0 mask 25 [FW]ip address-set SC type object [FW-object-address-set-SC]address 192.168.1.129 mask 25 [FW]ip address-se…...
Android 进程间通信
什么是IPC? Android 进程间通信(IPC,Inter-Process Communication)是Android操作系统中不同进程间交换数据和资源的一种机制。由于Android是多任务操作系统,每个应用通常运行在自己的进程中,以提高安全性和…...
【优先算法】专题——位运算
在讲解位运算之前我们来总结一下常见的位运算 一、常见的位运算 1.基础为运算 << &:有0就是0 >> |:有1就是1 ~ ^:相同为0,相异位1 /无进位相加 2.给一个数 n,确定它的二进制表示…...
深入理解k8s中的容器存储接口(CSI)
CSI出现的原因 K8s原生支持一些存储类型的PV,像iSCSI、NFS等。但这种方式让K8s代码与三方存储厂商代码紧密相连,带来不少麻烦。比如更改存储代码就得更新K8s组件,成本高;存储代码的bug还会影响K8s稳定性;K8s社区维护和…...
ZZNUOJ(C/C++)基础练习1061——1070(详解版)
目录 1061 : 顺序输出各位数字 C语言版 C版 1062 : 最大公约数 C C 1063 : 最大公约与最小公倍 C C 1064 : 加密字符 C C 1065 : 统计数字字符的个数 C C 1066 : 字符分类统计 C C 1067 : 有问题的里程表 C C 1068 : 进制转换 C C C(容器stack…...
ES6 变量解构赋值总结
1. 数组的解构赋值 1.1 基本用法 // 基本数组解构 const [a, b, c] [1, 2, 3]; console.log(a); // 1 console.log(b); // 2 console.log(c); // 3// 跳过某些值 const [x, , y] [1, 2, 3]; console.log(x); // 1 console.log(y); // 3// 解构剩余元素 const [first, ...re…...
机理模型与数据模型融合的方式
机理模型与数据模型的融合旨在结合两者的优势,以提供更准确、可靠的预测和决策支持。以下是几种常见的融合方式及其示例: 1. 特征增强(Feature Augmentation) 描述:将由机理模型计算得到的结果作为额外特征加入到数据…...
高效 MyBatis SQL 写法一
高效 MyBatis SQL 写法一 前言 MyBatis 作为一款优秀的持久层框架,极大地简化了数据库操作。 然而,在实际开发中,XML 配置的编写仍然可能显得繁琐。 本文将分享一些 MyBatis 动态 SQL 的优质写法,帮助开发者提升效率并减少错误…...
vue3中的ref相关的api及用法
在 Vue 3 中,ref 相关的 API 主要用于管理响应式数据。以下是 ref 相关的 API 及其用法: 1. ref ref 用于创建响应式的基本数据类型或对象。 用法示例: <script setup> import { ref } from vue;const count ref(0);const incremen…...
3 卷积神经网络CNN
1 Image Classification (Neuron Version) – 1.1 Observation 1 1.2 Observation 2 如果不同的receptive field需要相同功能的neuron,可以使这些neuron共享参数 1.3 Benefit of Convolutional Layer 2 Image Classification (Filter Version) 不用担心filter大小…...
CSV数据分析智能工具(基于OpenAI API和streamlit)
utils.py: from langchain_openai import ChatOpenAI from langchain_experimental.agents.agent_toolkits import create_csv_agent import jsonPROMPT_TEMPLATE """你是一位数据分析助手,你的回应内容取决于用户的请求内容。1. 对于文…...
解决php8.3无法加载curl扩展
把它的值更改为扩展存在的目录的绝对路径(扩展存在的目录为有php_xxx.dll存在的目录) extension_dir "e:\serv\php83\ext" 然后从php根目录复制 libssh2.dll 和 libcrypto-*.dll 和 libssl-*.dll 到Apache根目录下的bin目录 重启apache服务即可...
拍照对比,X70 PRO与X90 PRO+的细节差异
以下是局部截图(上X70P下X90PP) 对比1 这里看不出差异。 对比2 X90PP的字明显更清楚。 对比3 中下的字,X90PP显然更清楚。...
《MPRnet》学习笔记
paper:2102.02808 GitHub:swz30/MPRNet: [CVPR 2021] Multi-Stage Progressive Image Restoration. SOTA results for Image deblurring, deraining, and denoising. 目录 摘要 1、介绍 2、相关工作 2.1 单阶段方法 2.2 多阶段方法 2.3 注意力机…...
机器学习-线性回归(参数估计之结构风险最小化)
前面我们已经了解过关于机器学习中的结构风险最小化准则,包括L1 正则化(Lasso)、L2 正则化(Ridge)、Elastic Net,现在我们结合线性回归的场景,来了解一下线性回归的结构风险最小化,通…...
C++11详解(二) -- 引用折叠和完美转发
文章目录 2. 右值引用和移动语义2.6 类型分类(实践中没什么用)2.7 引用折叠2.8 完美转发2.9 引用折叠和完美转发的实例 2. 右值引用和移动语义 2.6 类型分类(实践中没什么用) C11以后,进一步对类型进行了划分&#x…...
深度学习系列--01.入门
一.深度学习概念 深度学习(Deep Learning)是机器学习的分支,是指使用多层的神经网络进行机器学习的一种手法抖音百科。它学习样本数据的内在规律和表示层次,最终目标是让机器能够像人一样具有分析学习能力,能够识别文字…...
熵采样在分类任务中的应用
熵采样在分类任务中的应用 在机器学习的分类任务里,数据的标注成本常常制约着模型性能的提升。主动学习中的熵采样策略,为解决这一难题提供了新的思路。本文将带你深入了解熵采样在分类任务中的原理、应用及优势。 一、熵采样的原理(优化版) 熵,源于信息论,是对不确定…...
vite配置之---依赖优化选项
vite optimizeDeps 配置项主要在 开发环境 中对依赖项发挥作用 optimizeDeps.entries vite optimizeDeps.entries 是 Vite 配置中的一个选项,用来指定要优化的入口文件。这在开发环境中尤其有用,因为它告诉 Vite 需要预构建哪些文件,以便加速…...
Shell基础:中括号的使用
在Shell脚本中,中括号([ ... ] 和 [[ ... ]])是一种常见的条件测试结构。它们用于进行文件类型检查、值比较以及逻辑判断。通过了解它们的不同特点和用法,能够帮助你编写更加高效、安全且易读的脚本。本文将详细介绍Shell中单中括…...
oracle ORA-27054报错处理
现象 在oracle执行expdp,rman备份,xtts的时候,由于没有足够的本地空间,只能使用到NFS的文件系统但有时候会出现如下报错 ORA-27054: NFS file system where the file is created or resides is not mounted with correct options根据提示信…...
SpringCloud速通教程
视频地址 文档地址 3. SpringCloud - 快速通关...
MapReduce分区
目录 1. MapReduce分区1.1 哈希分区1.2 自定义分区 2. 成绩分组2.1 Map2.2 Partition2.3 Reduce 3. 代码和结果3.1 pom.xml中依赖配置3.2 工具类util3.3 GroupScores3.4 结果 参考 本文引用的Apache Hadoop源代码基于Apache许可证 2.0,详情请参阅 Apache许可证2.0。…...
python算法和数据结构刷题[3]:哈希表、滑动窗口、双指针、回溯算法、贪心算法
回溯算法 「所有可能的结果」,而不是「结果的个数」,一般情况下,我们就知道需要暴力搜索所有的可行解了,可以用「回溯法」。 回溯算法关键在于:不合适就退回上一步。在回溯算法中,递归用于深入到所有可能的分支&…...
JDK 中 NIO 框架设计与实现:深入剖析及实战样例
一、引言 在 Java 的发展历程中,I/O(Input/Output)操作一直是构建高效、稳定应用程序的关键环节。传统的 Java I/O 操作基于流(Stream)的方式,虽然简单易用,但在面对高并发、大规模数据传输等场…...
基于springboot校园点歌系统
基于Spring Boot的校园点歌系统是一种专为校园场景设计的音乐点播平台,它能够丰富学生的校园生活,提升学生的娱乐体验。以下是对该系统的详细介绍: 一、系统背景与意义 在校园环境中,学生们对于音乐有着浓厚的兴趣,传…...
Spring 核心技术解析【纯干货版】- IX:Spring 数据访问模块 Spring-Jdbc 模块精讲
在现代企业级应用中,数据访问层的稳定性和高效性至关重要。为了简化和优化数据库操作,Spring Framework 提供了 Spring-JDBC 模块,旨在通过高度封装的 JDBC 操作,简化开发者的编码负担,减少冗余代码,同时提…...
React开发中箭头函数返回值陷阱的深度解析
React开发中箭头函数返回值陷阱的深度解析 一、箭头函数的隐式返回机制:简洁背后的规则二、块函数体中的显式返回要求:容易被忽视的细节三、真实场景下的案例分析案例1:忘记return导致组件渲染失败案例2:异步操作中的返回值陷阱 四…...
线程同步时定义 std::mutex 为什么要在前面添加 mutable 关键字
在C中,mutable关键字用于修饰类的成员变量,表示即使在一个const对象中,该成员变量也可以被修改。对于mutex这样的同步原语,使用mutable是必要的,原因如下: 1. 为什么需要 mutable? mutex通常用…...