当前位置: 首页 > news >正文

【C++】线程池实现

目录

  • 一、线程池简介
    • 线程池的核心组件
    • 实现步骤
  • 二、C++11实现线程池
    • 源码
  • 三、线程池源码解析
    • 1. 成员变量
    • 2. 构造函数
      • 2.1 线程初始化
      • 2.2 工作线程逻辑
    • 3. 任务提交(enqueue方法)
      • 3.1 方法签名
      • 3.2 任务封装
      • 3.3 任务入队
    • 4. 析构函数
      • 4.1 停机控制
    • 5. 关键技术点解析
      • 5.1 完美转发实现
      • 5.2 异常传播机制
      • 5.3 内存管理模型
  • 四、 性能特征分析
  • 五、 扩展优化方向
  • 六、 典型问题排查指南
  • 七、 测试用例
    • 如果这篇文章对你有所帮助,渴望获得你的一个点赞!

一、线程池简介

线程池是一种并发编程技术,通过预先创建一组线程并复用它们来执行多个任务,避免了频繁创建和销毁线程的开销。它特别适合处理大量短生命周期任务的场景(如服务器请求、并行计算)。

线程池的核心组件

1. 任务队列(Task Queue)
存储待执行的任务(通常是函数对象或可调用对象)。

2. 工作线程(Worker Threads)
一组预先创建的线程,不断从队列中取出任务并执行。

3. 同步机制
互斥锁(Mutex):保护任务队列的线程安全访问。
条件变量(Condition Variable):通知线程任务到达或线程池终止。

实现步骤

1. 初始化线程池
创建固定数量的线程,每个线程循环等待任务。

2. 提交任务
将任务包装成函数对象,加入任务队列。

3. 任务执行
工作线程从队列中取出任务并执行。

4. 终止线程池
发送停止信号,等待所有线程完成当前任务后退出。

二、C++11实现线程池

源码

#include <vector>
#include <queue>
#include <future>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <functional>
#include <stdexcept>class ThreadPool 
{
public://构造函数:根据输入的线程数(默认硬件并发数)创建工作线程。//每个工作线程执行一个循环,不断从任务队列中取出并执行任务。//explicit关键字防止隐式类型转换explicit ThreadPool(size_t threads = std::thread::hardware_concurrency()): stop(false) {if (threads == 0) {threads = 1;}for (size_t i = 0; i < threads; ++i) {workers.emplace_back([this] {for (;;) {std::function<void()> task;{std::unique_lock<std::mutex> lock(this->queue_mutex);//等待条件:线程通过条件变量等待任务到来或停止信号。(CPU使用率:休眠时接近0%,仅在任务到来时唤醒)//lambda表达式作为谓词,当条件(停止信号为true 或 任务队列非空)为真时,才会解除阻塞。this->condition.wait(lock, [this] {return (this->stop || !this->tasks.empty());});/* 传统忙等待:while (!(stop || !tasks.empty())) {} // 空循环消耗CPU */if (this->stop && this->tasks.empty()){//如果线程池需要终止且任务队列为空则直接returnreturn;}//任务提取:从队列中取出任务并执行,使用std::move避免拷贝开销。task = std::move(this->tasks.front());this->tasks.pop();}//执行任务task();}});}}//任务提交(enqueue方法)template<class F, class... Args>auto enqueue(F&& f, Args&&... args)-> std::future<typename std::result_of<F(Args...)>::type> {using return_type = typename std::result_of<F(Args...)>::type;//任务封装:使用std::packaged_task包装用户任务,支持异步返回结果。//智能指针管理:shared_ptr确保任务对象的生命周期延续至执行完毕。//完美转发:通过std::forward保持参数的左值/右值特性。auto task = std::make_shared<std::packaged_task<return_type()>>(std::bind(std::forward<F>(f), std::forward<Args>(args)...));std::future<return_type> res = task->get_future();{std::unique_lock<std::mutex> lock(queue_mutex);if (stop){throw std::runtime_error("enqueue on stopped ThreadPool");}  tasks.emplace([task]() { (*task)(); });/* push传入的对象需要事先构造好,再复制过去插入容器中;而emplace则可以自己使用构造函数所需的参数构造出对象,并直接插入容器中。emplace相比于push省去了复制的步骤,则使用emplace会更加节省内存。*/}condition.notify_one();return res;}~ThreadPool() {//设置stop标志,唤醒所有线程,等待任务队列清空。{std::unique_lock<std::mutex> lock(queue_mutex);stop = true;}condition.notify_all();for (std::thread& worker : workers){worker.join();}}private:std::vector<std::thread> workers;        //存储工作线程对象std::queue<std::function<void()>> tasks; //任务队列,存储待执行的任务std::mutex queue_mutex;                  //保护任务队列的互斥锁std::condition_variable condition;       //线程间同步的条件变量bool stop;                               //线程池是否停止标志
};

三、线程池源码解析

1. 成员变量

std::vector<std::thread> workers;        // 工作线程容器
std::queue<std::function<void()>> tasks; // 任务队列
std::mutex queue_mutex;                  // 队列互斥锁
std::condition_variable condition;       // 条件变量
bool stop;                               // 停机标志

设计要点:

  • 采用生产者-消费者模式,任务队列作为共享资源

  • 组合使用mutex+condition_variable实现线程同步

  • vector存储线程对象便于统一管理生命周期


2. 构造函数

2.1 线程初始化

explicit ThreadPool(size_t threads = std::thread::hardware_concurrency()): stop(false)
{if (threads == 0) {threads = 1;}for (size_t i = 0; i < threads; ++i) {workers.emplace_back([this] { /* 工作线程逻辑 */ });}
}

设计要点:

  • explicit防止隐式类型转换(如ThreadPool pool = 4;

  • 默认使用硬件并发线程数(通过hardware_concurrency()

  • 最少创建1个线程避免空池

  • 使用emplace_back直接构造线程对象


2.2 工作线程逻辑

for (;;)
{std::function<void()> task;{std::unique_lock<std::mutex> lock(queue_mutex);condition.wait(lock, [this] {return stop || !tasks.empty();});if (stop && tasks.empty()) {return; }task = std::move(tasks.front());tasks.pop();}task();
}

核心机制:

  • unique_lock配合条件变量实现自动锁管理

  • 双重状态检查(停机标志+队列非空)

  • 任务提取使用移动语义避免拷贝

  • 任务执行在锁作用域外进行


3. 任务提交(enqueue方法)

3.1 方法签名

template<class F, class... Args>
auto enqueue(F&& f, Args&&... args)-> std::future<typename std::result_of<F(Args...)>::type>

类型推导:

  • 使用尾置返回类型声明
  • std::result_of推导可调用对象的返回类型
  • 完美转发参数(F&&+Args&&...

3.2 任务封装

auto task = std::make_shared<std::packaged_task<return_type()>>(std::bind(std::forward<F>(f), std::forward<Args>(args)...));

封装策略:

  • packaged_task包装任务用于异步获取结果
  • shared_ptr管理任务对象生命周期
  • std::bind绑定参数(注意C++11的参数转发限制)

3.3 任务入队

tasks.emplace([task]() { (*task)(); });

优化点:

  • 使用emplace直接构造队列元素
  • Lambda捕获shared_ptr保持任务有效性
  • 显式解引用执行packaged_task

4. 析构函数

4.1 停机控制

~ThreadPool() 
{{std::unique_lock<std::mutex> lock(queue_mutex);stop = true;}condition.notify_all();for (auto& worker : workers){worker.join();}  
}

停机协议:

  1. 设置停机标志原子操作
  2. 广播唤醒所有等待线程
  3. 等待所有工作线程退出

5. 关键技术点解析

5.1 完美转发实现

std::bind(std::forward<F>(f), std::forward<Args>(args)...)
  • 保持参数的左右值特性
  • 支持移动语义参数的传递
  • C++11的限制:无法完美转发所有参数类型

5.2 异常传播机制

  • 任务异常通过future对象传播
  • packaged_task自动捕获异常
  • 用户通过future.get()获取异常

5.3 内存管理模型

         [任务提交者]|v[packaged_task] <---- shared_ptr ---- [任务队列]|v[future]
  • 三重生命周期保障:
    1. 提交者持有future
    2. 队列持有任务包装器
    3. 工作线程执行任务

四、 性能特征分析

1. 时间复杂度

操作时间复杂度
任务提交(enqueue)O(1)(加锁开销)
任务提取O(1)
线程唤醒取决于系统调度

2. 空间复杂度

组件空间占用
线程栈每线程MB级
任务队列与任务数成正比
同步原语固定大小

五、 扩展优化方向

1. 任务窃取(Work Stealing)

  • 实现多个任务队列
  • 空闲线程从其他队列窃取任务

2. 动态线程池

void adjust_workers(size_t new_size) 
{if (new_size > workers.size()) {// 扩容逻辑} else {// 缩容逻辑}
}

3. 优先级队列

using Task = std::pair<int, std::function<void()>>; // 优先级+任务std::priority_queue<Task> tasks;

4. 无锁队列

moodycamel::ConcurrentQueue<std::function<void()>> tasks;

六、 典型问题排查指南

现象可能原因解决方案
任务未执行线程池提前析构延长线程池生命周期
future.get()永久阻塞任务未提交/异常未处理检查任务提交路径
CPU利用率100%忙等待或锁竞争优化任务粒度/使用无锁结构
内存持续增长任务对象未正确释放检查智能指针使用

该实现完整展现了现代C++线程池的核心设计范式,开发者可根据具体需求在此基础进行功能扩展和性能优化。理解这个代码结构是掌握更高级并发模式的基础。

七、 测试用例

使用实例(C++11兼容):

#include <iostream>int main() 
{ThreadPool pool(4);// 提交普通函数auto future1 = pool.enqueue([](int a, int b) {return a + b;}, 2, 3);// 提交成员函数struct Calculator {int multiply(int a, int b) { return a * b; }} calc;auto future2 = pool.enqueue(std::bind(&Calculator::multiply, &calc, std::placeholders::_1, std::placeholders::_2), 4, 5);// 异常处理示例auto future3 = pool.enqueue([]() -> int {throw std::runtime_error("example error");return 1;});std::cout << "2+3=" << future1.get() << std::endl;std::cout << "4*5=" << future2.get() << std::endl;try {future3.get();} catch(const std::exception& e){std::cout << "Caught exception: " << e.what() << std::endl;}return 0;
}

如果这篇文章对你有所帮助,渴望获得你的一个点赞!

在这里插入图片描述

相关文章:

【C++】线程池实现

目录 一、线程池简介线程池的核心组件实现步骤 二、C11实现线程池源码 三、线程池源码解析1. 成员变量2. 构造函数2.1 线程初始化2.2 工作线程逻辑 3. 任务提交(enqueue方法)3.1 方法签名3.2 任务封装3.3 任务入队 4. 析构函数4.1 停机控制 5. 关键技术点解析5.1 完美转发实现5…...

大模型领域的Scaling Law的含义及作用

Scaling Law就像是一个“长大公式”&#xff0c;用来预测当一个东西&#xff08;比如模型&#xff09;变大&#xff08;比如增加参数、数据量&#xff09;时&#xff0c;它的性能&#xff08;比如准确率&#xff09;会怎么变化。 它能帮助我们提前知道&#xff0c;增加多少资源…...

用FormLinker实现自动调整数据格式,批量导入微软表单

每天早上打开Excel时&#xff0c;你是否也经历过这样的噩梦&#xff1f; 熬夜调整好的问卷格式&#xff0c;导入微软表单后全乱套 客户发来的PDF反馈表&#xff0c;手动录入3小时才完成10% 200道题库要转为在线测试&#xff0c;复制粘贴到手指抽筋 微软官方数据显示&#xf…...

C#,shell32 + 调用控制面板项(.Cpl)实现“新建快捷方式对话框”(全网首发)

Made By 于子轩&#xff0c;2025.2.2 不管是使用System.IO命名空间下的File类来创建快捷方式文件&#xff0c;或是使用Windows Script Host对象创建快捷方式&#xff0c;亦或是使用Shell32对象创建快捷方式&#xff0c;都对用户很不友好&#xff0c;今天小编为大家带来一种全新…...

洛谷 P11626 题解

[Problem Discription] \color{blue}{\texttt{[Problem Discription]}} [Problem Discription] 给定长度为 n n n 的数组 A 1 ⋯ n A_{1 \cdots n} A1⋯n​&#xff0c;求 ∑ a 1 n ∑ b a 1 n ∑ c b 1 n ∑ d c 1 n ∑ e d 1 n ∑ f e 1 n ∑ g f 1 n ( gcd …...

Android学习制作app(ESP8266-01S连接-简单制作)

一、理论 部分理论见arduino学习-CSDN博客和Android Studio安装配置_android studio gradle 配置-CSDN博客 以下直接上代码和效果视频&#xff0c;esp01S的收发硬件代码目前没有分享&#xff0c;但是可以通过另一个手机网络调试助手进行模拟。也可以直接根据我的代码进行改动…...

一文读懂 RAG:LLM 借助检索打开思路

一、引言 在自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;随着深度学习技术的飞速发展&#xff0c;大型语言模型&#xff08;LLMs&#xff09;展现出了强大的语言理解和生成能力。然而&#xff0c;LLMs也存在一些局限性&#xff0c;如容易产生幻觉、知识更新不及时…...

使用istio实现权重路由

istio概述 **概述&#xff1a;**Istio 是一个开源的 服务网格&#xff08;Service Mesh&#xff09;解决方案&#xff0c;主要用于管理、保护和监控微服务架构中的服务通信。它为微服务提供了基础设施层的控制功能&#xff0c;不需要更改应用程序的代码&#xff0c;从而解决服…...

DeepSeek发布新模型,遭遇大规模攻击,梁文锋回应证实为假,吴恩达盛赞DeepSeek!AI Weekly 1.27-2.2

&#x1f4e2;本周AI快讯 | 1分钟速览&#x1f680; 1️⃣ &#x1f5bc;️Janus-Pro-7B&#xff1a;DeepSeek发布7B开源多模态模型&#xff0c;视觉理解&生成能力超越DALL-E 3&#xff01; 2️⃣ &#x1f6a8;DeepSeek遭遇大规模攻击&#xff1a;DDoS暴力破解&#xff…...

20250202在Ubuntu22.04下使用Guvcview录像的时候降噪

20250202在Ubuntu22.04下使用Guvcview录像的时候降噪 2025/2/2 21:25 声卡&#xff1a;笔记本电脑的摄像头自带的【USB接口的】麦克风。没有外接3.5mm接口的耳机。 缘起&#xff1a;在安装Ubuntu18.04/20.04系统的笔记本电脑中直接使用Guvcview录像的时候底噪很大&#xff01; …...

直方图:摄影中的视觉数据指南

目录 一、直方图基础&#xff1a;揭开它的神秘面纱 二、解读直方图类型&#xff1a;亮度与色彩的密码 &#xff08;一&#xff09;亮度直方图 &#xff08;二&#xff09;RGB 直方图 三、拍摄中巧用直方图&#xff1a;优化曝光与效果 &#xff08;一&#xff09;精准判断曝…...

OpenGL学习笔记(七):Camera 摄像机(视图变换、LookAt矩阵、Camera类的实现)

文章目录 摄像机/观察空间/视图变换LookAt矩阵移动相机&#xff08;处理键盘输入&#xff09;移动速度欧拉角移动视角&#xff08;处理鼠标输入&#xff09;缩放场景&#xff08;处理滚轮输入&#xff09;Camera类 摄像机/观察空间/视图变换 在上一节变换中&#xff0c;我们讨…...

冲刺一区!挑战7天完成一篇趋势性分析GBD DAY1-7

Day1. 公开数据库的挖掘太火热了,其中GBD数据库的挖掘又十分的火爆.那我就来挑战一篇GBD、一篇关于趋势性分析的GBD&#xff01; GBD数据库挖掘是目前的四大刊常客&#xff0c;经常出现在顶级期刊上面。这个数据库亮点就是&#xff1a;可视化&#xff0c;统计学简单、而数据可…...

解锁数据结构密码:层次树与自引用树的设计艺术与API实践

1. 引言&#xff1a;为什么选择层次树和自引用树&#xff1f; 数据结构是编程中的基石之一&#xff0c;尤其是在处理复杂关系和层次化数据时&#xff0c;树形结构常常是最佳选择。层次树&#xff08;Hierarchical Tree&#xff09;和自引用树&#xff08;Self-referencing Tree…...

【AudioClassificationModelZoo-Pytorch】基于Pytorch的声音事件检测分类系统

源码&#xff1a;https://github.com/Shybert-AI/AudioClassificationModelZoo-Pytorch 模型测试表 模型网络结构batch_sizeFLOPs(G)Params(M)特征提取方式数据集类别数量模型验证集性能EcapaTdnn1280.486.1melUrbanSound8K10accuracy0.974, precision0.972 recall0.967, F1-s…...

ARM嵌入式学习--第十二天(WDOG,RTC)

--WDOG -介绍 WatchDog是为了能够防止程序跑飞而使用的一种硬件模块&#xff0c;如果你的程序没有跑飞&#xff0c;那么你的程序会定时的去喂看门狗&#xff1b;如果你的程序跑飞了&#xff0c;那么就不会再去喂狗了&#xff0c;如果超过了喂狗时间&#xff0c;那么狗就会自己…...

自动化构建-make/Makefile 【Linux基础开发工具】

文章目录 一、背景二、Makefile编译过程三、变量四、变量赋值1、""是最普通的等号2、“:” 表示直接赋值3、“?” 表示如果该变量没有被赋值&#xff0c;4、""和写代码是一样的&#xff0c; 五、预定义变量六、函数**通配符** 七、伪目标 .PHONY八、其他常…...

三天急速通关JavaWeb基础知识:Day 2 前端基础知识(计划有变,前端工程化部分暂时搁置)

三天急速通关JavaWeb基础知识&#xff1a;Day 2 前端基础知识 0 文章说明1 HTML1.1 介绍1.2 基本结构及语法1.3 常见标签2 CSS2.1 介绍2.2 引入方式2.3 选择器2.4 浮动 定位 盒子模型 3 JavaScript3.1 介绍3.2 组成3.3 基础语法 4 Ajax4.1 介绍4.2 示例 未完待续&#xff0c;前…...

Chapter2 Amplifiers, Source followers Cascodes

Chapter2 Amplifiers, Source followers & Cascodes MOS单管根据输入输出, 可分为CS放大器, source follower和cascode 三种结构. Single-transistor amplifiers 这一章学习模拟电路基本单元-单管放大器 单管运放由Common-Source加上DC电流源组成. Avgm*Rds, gm和rds和…...

14-9-3C++STL的set容器

set容器的pair对组——set容器set.equal range(elem) 1.返回容器中与elem相等的上下限的两个迭代器&#xff1b;上限是闭区间&#xff0c;下限是开区间&#xff0c;如[beg, end) 2.函数返回两个迭代器&#xff0c;而这两个迭代器被封装在pair中 pair< set<int>::ite…...

用Impala对存储在HDFS中的大规模数据集进行快速、实时的交互式SQL查询的具体步骤和关键代码

AWS EMR&#xff08;Elastic MapReduce&#xff09;中应用Impala的典型案例&#xff0c;主要体现在大型企业和数据密集型组织如何利用Impala对存储在Hadoop分布式文件系统&#xff08;HDFS&#xff09;中的大规模数据集进行快速、实时的交互式SQL查询。以下是一个具体的案例说明…...

如何确认Linux嵌入式系统的触摸屏对应的是哪个设备文件(/dev/input/event1)?如何查看系统中所有的输入设备?输入设备的设备文件有什么特点?

Linux嵌入式系统的输入设备的设备文件有什么特点&#xff1f; 在 Linux 中&#xff0c;所有的输入设备&#xff08;如键盘、鼠标、触摸屏等&#xff09;都会被内核识别为 输入事件设备&#xff0c;并在 /dev/input/ 目录下创建相应的 设备文件&#xff0c;通常是&#xff1a; …...

C++泛型编程指南08 auto decltype

文章目录 [TOC]第3章&#xff1a;auto占位符&#xff08;C11&#xff5e;C17&#xff09;3.1 auto关键字的重新定义3.2 类型推导规则 3.3 何时使用auto3.4 返回类型推导3.5 在Lambda表达式中使用auto3.6 非类型模板参数占位符 总结第4章 decltype说明符&#xff08;C11&#xf…...

php的使用及 phpstorm环境部署

php语法 环境搭建&#xff1a;在小皮中新建网站&#xff0c;注意先填写域名再点击选择根目录。 成功创建网站后&#xff0c;打开发现forbidden&#xff0c;因为新建的网站里是空的&#xff0c;需要新建index.php文件----> 在Phpstorm中左上角打开文件&#xff0c;打开那个文…...

人工智能学习(五)之机器学习逻辑回归算法

深入剖析机器学习逻辑回归算法 一、引言 在机器学习领域&#xff0c;逻辑回归是一种极为经典且应用广泛的算法。虽说名字里带有 “回归”&#xff0c;但它主要用于解决分类问题&#xff0c;在医学、金融、互联网等多个领域都发挥着关键作用。例如&#xff0c;在医学上辅助判断…...

Kubernetes学习之包管理工具(Helm)

一、基础知识 1.如果我们需要开发微服务架构的应用&#xff0c;组成应用的服务可能很多&#xff0c;使用原始的组织和管理方式就会非常臃肿和繁琐以及较难管理&#xff0c;此时我们需要一个更高层次的工具将这些配置组织起来。 2.helm架构&#xff1a; chart:一个应用的信息集合…...

数据结构课程设计(四)校园导航

4 校园导航 4.1 需求规格说明 【问题描述】 一个学校平面图&#xff0c;至少包括10个以上的场所&#xff0c;每个场所带有编号、坐标、名称、类别等信息&#xff0c;两个场所间可以有路径相通&#xff0c;路长&#xff08;耗时&#xff09;各有不同。要求读取该校园平面图&a…...

(done) MIT6.S081 2023 学习笔记 (Day7: LAB6 Multithreading)

网页&#xff1a;https://pdos.csail.mit.edu/6.S081/2023/labs/thread.html (任务1教会了你如何用 C 语言调用汇编&#xff0c;编译后链接即可) 任务1&#xff1a;Uthread: switching between threads (完成) 在这个练习中&#xff0c;你将设计一个用户级线程系统中的上下文切…...

大年初六,风很大

北京的风在立春附近的几天突然大了&#xff0c;正在盘算着这个冬天可能就这样平庸的去了&#xff0c;没成想风来了。走在风中&#xff0c;穿着本应该是三九天穿的冬装&#xff0c;紧闭着嘴&#xff0c;缩着身子&#xff0c;感受着这冬天该有的低温。这是冬天该有的样子&#xf…...

【算法】回溯算法专题③ ——排列型回溯 python

目录 前置小试牛刀回归经典举一反三总结 前置 【算法】回溯算法专题① ——子集型回溯 python 【算法】回溯算法专题② ——组合型回溯 剪枝 python 小试牛刀 全排列 https://leetcode.cn/problems/permutations/description/ 给定一个不含重复数字的数组 nums &#xff0c;返…...

利用deepseek参与软件测试 基本架构如何 又该在什么环节接入deepseek

利用DeepSeek参与软件测试&#xff0c;可以考虑以下基本架构和接入环节&#xff1a; ### 基本架构 - **数据层** - **测试数据存储**&#xff1a;用于存放各种测试数据&#xff0c;包括正常输入数据、边界值数据、异常数据等&#xff0c;这些数据可以作为DeepSeek的输入&…...

99.20 金融难点通俗解释:中药配方比喻马科维茨资产组合模型(MPT)

目录 0. 承前1. 核心知识点拆解2. 中药搭配比喻方案分析2.1 比喻的合理性 3. 通俗易懂的解释3.1 以中药房为例3.2 配方原理 4. 实际应用举例4.1 基础配方示例4.2 效果说明 5. 注意事项5.1 个性化配置5.2 定期调整 6. 总结7. 代码实现 0. 承前 本文主旨&#xff1a; 本文通过中…...

为AI聊天工具添加一个知识系统 之79 详细设计之20 正则表达式 之7

本文要点 要点 “正则表达式” 本来是计算机科学计算机科学的一个概念。本项目将它推广&#xff08;扩张&#xff09;到认知科学的“认知范畴”概念&#xff0c; 聚合&#xff08;收敛&#xff09;到 神经科学 的“神经元”概念。 做法是&#xff1a;用reg 来系统化定义认知…...

[ Spring ] Spring Boot Mybatis++ 2025

文章目录 StructureMyBatis Controller AbilitiesConfigure Plugins and RepositoriesApply Plugins and Add DependenciesMyBatis Spring PropertiesMyBatis ApplicationMyBatis BeansMyBatis MapperMyBatis Query Builder Structure this blog introduce 3 ways using mybat…...

虚幻基础17:动画层接口

能帮到你的话&#xff0c;就给个赞吧 &#x1f618; 文章目录 animation layer interface animation layer interface 动画层接口&#xff1a;动画图表的集。仅有名字。 添加到动画蓝图中&#xff0c;由动画蓝图实现动画图表。...

前缀和算法

文章目录 算法总览题目1371.每个元音包含偶数次的最长子字符串 算法总览 题目 1371.每个元音包含偶数次的最长子字符串 1371.每个元音包含偶数次的最长子字符串 参考博主的讲解 思路分析&#xff1a;就是得使用前缀和记录情况&#xff0c;dp[i][j]表示s[0] 到s[i] 中&…...

稀疏混合专家架构语言模型(MoE)

注&#xff1a;本文为 “稀疏混合专家架构语言模型&#xff08;MoE&#xff09;” 相关文章合辑。 手把手教你&#xff0c;从零开始实现一个稀疏混合专家架构语言模型&#xff08;MoE&#xff09; 机器之心 2024年02月11日 12:21 河南 选自huggingface 机器之心编译 机器之心…...

深入理解 `box-sizing: border-box;`:CSS 布局的利器

深入理解 box-sizing: border-box;&#xff1a;CSS 布局的利器 默认行为示例代码 使用 box-sizing: border-box;示例代码 全局应用 box-sizing: border-box;示例代码 实际应用场景1. 表单布局2. 网格布局 总结 在 CSS 中&#xff0c;box-sizing 属性决定了元素的总宽度和高度是…...

MySQL不适合创建索引的11种情况

文章目录 前言1. **数据量小的表**2. **频繁更新的列**3. **低选择性的列**4. **频繁插入和删除的表**5. **查询中很少使用的列**6. **大文本或BLOB列**7. **复合索引中未使用的前导列**8. **频繁进行批量插入的表**9. **查询返回大部分数据的表**10. **临时表**11. **列值频繁…...

shell呈现数据——在脚本中重定向

重定向输出 只需简单地重定向相应的文件描述符&#xff0c;就可以在脚本中用文件描述符STDOUT和STDERR在多个位置生成输出。在脚本中重定向输出的方法有两种。 临时重定向每一行。永久重定向脚本中的所有命令。 下面将具体展示这两种方法的工作原理。 1.临时重定向 如果你…...

vector容器(详解)

本文最后是模拟实现全部讲解&#xff0c;文章穿插有彩色字体&#xff0c;是我总结的技巧和关键 1.vector的介绍及使用 1.1 vector的介绍 https://cplusplus.com/reference/vector/vector/&#xff08;vector的介绍&#xff09; 了解 1. vector是表示可变大小数组的序列容器。…...

【初/高中生讲机器学习】0. 本专栏 “食用” 指南——写在一周年之际⭐

创建时间&#xff1a;2025-01-27 首发时间&#xff1a;2025-01-29 最后编辑时间&#xff1a;2025-01-29 作者&#xff1a;Geeker_LStar 你好呀~这里是 Geeker_LStar 的人工智能学习专栏&#xff0c;很高兴遇见你~ 我是 Geeker_LStar&#xff0c;一名高一学生&#xff0c;热爱计…...

SAP SD学习笔记28 - 请求计划(开票计划)之2 - Milestone请求(里程碑开票)

上一章讲了请求计划&#xff08;开票计划&#xff09;中的 定期请求。 SAP SD学习笔记27 - 请求计划(开票计划)之1 - 定期请求-CSDN博客 本章继续来讲请求计划&#xff08;开票计划&#xff09;的其他内容&#xff1a; Milestone请求(里程碑请求)。 目录 1&#xff0c;Miles…...

【PyTorch介绍】

PyTorch 是什么&#xff1f; PyTorch 是一个开源的深度学习框架&#xff0c;由 Facebook 的人工智能研究实验室&#xff08;FAIR&#xff09;开发和维护。它是一个基于 Python 的库&#xff0c;专为深度学习和人工智能研究设计&#xff0c;支持动态计算图&#xff08;dynamic …...

语言月赛 202412【正在联系教练退赛】题解(AC)

》》》点我查看「视频」详解》》》 [语言月赛 202412] 正在联系教练退赛 题目背景 在本题中&#xff0c;我们称一个字符串 y y y 是一个字符串 x x x 的子串&#xff0c;当且仅当从 x x x 的开头和结尾删去若干个&#xff08;可以为 0 0 0 个&#xff09;字符后剩余的字…...

【C++】B2122 单词翻转

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 &#x1f4af;一、我的做法代码实现&#xff1a;代码解析思路分析 &#x1f4af;二、老师的第一种做法代码实现&a…...

redis基本数据结构

基本数据结构 String String是Redis中最常见的数据存储类型&#xff1a; 其基本编码方式是RAW&#xff0c;基于简单动态字符串&#xff08;SDS&#xff09;实现&#xff0c;存储上限为512mb。 如果存储的SDS长度小于44字节&#xff0c;则会采用EMBSTR编码&#xff0c;此时ob…...

基于STM32景区环境监测系统的设计与实现(论文+源码)

1系统方案设计 根据系统功能的设计要求&#xff0c;展开基于STM32景区环境监测系统设计。如图2.1所示为系统总体设计框图。系统以STM32单片机作为系统主控模块&#xff0c;通过DHT11传感器、MQ传感器、声音传感器实时监测景区环境中的温湿度、空气质量以及噪音数据。系统监测环…...

使用冒泡排序模拟实现qsort函数

1.冒泡排序 #define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h>int main() {int arr[] { 0,2,5,3,4,8,9,7,6,1 };int sz sizeof(arr) / sizeof(arr[0]);//冒泡排序一共排序 sz-1 趟for (int i 0; i < sz - 1; i){//标志位&#xff0c;如果有序&#xff0c;直接…...

探秘Linux IO虚拟化:virtio的奇幻之旅

在当今数字化时代&#xff0c;虚拟化技术早已成为推动计算机领域发展的重要力量。想象一下&#xff0c;一台物理主机上能同时运行多个相互隔离的虚拟机&#xff0c;每个虚拟机都仿佛拥有自己独立的硬件资源&#xff0c;这一切是如何实现的呢&#xff1f;今天&#xff0c;就让我…...