当前位置: 首页 > news >正文

使用LLaMA-Factory对AI进行认知的微调

使用LLaMA-Factory对AI进行认知的微调

    • 引言
    • 1. 安装LLaMA-Factory
      • 1.1. 克隆仓库
      • 1.2. 创建虚拟环境
      • 1.3. 安装LLaMA-Factory
      • 1.4. 验证
    • 2. 准备数据
      • 2.1. 创建数据集
      • 2.2. 更新数据集信息
    • 3. 启动LLaMA-Factory
    • 4. 进行微调
      • 4.1. 设置模型
      • 4.2. 预览数据集
      • 4.3. 设置学习率等参数
      • 4.4. 预览和执行命令
      • 4.5. 训练完成
    • 5. 与微调后的模型聊天
      • 5.1. 加载模型
      • 5.2. 开始聊天
      • 5.3. 导出模型
      • 5.4. 使用Vllm启动
    • 总结

引言

本文将介绍如何使用LLaMA-Factory对AI进行微调,使其具备“忍者”的认知,并认知其是由“富士电视台”开发的。

image.png

1. 安装LLaMA-Factory

1.1. 克隆仓库

git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory

1.2. 创建虚拟环境

conda create -n llama_factory python=3.11 -y
conda activate llama_factory

1.3. 安装LLaMA-Factory

pip install -e '.[torch,metrics]'

1.4. 验证

import torch
print(torch.cuda.current_device())
print(torch.cuda.get_device_name(0))
print(torch.__version__)
print(torch.cuda.is_available())

image.png

2. 准备数据

2.1. 创建数据集

进入LLaMA-Factory目录:

cd LLaMA-Factory

复制identity.json并创建identity_ninja.json

cp data/identity.json data/identity_ninja.json

{{name}}{{author}}替换为“忍者”和“富士电视台”:

sed -i 's/{{name}}/一人の忍者/g' data/identity_ninja.json
sed -i 's/{{author}}/フジテレビ/g' data/identity_ninja.json

验证:

head data/identity_ninja.json

image-20250201092802054.png

2.2. 更新数据集信息

编辑data/dataset_info.json,添加新的数据集:

vi data/dataset_info.json

添加以下内容:

  "identity_ninja": {"file_name": "identity_ninja.json"},

3. 启动LLaMA-Factory

启动LLaMA-Factory:

llamafactory-cli webui

在浏览器中访问http://localhost:7860。

4. 进行微调

4.1. 设置模型

设置模型名称和微调方法,本文使用Vicuna-v1.5-7B-Chat作为基础模型。

image.png

4.2. 预览数据集

点击“预览数据集”按钮,确认数据。

image.png

4.3. 设置学习率等参数

设置学习率和训练轮数。

image.png

4.4. 预览和执行命令

设置输出目录,点击“预览命令”按钮确认命令,无误后点击“开始”。

image.png

命令示例:

llamafactory-cli train \--stage sft \--do_train True \--model_name_or_path lmsys/vicuna-7b-v1.5 \--preprocessing_num_workers 16 \--finetuning_type lora \--template vicuna \--flash_attn auto \--dataset_dir data \--dataset identity_ninja \--cutoff_len 2048 \--learning_rate 0.0001 \--num_train_epochs 6.0 \--max_samples 100000 \--per_device_train_batch_size 2 \--gradient_accumulation_steps 2 \--lr_scheduler_type cosine \--max_grad_norm 1.0 \--logging_steps 5 \--save_steps 100 \--warmup_steps 0 \--packing False \--report_to none \--output_dir saves/Vicuna-v1.5-7B-Chat/lora/train_vicuna_7b_identity_ninja_1e-4_epoch6 \--bf16 True \--plot_loss True \--trust_remote_code True \--ddp_timeout 180000000 \--include_num_input_tokens_seen True \--optim adamw_torch \--lora_rank 8 \--lora_alpha 16 \--lora_dropout 0 \--loraplus_lr_ratio 16 \--lora_target all

4.5. 训练完成

训练完成后,会显示以下消息:

image.png

5. 与微调后的模型聊天

5.1. 加载模型

选择“检查点路径”,点击“Chat”选项卡,然后点击“加载模型”。

image.png

5.2. 开始聊天

模型加载完成后,输入问题并确认AI的回答。此时,AI将具备“忍者(一人の忍者)”的认知,并认知其是由“富士电视台(フジテレビ)”开发的。

image.png

5.3. 导出模型

选择“检查点路径”,点击“Export”选项卡,输入“导出目录”,然后点击“导出”。

image.png

导出完成后,会显示“模型导出完成”消息。

5.4. 使用Vllm启动

使用以下命令在Vllm中启动导出的模型:

CUDA_VISIBLE_DEVICES=3,1,0,2 VLLM_USE_V1=1 VLLM_WORKER_MULTIPROC_METHOD=spawn vllm serve /root/HuggingFaceCache/models--lmsys--vicuna-7b-v1.5-sft --trust-remote-code --served-model-name gpt-4 --gpu-memory-utilization 0.98 --tensor-parallel-size 4 --port 8000

总结

通过以上步骤,我们成功使用LLaMA-Factory对AI进行了微调,使其具备特定的认知。希望大家能够尝试并应用这些方法进行更多的定制化。

相关文章:

使用LLaMA-Factory对AI进行认知的微调

使用LLaMA-Factory对AI进行认知的微调 引言1. 安装LLaMA-Factory1.1. 克隆仓库1.2. 创建虚拟环境1.3. 安装LLaMA-Factory1.4. 验证 2. 准备数据2.1. 创建数据集2.2. 更新数据集信息 3. 启动LLaMA-Factory4. 进行微调4.1. 设置模型4.2. 预览数据集4.3. 设置学习率等参数4.4. 预览…...

2 [GitHub遭遇严重供应链投毒攻击]

近日,有黑客针对 Discord Top.gg 的GitHub 账户发起了供应链攻击,此次攻击导致账户密码、凭证和其他敏感信息被盗,同时也影响到了大量开发人员。 Checkmarx 在一份技术报告中提到,黑客在这次攻击中使用了多种TTP,其中…...

[c语言日寄]C语言类型转换规则详解

【作者主页】siy2333 【专栏介绍】⌈c语言日寄⌋:这是一个专注于C语言刷题的专栏,精选题目,搭配详细题解、拓展算法。从基础语法到复杂算法,题目涉及的知识点全面覆盖,助力你系统提升。无论你是初学者,还是…...

Python魔法函数

在Python中,的确有“魔法函数”(Magic Methods)这种说法,也被称为特殊方法(Special Methods)。这些函数的名称以双下划线开始和结束,例如 __init__、__len__ 等。它们为Python提供了一种约定俗成…...

Cypher入门

文章目录 Cypher入门创建数据查询数据matchoptional matchwhere分页with 更新数据删除数据实例:好友推荐 Cypher入门 Cypher是Neo4j的查询语言。 创建数据 在Neo4j中使用create命令创建节点、关系、属性数据。 create (n {name:$value}) return n //创建节点&am…...

excel如何查找一个表的数据在另外一个表是否存在

比如“Sheet1”有“张三”、“李四”“王五”三个人的数据,“Sheet2”只有“张三”、“李四”的数据。我们通过修改“Sheet1”的“民族”或者其他空的列,修改为“Sheet2”的某一列。这样修改后筛选这个修改的列为空的或者为出错的,就能找到两…...

【华为OD-E卷 - 连续出牌数量 100分(python、java、c++、js、c)】

【华为OD-E卷 - 连续出牌数量 100分(python、java、c、js、c)】 题目 有这么一款单人卡牌游戏,牌面由颜色和数字组成,颜色为红、黄、蓝、绿中的一种,数字为0-9中的一个。游戏开始时玩家从手牌中选取一张卡牌打出&…...

buu-jarvisoj_level0-好久不见30

嘶,我咋觉得这个也是栈溢出呢,找到读取的值,在再找到后门函数...

DeepSeek r1本地安装全指南

环境基本要求 硬件配置 需要本地跑模型,兼顾质量、性能、速度以及满足日常开发需要,我们需要准备以下硬件: CPU:I9内存:128GB硬盘:3-4TB 最新SSD,C盘确保有400GB,其它都可划成D盘…...

【论文笔记】Fast3R:前向并行muti-view重建方法

众所周知,DUSt3R只适合做稀疏视角重建,与sapnn3r的目的类似,这篇文章以并行的方法,扩展了DUSt3R在多视图重建中的能力。 abstract 多视角三维重建仍然是计算机视觉领域的核心挑战,尤其是在需要跨不同视角实现精确且可…...

开源智慧园区管理系统对比其他十种管理软件的优势与应用前景分析

内容概要 在当今数字化快速发展的时代,园区管理软件的选择显得尤为重要。而开源智慧园区管理系统凭借其独特的优势,逐渐成为用户的新宠。与传统管理软件相比,它不仅灵活性高,而且具有更强的可定制性,让各类园区&#…...

第四节 MATLAB变量

每个MATLAB变量可以是数组或者矩阵。 用一个简单的方法指定变量。例如: x 3 % defining x and initializing it with a value MATLAB执行上述语句,并返回以下结果: x 3 上述的例子创建了一个1-1的矩阵名为x和的值存储在其元素中…...

小红的小球染色期望

B-小红的小球染色_牛客周赛 Round 79 题目描述 本题与《F.R小红的小球染色期望》共享题目背景,但是所求内容与范围均不同,我们建议您重新阅读题面。 有 n 个白色小球排成一排。小红每次将随机选择两个相邻的白色小球,将它们染成红色。小红…...

c++井字棋(单人对电脑:1.电脑随机下 2.电脑AI;3.双人对决)

本游戏分两个模式&#xff0c;三种玩法&#xff1a; 每个玩法中的人下棋规则不变&#xff0c;如下&#xff1a; while (1) {/*输入*/int row,col;cout<<"请输入坐标(1索引):\n";cin>>row>>col;/*切换索引*/row--;col--;if(legal(row,col)) {prin…...

Python 原子操作:使用 `atomic` 模块保证线程安全

Python 原子操作:使用 atomic 模块保证线程安全 在多线程编程中,共享数据的访问往往需要考虑线程安全问题。如果多个线程同时修改同一个变量,可能会导致数据竞争,从而产生不可预测的结果。为了解决这个问题,我们可以使用原子操作。原子操作是指不可中断的操作,要么全部执…...

《解锁AI黑科技:数据分类聚类与可视化》

在当今数字化时代&#xff0c;数据如潮水般涌来&#xff0c;如何从海量数据中提取有价值的信息&#xff0c;成为了众多领域面临的关键挑战。人工智能&#xff08;AI&#xff09;技术的崛起&#xff0c;为解决这一难题提供了强大的工具。其中&#xff0c;能够实现数据分类与聚类…...

使用朴素贝叶斯对自定义数据集进行分类

准备自定义数据集 首先&#xff0c;需要一个自定义数据集来进行分类。创建一个简单的二维数据集&#xff0c;其中每个样本有两个特征&#xff0c;并且属于两个类别之一。 import numpy as np import pandas as pd# 创建自定义数据集 np.random.seed(42) num_samples 100# 生…...

《超自然》:科学与灵性融合的自我转变之路

在现代社会中&#xff0c;许多人开始探寻自我成长、身心疗愈与灵性提升的可能性。Bestselling author Dr. Joe Dispenza 的《超自然&#xff1a;普通人如何创造非凡人生》正是在这样的大背景下问世的。书中既融合了量子物理、神经科学和表观遗传学的前沿理论&#xff0c;又吸收…...

学习日记-250202

现在开始要继续写我的日记了......&#xff08;也可以当作笔记吧&#xff09; 一.论文 Prompt Transfer for Dual-Aspect Cross Domain Cognitive Diagnosis 主要内容&#xff1a; 主要是加入prompt提示&#xff0c; 为重叠实体设计个性化的提示&#xff0c;为非重叠实体设计共…...

AI(计算机视觉)自学路线

本文仅用来记录一下自学路线方便日后复习&#xff0c;如果对你自学有帮助的话也很开心o(*&#xffe3;▽&#xffe3;*)ブ B站吴恩达机器学习->B站小土堆pytorch基础学习->opencv相关知识&#xff08;Halcon或者opencv库&#xff09;->四类神经网络&#xff08;这里跟…...

游戏引擎 Unity - Unity 启动(下载 Unity Editor、生成 Unity Personal Edition 许可证)

Unity Unity 首次发布于 2005 年&#xff0c;属于 Unity Technologies Unity 使用的开发技术有&#xff1a;C# Unity 的适用平台&#xff1a;PC、主机、移动设备、VR / AR、Web 等 Unity 的适用领域&#xff1a;开发中等画质中小型项目 Unity 适合初学者或需要快速上手的开…...

第二篇:多模态技术突破——DeepSeek如何重构AI的感知与认知边界

——从跨模态对齐到因果推理的工程化实践 在AI技术从单一模态向多模态跃迁的关键阶段&#xff0c;DeepSeek通过自研的多模态融合框架&#xff0c;在视觉-语言-语音的联合理解与生成领域实现系统性突破。本文将从技术实现层面&#xff0c;解构其跨模态表征学习、动态融合机制与…...

41. 缺失的第一个正数

参考题解&#xff1a;https://leetcode.cn/problems/first-missing-positive/solutions/7703/tong-pai-xu-python-dai-ma-by-liweiwei1419 难点在于时间复杂度控制在O(n)&#xff0c;空间复杂度为常数级。 哈希表时间复杂度符合&#xff0c;但是空间复杂度为O(n) 排序空间复杂…...

DeepSeek R1 简易指南:架构、本地部署和硬件要求

DeepSeek 团队近期发布的DeepSeek-R1技术论文展示了其在增强大语言模型推理能力方面的创新实践。该研究突破性地采用强化学习&#xff08;Reinforcement Learning&#xff09;作为核心训练范式&#xff0c;在不依赖大规模监督微调的前提下显著提升了模型的复杂问题求解能力。 技…...

经典游戏红色警戒2之英语

1. New construction options 部署新的建筑物&#xff08;一般是部署基地车时说的&#xff09;。 2. Loading 等待。&#xff08;正在进行&#xff09; 3. Construction complete 建筑完成。 4. On hold 等待。&#xff08;暂停进行&#xff09; 5. Canceled 取消。 6. Ca…...

Zemax 中带有体素探测器的激光谐振腔

激光谐振腔是激光系统的基本组成部分&#xff0c;在光的放大和相干激光辐射的产生中起着至关重要的作用。 激光腔由两个放置在光学谐振器两端的镜子组成。一个镜子反射率高&#xff08;后镜&#xff09;&#xff0c;而另一个镜子部分透明&#xff08;输出耦合器&#xff09;。…...

猴子吃桃问题

# 猴子吃桃问题&#xff1a;猴子第一天摘下若干个桃子&#xff0c;当即吃了一半&#xff0c;还不瘾&#xff0c;有多吃了一个&#xff0c;第二天早上有将剩下的桃子吃掉一半&#xff0c;又多吃了一个。以后每天早上都吃了前一天剩的一半零一个。到第十天早上想再吃时&#xff0…...

ELECTRA:作为判别器而非生成器的预训练文本编码器

摘要 诸如BERT之类的掩码语言建模&#xff08;MLM&#xff09;预训练方法通过将某些标记替换为[MASK]来破坏输入&#xff0c;然后训练模型以重建原始标记。尽管这些方法在下游自然语言处理&#xff08;NLP&#xff09;任务中表现良好&#xff0c;但它们通常需要大量的计算资源…...

图论——最小生成树

最小生成树 给定一个无向图&#xff0c;在图中选择若干条边把图的所有节点连起来。要求边长之和最小。在图论中&#xff0c;叫做求最小生成树。 prim算法 prim 算法采用的是一种贪心的策略。 每次将离连通部分的最近的点和点对应的边加入的连通部分&#xff0c;连通部分逐渐扩大…...

【Linux-网络】初识计算机网络 Socket套接字 TCP/UDP协议(包含Socket编程实战)

&#x1f3ac; 个人主页&#xff1a;谁在夜里看海. &#x1f4d6; 个人专栏&#xff1a;《C系列》《Linux系列》《算法系列》 ⛰️ 道阻且长&#xff0c;行则将至 目录 &#x1f4da;一、初识计算机网络 &#x1f4d6; 背景 &#x1f4d6; 网络协议 &#x1f516;OSI七层…...

三数之和(15)

15. 三数之和 - 力扣&#xff08;LeetCode&#xff09; 可以一起总结的题目&#xff1a;三角形的最大周长&#xff08;976&#xff09;-CSDN博客 解法&#xff1a; class Solution { public:vector<vector<int>> threeSum(vector<int>& nums) {vector…...

6 Flink 状态管理

6 Flink 状态管理 1. State-Keyed State2. State-Operator State3. Broadcast State 我们前面写的 wordcount 的例子&#xff0c;没有包含状态管理。如果一个task在处理过程中挂掉了&#xff0c;那么它在内存中的状态都会丢失&#xff0c;所有的数据都需要重新计算。从容错和消…...

物联网 STM32【源代码形式-使用以太网】连接OneNet IOT从云产品开发到底层MQTT实现,APP控制 【保姆级零基础搭建】

物联网&#xff08;IoT&#xff09;‌是指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器等装置与技术&#xff0c;实时采集并连接任何需要监控、连接、互动的物体或过程&#xff0c;实现对物品和过程的智能化感知、识别和管理。物联网的核心功能包括数据采集与监…...

elasticsearch8.15 高可用集群搭建(含认证Kibana)

文章目录 1.资源配置2.系统参数优化3.JDK17安装4.下载&安装ES 8.155.生成ES的证书(用于ES节点之间进行安全数据传输)6.修改ES 相关配置文件7.创建es用户并启动8.配置ES的账号和密码(用于ES服务端和客户端)9.下载和安装Kibana10.编辑Kibana配置文件11.启动Kiabana12.访问Kia…...

如何实现滑动网格的功能

文章目录 1 概念介绍2 使用方法3 示例代码 我们在上一章回中介绍了SliverList组件相关的内容&#xff0c;本章回中将介绍SliverGrid组件.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1 概念介绍 我们在本章回中介绍的SliverGrid组件是一种网格类组件&#xff0c;主要用来…...

DBASE DBF数据库文件解析

基于Java实现DBase DBF文件的解析和显示 JDK19编译运行&#xff0c;实现了数据库字段和数据解析显示。 首先解析数据库文件头代码 byte bytes[] Files.readAllBytes(Paths.get(file));BinaryBufferArray bis new BinaryBufferArray(bytes);DBF dbf new DBF();dbf.VersionN…...

linux中统计文件中特定单词或字符串的出现次数

在 Linux 中&#xff0c;可以使用 grep 和 wc 命令组合来统计一个文件中特定单词或字符串的个数。假设想统计文件 example.txt 中字符串 “example_string” 出现的次数&#xff0c;可以使用以下命令&#xff1a; grep -o -w example_string example.txt | wc -l这里是每个选项…...

视觉状态空间模型(VMamba)的解读

在计算机视觉领域&#xff0c;设计计算高效的网络架构一直是研究的热点。今天&#xff0c;我想和大家分享一篇发表在 NIPS 2024 上的论文——VMamba&#xff1a;Visual State Space Model&#xff0c;这篇论文提出了一种新的视觉骨干网络&#xff0c;具有线性时间复杂度&#x…...

几种K8s运维管理平台对比说明

目录 深入体验**结论**对比分析表格**1. 功能对比****2. 用户界面****3. 多租户支持****4. DevOps支持** 细对比分析1. **Kuboard**2. **xkube**3. **KubeSphere**4. **Dashboard****对比总结** 深入体验 KuboardxkubeKubeSphereDashboard 结论 如果您需要一个功能全面且适合…...

nodejs:js-mdict 的下载、安装、测试、build

js-mdict 项目的目录结构&#xff1a;js-mdict 项目教程 js-mdict 下载地址: js-mdict-master.zip 先解压到 D:\Source\ js-mdict 6.0.2 用了 ts (TypeScript) 和 Jest&#xff0c;增加了应用开发的难度&#xff0c;因为先要了解 ts 和 Jest。 参阅&#xff1a;测试与开发&a…...

Vue3 表单:全面解析与最佳实践

Vue3 表单&#xff1a;全面解析与最佳实践 引言 随着前端技术的发展&#xff0c;Vue.js 已经成为最受欢迎的前端框架之一。Vue3 作为 Vue.js 的最新版本&#xff0c;带来了许多改进和新的特性。其中&#xff0c;表单处理是 Vue 应用中不可或缺的一部分。本文将全面解析 Vue3 …...

JavaWeb入门-请求响应(Day3)

(一)请求响应概述 请求(HttpServletRequest):获取请求数据 响应(HttpServletResponse):设置响应数据 BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器就可访问,应用程序的逻辑和数据都存储在服务端(维护方便,响应速度一般) CS架构:Client/ser…...

【单层神经网络】基于MXNet库简化实现线性回归

写在前面 同最开始的两篇文章 完整程序及注释 导入使用的库# 基本 from mxnet import autograd, nd, gluon # 模型、网络 from mxnet.gluon import nn from mxnet import init # 学习 from mxnet.gluon import loss as gloss # 数据集 from mxnet.gluon…...

一元函数微积分的几何应用:二维平面光滑曲线的曲率公式

文章目录 前言曲率和曲率半径的定义曲率计算公式参数方程形式直角坐标显式方程形式极坐标形式向量形式 前言 本文将介绍二维平面光滑曲线的曲率定义以及不同形式的曲率及曲率半径公式的推导。 曲率和曲率半径的定义 &#xff08;关于二维平面光滑曲线的定义以及弧长公式请参…...

编程题-最接近的三数之和

题目&#xff1a; 给你一个长度为 n 的整数数组 nums 和 一个目标值 target。请你从 nums 中选出三个整数&#xff0c;使它们的和与 target 最接近。 返回这三个数的和。 假定每组输入只存在恰好一个解。 解法一&#xff08;排序双指针&#xff09;&#xff1a; 题目要求找…...

【LLM-agent】(task4)搜索引擎Agent

note 新增工具&#xff1a;搜索引擎Agent 文章目录 note一、搜索引擎AgentReference 一、搜索引擎Agent import os from dotenv import load_dotenv# 加载环境变量 load_dotenv() # 初始化变量 base_url None chat_model None api_key None# 使用with语句打开文件&#xf…...

string类详解

为什么学习string类&#xff1f; 1.1 C语言中的字符串 C语言中&#xff0c;字符串是以\0结尾的一些字符的集合&#xff0c;为了操作方便&#xff0c;C标准库中提供了一些str系列的库函数&#xff0c;但是这些库函数与字符串是分离开的&#xff0c;不太符合OOP的思想&#xf…...

【含文档+PPT+源码】基于微信小程序农家乐美食餐厅预约推广系统

项目介绍 本课程演示的是一款基于微信小程序农家乐美食餐厅预约推广系统&#xff0c;主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的 Java 学习者。 1.包含&#xff1a;项目源码、项目文档、数据库脚本、软件工具等所有资料 2.带你从零开始部署运行本套系统 …...

享元模式——C++实现

目录 1. 享元模式简介 2. 代码示例 1. 享元模式简介 享元模式是一种结构型模式。 享元模式用于缓存共享对象&#xff0c;降低内存消耗。共享对象相同的部分&#xff0c;避免创建大量相同的对象&#xff0c;减少内存占用。 享元模式需要将对象分成内部状态和外部状态两个部分…...

《苍穹外卖》项目学习记录-Day11订单统计

根据起始时间和结束时间&#xff0c;先把begin放入集合中用while循环当begin不等于end的时候&#xff0c;让begin加一天&#xff0c;这样酒吧把这个区间内的时间放到List集合。 查询每天的订单总数也就是查询的时间段是大于当天的开始时间&#xff08;0点0分0秒&#xff09;小…...