当前位置: 首页 > news >正文

【深度分析】DeepSeek大模型技术解析:从架构到应用的全面探索

深度与创新:AI领域的革新者

DeepSeek,这个由幻方量化创立的人工智能公司推出的一系列AI模型,不仅在技术架构上展现出了前所未有的突破,更在应用领域中开启了无限可能的大门。从其混合专家架构(MoE)到多头潜在注意力(MLA)机制,每一项技术都如同定向的灯火,照亮了AI未来发展的某一条道路。然而,在这片光与影交织的技术森林中,DeepSeek的出现不仅仅是一场技术革命,更是对当前AI领域成本效益、人才分布以及计算资源管理方式的一次深刻拷问。

我们不禁要问,混合专家架构如何在保持高效率的同时,有效应对计算资源的高度依赖性?无辅助损失负载均衡策略是否能彻底解决模块间的工作分配不均问题,从而使整个系统的性能达到最优?在深度学习的黄金时代,DeepSeek是如何利用FP8混合精度训练在保证训练效果的前提下显著降低成本,是否会成为未来模型训练的新标准?更重要的是,当下的开源战略能否真正推动全球AI技术的平权化,令更多小型企业和独立开发者产生更多创新应用,进而重塑整个行业的竞争格局?这些问题是每一个关注AI发展的人士都会思考的,而答案或许就隐藏在DeepSeek这一系列模型背后的技术逻辑与应用场景之中。

随着技术的不断进步,DeepSeek不仅在自然语言处理、代码生成与编程辅助、多模态数据处理等多个领域内展示了卓越的能力,还因其极高的性价比,成为了众多企业和开发者首选的解决方案。同时,其在相对小规模的团队协作下实现的技术革新,无疑为国内外其他AI初创企业树立了一个标杆。正如马克思所说:“理论是灰色的,而生活之树常青。” DeepSeek的成功或许正预示着,AI领域的发展不仅仅是技术巨头的游戏,小团队也能在特定领域内熠熠生辉。

本文将深入探索DeepSeek大模型的技术架构、应用案例及其在全球AI格局中的地位,同时剖析其面临的挑战和发展趋势。

DeepSeek大模型技术解析:从架构到应用的全面探索

DeepSeek大模型技术架构解析

DeepSeek是由幻方量化创立的人工智能公司推出的一系列AI模型,包括DeepSeekCoder、DeepSeekLLM、DeepSeek - V2、DeepSeek - V3和DeepSeek - R1等,其技术架构拥有诸多创新之处。

混合专家架构(MoE)

MoE架构就像一个有着众多专家的团队,其中每个专家擅长处理某类特定任务。当接收到任务时,模型会把任务分配给最擅长该任务的专家来处理,而不必让所有模块都参与。例如DeepSeek - V2拥有2360亿总参数,但处理每个token时仅210亿参数被激活;DeepSeek - V3总参数达6710亿,但每个输入只激活370亿参数。这样就极大地减少了不必要的计算量,使模型在处理复杂任务时更加快速灵活,同时也降低了对计算资源的需求,提升了计算效率和训练经济性[1]。

基于Transformer架构

Transformer架构是DeepSeek的基础,它类似于超级信息处理器,能够处理各种顺序的信息,涵盖文字、语音等。其核心是注意力机制,就好比人们在阅读长文章时会自动聚焦重要部分一样,Transformer的注意力机制能让模型在处理大量信息时自动聚焦到关键内容,从而理解信息之间的关系,无论这些信息是相隔较近还是较远[1]。

多头潜在注意力(MLA)机制

这是对传统注意力机制的一种升级。在处理长文本例如科研文献、长篇小说时,MLA机制能够更精准地给句子、段落分配权重,从而找到文本的核心含义,不会像传统注意力机制那样容易分散注意力。例如在机器翻译领域对长文档进行翻译时,它能够准确把握每个词在上下文中的意义,从而精准地翻译成目标语言。并且在DeepSeek - V3中,通过低秩联合压缩机制,MLA可以将Key - Value矩阵压缩为低维潜在向量,显著减少内存占用[2]。

无辅助损失负载均衡

在MoE架构中,不同的专家模块可能会出现忙闲不均的情况。而无辅助损失负载均衡策略能够有效解决这个问题,让各个专家模块的工作负担更加均匀,避免出现部分模块负荷过重而其他模块闲置的现象,从而提升了整个模型的性能[1]。

多Token预测(MTP)

传统模型通常是逐个预测token,但DeepSeek的多Token预测技术能够一次预测多个token,就如同人们说话时常常会连续说出几个词来表达一个完整的意思一样。这种方式能让模型的推理速度更快,并且使生成的内容更加连贯[1]。

FP8混合精度训练

在模型训练过程中,数据的精度非常重要。FP8混合精度训练是一种创新的训练方法,能够让模型在训练时采用更适宜的数据精度,在保证训练准确性的基础上减少计算量,节约时间和成本,使得大规模的模型训练变得更加容易,也使得在极大规模模型上进行训练变得可行且有效,如DeepSeek - V3便通过FP8混合精度训练框架验证了这点[2]。

知识蒸馏

其本质上是把大模型学到的知识传递给小模型,如同老师将知识传授给学生。例如DeepSeek - R1通过知识蒸馏,将长链推理模型的能力传授给标准的LLM,从而增强了标准LLM的推理能力[1]。

纯强化学习的尝试

以训练R1 - Zero为例,采用纯强化学习的方式让模型在试错过程中学习。例如在游戏场景中,模型尝试不同的操作,并依据游戏给出的奖励或惩罚来判断自己的对错,逐步找到最佳的操作方法。不过这种训练方式会使得模型输出存在一些问题,像是无休止重复、可读性较差等,但它也为模型训练开启了新的方向[1]。

多阶段训练和冷启动数据

DeepSeek - R1引入了多阶段训练和冷启动数据,这有助于提升模型的性能,但关于具体机制暂时没有更多公开资料阐述其详细原理依旧有待进一步探究[1]。

DeepSeek大模型技术的应用案例

DeepSeek模型因其强大的技术架构,在诸多领域展现出了广泛的应用场景和卓越的性能。

自然语言处理领域

  • 智能客服系统开发:某科技公司利用DeepSeek - V3开发智能客服系统,由于DeepSeek - V3在自然语言处理方面有着优秀的表现,能够准确分析并理解用户提问的意图,从而给予高质量的回复,这一应用显著提升了客户满意度,解决了企业客服环节的诸多问题,为企业运营效率提升做出了贡献[7]。
  • 长文本分析与摘要:一家法律科技公司使用DeepSeek - V3对海量的法律文档进行分析和生成摘要。得益于该模型对长文本的强大处理能力,如支持长达128K的输入文本,它能有效应对复杂冗长的法律文件,帮助法律从业者快速获取文件的关键信息,在提升案件分析速度、法律检索效率和信息提取效率等方面有着显著的价值[7]。
  • 文本翻译:在机器翻译专业领域,利用DeepSeek的多头潜在注意力(MLA)机制能够准确理解源语言文本每个词在上下文中的准确含义,从而能够更精准地将其翻译成目标语言。它不仅仅能处理一般的短文本翻译任务,对于长文档之类的长文本翻译也能表现出优秀的准确性和效率。

代码生成与编程辅助

  • 一名开发者使用DeepSeek - V3自动生成Python代码,例如创建一个实现简单计算器功能的代码,这个过程大大减少了开发时间,提高了开发效率。这是因为DeepSeek - V3在代码生成和多语言编程测评中表现优异,展现出强大的代码生成能力,它能够理解编程的逻辑需求并按照要求生成可用的代码段,超越了多个竞争对手,无论是初学者进行基础代码编写,还是经验丰富的开发者用于快速生成代码模板等场景都非常适用[7]。

多模态数据处理

某研究团队利用DeepSeek - V3处理包含图像和文本的数据集,实现了图文内容的自动生成和描述。这得益于DeepSeek - V3采用的混合专家架构,使得它支持高效的多模态数据处理,可以融合图像和文本信息进行深入分析,推动多模态AI应用的发展。这一进展对于需要综合处理图像和文本两种信息的场景意义重大,例如在数字媒体内容创作、智能图像标注等方面有很广阔的应用潜力[7]。

DeepSeek大模型技术的优势与不足

优势

性能强劲

  • 精度提升:DeepSeek - V3在训练过程中采用了多头潜在注意力(MLA)和DeepSeekMoE技术,显著提升了模型的性能和精度。像在匈牙利最新高中数学考试测试中,其发布的开源大模型达到65分的高分,超越同量级的LLaMA - 2模型,接近GPT - 4的水平,展现出出色的理解与计算能力,在数学推理方面的表现突出,在其他如推理、编程等领域同样在多个中英文公开评测榜单上表现出色[14]。
  • 有效处理长文本:支持长上下文扩展,能够处理长达128K的输入文本,对于长文档处理、长对话场景等非常有利,例如长文本的翻译、长文档内容抽取分析等任务可以在这个模型上得到较好的处理结果。

效率方面

  • 计算成本低:混合专家架构(MoE)通过选择性地激活参数降低了计算成本,如DeepSeek - V3总参数6710亿但每个输入只激活370亿参数。多Token预测(MTP)使推理速度更快,FP8混合精度训练既保证训练准确性又减少计算量,这些技术共同作用使得DeepSeek大模型在处理任务时计算效率高、成本低。像DeepSeek - R1的基座模型训练成本较低,一次完整训练只需要550万美元,每次生成只需要激活相对较少的参数,降低了对计算资源的需求,提高了计算效率[19]。
  • 预训练优势:部分模型在包含2万亿个中英文token的数据集上进行了预训练,这使得模型能够深入学习多种语言知识,提升了模型语言处理方面的泛化能力,从而能够适应多种语言任务和复杂的语言语境,例如机器翻译、多语言文本生成等任务中,模型能够表现出较好的适应性和准确性。

灵活性与扩展性

  • 灵活的模型架构:模型提供不同参数版本,例如提供70亿和670亿两个参数版本的基础模型和指令微调模型,用户可以根据实际使用场景的需求进行合适版本的选择。在功能上也集成多种能力,如DeepSeek2.5集成了DeepSeek - V2 - Chat和DeepSeek - Coder - V2 - Instruct的功能,增强了通用语言能力和编码功能,适用于各种应用场景[21]。
  • 开源且应用广泛:所采用的MIT许可协议完全开源且不限制商用,开发者能根据自身需求定制和优化模型,并部署到自己的服务器上。这一特性有助于技术在全球范围内的快速传播和共享,例如已经有不少人通过公开技术路线成功复现测试结果,推动了各项应用的发展,从自然语言处理到多模态数据处理等领域都有涉及,应用场景覆盖智能客服、代码开发、多模态内容创作等多个方向。还可以激励本土人才投身人工智能研发,打破高科技人才被西方垄断的局面,为人工智能领域注入新活力。

不足

算力与资源依赖

  • 随着任务复杂程度不断增大或数据规模持续增加,AI算力需求不断提升,当前虽然计算效率有所提升,但依旧需要强大的硬件支持以满足大规模数据处理需求。并且在AI算力日益增长的需求下,如何有效管理和优化计算资源仍然是待解决的问题,以确保模型可以持续稳定地运行并发挥最佳性能[17]。

人才竞争压力

  • 在技术人才的竞争方面面临挑战,尽管DeepSeek在用人逻辑上与其他大模型公司差异不大,但由于其年轻高潜的人才标准,使得在吸引市场上优秀人才时竞争愈发激烈,而人工智能领域的技术研发高度依赖高水平的专业人才,这在一定程度上可能影响其研发和创新的速度及深度[13]。

DeepSeek大模型技术与其他模型的对比

与OpenAI的对比

  • 成本和商业化方面:从大的技术路线来说,DeepSeek和OpenAI公司的ChatGPT一样采用混合专家模型架构预训练和强化学习后训练,但在具体工程实现上有不同。如DeepSeek - R1推理成本较低、速度较快,且对个人用户免费,其他企业或开发者调用DeepSeek - R1接口的成本也只是OpenAI公司同类产品的几十分之一。公开资料显示DeepSeek - R1的基座模型训练成本较低,一次完整训练只需要550万美元,相比之下OpenAI的训练成本相对较高。这一成本优势可能会吸引更多的用户和开发者选择DeepSeek的模型,使得其在商业竞争和市场抢占方面占据一定的优势地位,也可能促使竞争对手重新审视自己的商业模式和成本结构[19]。
  • 性能与用户体验方面:温颖表示就使用感受而言OpenAI的o1pro和DeepSeek - R1性能整体差不多,在有些领域各有千秋。但DeepSeek - R1免费、速度更快,某种程度上为用户提供了更具性价比的选择。此外在技术的开源性上,DeepSeek的模型权重和技术报告完全开源,而OpenAI的模型相对更加闭源,DeepSeek的开源模式有助于全世界技术平权和进步,对开发者和研究人员更加友好,有利于更多的创新和技术发展探索基于它开展[19]。

与Claude和GPT - 4的对比

  • 成本效益对比:在成本效益方面,与Claude和GPT - 4模型相比具有更大的优势。例如DeepSeek2.5比Claude3.5Sonnet定价低21倍,比GPT - 4o低17倍,但依然能展示出不输于这些顶尖闭源模型的能力,特别是在代码生成方面,DeepSeek2.5表现出色并且性价比极高。如果将其用于代码编写等任务,相比Claude和GPT - 4能够以更低的成本获取不错的效果,这在开发预算有限的情况下对开发者具有很大的吸引力,在商业化应用场景中,成本效益高的特点可以让企业以更低投入获取相同收益从而降低运营成本[21]。
  • 性能基准:DeepSeek - V3在聊天机器人竞技场(ChatbotArena)上排名第七,在开源模型中排名第一,可看出其性能处于较高水平。并且其在数学、代码处理和自然语言推理等多个任务上的表现,已与GPT - 4o和Claude - 3.5 - Sonnet等国际顶尖模型平分秋色。虽然这些模型各自在特定任务上有优势,但DeepSeek正不断缩小与它们的差距,并且凭借其开源、成本效益等方面的优势在市场上形成自身的竞争力,为开发者、企业和研究人员提供了更多的选择空间,偏离了传统一味追求性能而忽视成本的模式[25]。

DeepSeek大模型技术的未来发展趋势

技术优化方向

计算资源管理提升

随着AI算力需求的进一步增长,DeepSeek大模型需要在计算资源管理上不断进行优化。这包括更好地进行算法优化,以减少在处理海量数据时的计算负担,同时提高数据的处理速度。例如进一步改进FP8混合精度训练等机制,以降低在大规模模型训练和推理阶段对硬件(如GPU等)的依赖程度,使得模型能够在更加复杂的数据和任务场景下保持高效运行,同时减少计算资源的浪费,降低整体成本。

强化人才竞争力

为了应对技术人才竞争激烈的局面,DeepSeek可能会在人才吸引、培养和留住方面下更大的功夫。一方面可能会加大在高校或科研机构的合作投入,通过设立奖学金、联合研究项目等方式吸引年轻高潜人才的加入。另一方面可能会建立更加完善的人才培养体系,营造良好的科研环境和职业发展空间,以提高人才的忠诚度和归属感,确保有足够的高质量人才储备来支撑技术的研发和创新,探索新的技术升级方向。

应用拓展前景

多领域深入渗透

当前DeepSeek大模型已经在自然语言处理、代码生成、多模态数据处理等领域展现出了应用潜力,但未来有望在更多领域深入渗透。在医疗领域,可用于辅助疾病诊断、医疗数据分析等,通过对大量的医疗文本数据进行分析处理,为医生提供疾病诊断的参考建议或者帮助分析病情发展趋势。在金融领域,可以用于风险预测、投资策略分析等,对金融市场的历史数据进行挖掘和分析,预测市场风险和收益情况,为投资者提供更好的投资决策依据等。

跨领域融合创新

除了深入到各个单独的领域,还有望实现跨领域的融合创新。例如将自然语言处理与物联网技术融合,在智能家居领域实现更加智能化的语音交互,用户可以通过自然语言轻松控制家居设备并得到设备状态等相关信息;或者把多模态数据处理和智能交通结合起来,利用图像和文本信息对交通路况、车辆状态等进行实时分析判断,为交通调度和自动驾驶提供更全面准确的数据支持等。

开源战略对产业的影响

推动全球人工智能发展

DeepSeek的开源战略(采用MIT许可协议完全开源,不限制商用)对人工智能产业有着深远的影响。随着越来越多的开发者和研究人员能够获取并使用其技术,将在全球范围内加速人工智能技术的创新和传播。更多人可以基于DeepSeek的成果进行二次开发,可能会产生更多优秀的分支模型或者是全新的技术应用方向,无论是对于小的初创团队还是大型企业的科研部门,都提供了一个相对平等的机会去探索人工智能的前沿应用。

改变产业竞争格局

开源的DeepSeek大模型已经降低了开发利用大模型的门槛,意味着初创公司有机会与互联网巨头竞争,这会促使更多的企业进入到人工智能和大模型的竞争赛道中,打破现有的由少数巨头主导的产业格局,增加产业的竞争活力。对于既有企业来说,需要重新思考自己的竞争优势和发展战略,推动整个产业朝着更加多元、创新、高效的方向发展。

DeepSeek大模型技术的开发团队与背景

开发团队

DeepSeek是由幻方量化创立的人工智能公司推出的一系列AI模型。幻方量化是一家在中国量化投资领域具有较高知名度的企业。DeepSeek的开发团队人数不到140人,在创造这一系列成果过程中,团队成员凭借自身坚实的技术功底和创新能力,精心打造了从模型架构到算法优化等每个环节的技术要素,使得DeepSeek大模型在如此小的团队规模下脱颖而出并取得成功,这在人工智能领域的大模型研究开发进程中也是比较罕见的情形[1]。

背景

行业发展激励创新

当前全球人工智能迅速发展的大背景下,尤其是大模型成为研究焦点领域之后,行业竞争愈演愈烈。在这种背景下,幻方量化凭借自身的实力和在数据、算法等方面的积累投入到大模型的开发研究当中。一方面,整个行业在自然语言处理、计算机视觉等多个领域展示出的巨大潜力激励着幻方量化探索自己的人工智能之路;另一方面,市场对高效、高性能的人工智能模型有非常强烈的需求,这也为DeepSeek大模型的开发提供了原生动力。

中国AI发展环境的孕育

在中国人工智能快速发展的宏观环境的孕育下,存在足量的技术人才储备、相对完善的科研设施以及行业政策支持等多方面的优势。中国本土培养的人才成为了DeepSeek团队的主力军,团队成员清一色来自国内高校,反映出中国教育体系为人工智能产业提供了高质量的人才基础。此外,国家对于人工智能产业发展的重视在政策导向、科研经费投入、创新项目扶持等方面给予了积极的推动作用,这也在一定程度上为DeepSeek大模型的研发提供了良好的发展土壤[15]。

参考资料:

1. DeepSeek原理介绍|调用|大模型 网易 [2025-01-27]

2. DeepSeek 发展历程|负载|推理|原理|大模型|deepseek www.163.com [2025-01-27]

3. DeepSeek大模型:美国科技圈的关注与竞争背后的故事 搜狐 [2025-01-27]

4. DeepSeek大模型:引领AI技术新潮流的中国力量 手机搜狐 [2025-01-27]

5. AMD集成火爆全球的DeepSeek大模型,为你梳理最全DeepSeek题材... 同花顺财经股票频道 [2025-01-26]

6. Meta成立研究小组深入分析国产大模型DeepSeek,以优化Llama模型... DoNews [2025-01-27]

7. DeepSeek大模型:影响力、竞争与未来展望 东方财富网财富号 [2025-01-27]

8. DeepSeek首次比肩国外顶尖大模型,带来哪些启示? 新浪看点 [2025-01-28]

9. 马斯克盛赞:这份DeepSeek剖析堪称一绝! 网易 [2025-01-28]

10. 涂鸦智能集成DeepSeek大模型能力,激活全球AI硬件开发者新商机 同花顺财经股票频道 [2025-01-27]

11. DeepSeek 模型:架构创新与实际应用详解 CSDN博客频道 [2025-01-10]

12. 英媒:DeepSeek最新开源模型将推动人工智能技术应用 新华网 [2025-01-29]

13. DeepSeek刷屏:国产大模型崛起,用户热议背后的秘密 新浪财经 [2025-01-28]

14. DeepSeek横空出世!中国大模型撼动全球AI格局。关联概念股票 今日头条 [2025-01-26]

15. 国产AI DeepSeek引发Meta恐慌:大语言模型的未来已来! 手机搜狐 [2025-01-25]

16. DeepSeek-V3性能优越且成本较低 中国大模型助力AI技术更开放更高效 www.kczg.org.cn [2025-01-16]

17. DeepSeek开源模型R1:引领AI技术应用革命的新浪潮 搜狐 [2025-01-28]

18. 大模型的训练与应用 | 二十二、DeepSeek API 申请与使用指南 CSDN博客频道 [2024-08-20]

19. DeepSeek开源大模型新突破:数学推理能力领跑AI领域 百度开发者中心 [2024-08-16]

20. DeepSeek对人工智能和大模型的影响主要体现在以下方面:技术创新方面 caifuhao.eastmoney.com [2025-01-29]

21. AI行业新星DeepSeek崛起:低成本大模型挑战硅谷巨头 搜狐 [2025-01-26]

22. 被国产大模型DeepSeek超越,ChatGPT表示:排名变化也许是暂时的 证券之星财经频道 [2025-01-27]

23. DeepSeek崛起:AI大模型训练成本革命与英伟达面临的挑战 简书 [2025-01-27]

24. 传DeepSeek拥有5万个英伟达AI芯片 领先模型挑战美国优势 中华网 [2025-01-27]

25. DeepSeek对佳都大模型可能产生以下几方面影响:技术启发 东方财富网财富号 [2025-01-29]

26. 中国DeepSeek大模型:引领全球AI新潮流的 神秘力量 手机搜狐 [2025-01-27]

27. 大模型成本效益对比:DeepSeek 2.5 VS Claude 3.5 Sonnet VS GPT CSDN博客频道 [2024-10-08]

28. 大模型成本效益对比:DeepSeek 2.5 VS Claude 3.5 Sonnet VS GPT CSDN博客频道 [2024-12-27]

29. 国产大模型新标杆!比肩GPT4,DeepSeek V2重磅升级 CSDN博客频道 [2024-07-03]

30. DeepSeek对人工智能和大模型的影响主要体现在以下方面:技术创新... 东方财富网财富号 [2025-01-29]

31. AI界的拼多多:DeepSeek推出新款大模型,水平如何? 搜狐 [2024-12-27]

32. 被国产大模型DeepSeek超越,ChatGPT表示:排名变化也许是暂时的 新浪看点 [2025-01-27]

33. 跑分性能比肩GPT-4o?大模型价格 屠夫 DeepSeek发布最新开源... 网易 [2024-06-18]

34. 国产大模型DeepSeek-V3火爆全球,671B的MoE,训练成本仅558万... 网易 [2024-12-27]

35. 英伟达DeepSeek:推动人工智能技术的革命性进步 搜狐 [2025-01-28]

36. DeepSeek AI大模型发布:改变未来人工智能格局的黑马 搜狐 [2025-01-25]

37. 中国AI初创企业DeepSeek引发全球热议:显现大模型创新新趋势 搜狐 [2025-01-27]

38. 周鸿祎谈DeepSeek:市场严重低估其技术能力和未来前景 腾讯新闻 [2025-01-26]

39. 大模型时代:DeepSeek与阿里Qwen显著崭露头角 搜狐 [2024-12-30]

40. 2024年大模型行业全景复盘:DeepSeek如何打破GPT-4垄断? 搜狐 [2025-01-02]

41. 雷军挖角的AI天才少女来自DeepSeek:开源大模型关键开发者之一 ZAKER [2025-01-27]

42. 令美国的头疼的DeepSeek,创始人说漏嘴,背后团队果然不简单!|deepseek m.163.com [2025-01-27]

43. 超越ChatGPT,中国 神秘力量 火爆全球 搜狐 [2025-01-27]

44. 雷军挖角的AI天才少女来自DeepSeek:开源大模型关键开发者之一 t.cj.sina.com.cn [2025-01-27]

45. GPT-4下岗了,上海高校和企业用DeepSeek开发大模型和智能体 东方财富财经频道 [2025-01-29]

46. DeepSeek开源大模型开发者之一罗福莉将加盟小米 www.aibase.com [2024-12-23]

47. 一文读懂|关于DeepSeek公司及其大模型 www.toutiao.com [2025-01-27]

48. DeepSeek团队都来自国内顶尖高校,核心成员是应届生,才女罗福莉参与了开发 www.toutiao.com [2025-01-27]

49. DeepSeekAI开源国产第一个混合专家技术的大模型:DeepSeekMoE t.cj.sina.com.cn [2024-01-11]

相关文章:

【深度分析】DeepSeek大模型技术解析:从架构到应用的全面探索

深度与创新:AI领域的革新者 DeepSeek,这个由幻方量化创立的人工智能公司推出的一系列AI模型,不仅在技术架构上展现出了前所未有的突破,更在应用领域中开启了无限可能的大门。从其混合专家架构(MoE)到多头潜…...

【新春特辑】2025年1月科技浪潮中的AI最新时事与科技趋势

2025年1月科技浪潮中的AI最新时事与科技趋势 一、AI科技时事 人工智能代理(AI Agent)的发展 最新进展:人工智能代理正逐步成为科技领域的新热点。这些代理能够自主执行特定任务,如管理日程、回复邮件等。然而,它们仍…...

使用PyTorch实现逻辑回归:从训练到模型保存与性能评估

1. 引入必要的库 首先,需要引入必要的库。PyTorch用于构建和训练模型,pandas和numpy用于数据处理,scikit-learn用于计算性能指标。 import torch import torch.nn as nn import torch.optim as optim import pandas as pd import numpy as …...

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.24 随机宇宙:生成现实世界数据的艺术

1.24 随机宇宙:生成现实世界数据的艺术 目录 #mermaid-svg-vN1An9qZ6t4JUcGa {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-vN1An9qZ6t4JUcGa .error-icon{fill:#552222;}#mermaid-svg-vN1An9qZ6t4JUc…...

C#面试常考随笔8:using关键字有哪些用法?

1. using 指令:引入命名空间 最常用的用法。通过using 命名空间名字,可以在程序中直接使用该命名空间中的类型,而无需指定类型的完整命名空间路径。例如: using System; using System.Collections.Generic; class Program {sta…...

lstm代码解析1.2

在使用 LSTM(长短期记忆网络)进行训练时,model.fit 方法的输入数据 X 和目标数据 y 的形状要求是不同的。具体来说: 1. 输入数据 X 的形状 LSTM 层期望输入数据 X 是三维张量,形状为 (samples, timesteps, features)…...

JavaScript系列(52)--编译优化技术详解

JavaScript编译优化技术详解 🚀 今天,让我们深入探讨JavaScript的编译优化技术。通过理解和应用这些技术,我们可以显著提升JavaScript代码的执行效率。 编译优化基础概念 🌟 💡 小知识:JavaScript引擎通常…...

【Python】第七弹---Python基础进阶:深入字典操作与文件处理技巧

✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】【MySQL】【Python】 目录 1、字典 1.1、字典是什么 1.2、创建字典 1.3、查找 key 1.4、新增/修改元素 1.5、删除元素 1.6、遍历…...

【狂热算法篇】探秘图论之Dijkstra 算法:穿越图的迷宫的最短路径力量(通俗易懂版)

羑悻的小杀马特.-CSDN博客羑悻的小杀马特.擅长C/C题海汇总,AI学习,c的不归之路,等方面的知识,羑悻的小杀马特.关注算法,c,c语言,青少年编程领域.https://blog.csdn.net/2401_82648291?typebbshttps://blog.csdn.net/2401_82648291?typebbshttps://blog.csdn.net/2401_8264829…...

Electricity Market Optimization 探索系列(一)

​ 本文参考链接:Linear Programming Mini Example 先从一个线性规划的例子说起: 问题背景: 现在需要使用两台发电机满足用户的用电需求,发电机一的发电功率上限是 6MW,发电机二的发电功率上限是 4MW,发电…...

<iframe>标签和定时调用函数setInterval

iframe 标签和定时调用函数 setInterval 问题描述:解决方法: 问题描述: 今天遇到一个前端问题,在浏览器页面上传Excel文件后,然后点击导入按钮,经后端Java类读取文件内容校验后,将校验结果返回…...

网工_HDLC协议

2025.01.25:网工老姜学习笔记 第9节 HDLC协议 9.1 HDLC高级数据链路控制9.2 HDLC帧格式(*控制字段)9.2.1 信息帧(承载用户数据,0开头)9.2.2 监督帧(帮助信息可靠传输,10开头&#xf…...

Elasticsearch:如何搜索含有复合词的语言

作者:来自 Elastic Peter Straer 复合词在文本分析和标记过程中给搜索引擎带来挑战,因为它们会掩盖词语成分之间的有意义的联系。连字分解器标记过滤器等工具可以通过解构复合词来帮助解决这些问题。 德语以其长复合词而闻名:Rindfleischetik…...

【Go语言圣经】第六节:方法

第六章:方法 6.1 方法声明 在函数声明时,在其名字之前放上一个变量,这就是声明了变量对应类型的一个方法,相当于为这种类型定义了一个独占的方法。 下例为 Point 类型声明了计算两个点之间距离的方法: package mai…...

[答疑]DDD伪创新哪有资格和仿制药比

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 远航 2025-1-24 10:40 最近的热门话题仿制药,想到您经常批评的伪创新,这两者是不是很像? UMLChina潘加宇 伪创新哪有资格和仿制药比。 仿制药的…...

MySQL(高级特性篇) 13 章——事务基础知识

一、数据库事务概述 事务是数据库区别于文件系统的重要特性之一 (1)存储引擎支持情况 SHOW ENGINES命令来查看当前MySQL支持的存储引擎都有哪些,以及这些存储引擎是否支持事务能看出在MySQL中,只有InnoDB是支持事务的 &#x…...

javascript常用函数大全

javascript函数一共可分为五类: •常规函数 •数组函数 •日期函数 •数学函数 •字符串函数 1.常规函数 javascript常规函数包括以下9个函数: (1)alert函数:显示一个警告对话框,包括一个OK按钮。 (2)confirm函数:显…...

第26节课:内容安全策略(CSP)—构建安全网页的防御盾

目录 CSP基础CSP的作用CSP的主要属性 配置CSP通过响应头配置CSP通过HTML <meta>标签配置CSP属性设置详解指定多个来源 配置示例说明 常见错误配置实践&#xff1a;CSP与XSS防护示例1&#xff1a;防止内联脚本和样式说明示例2&#xff1a;限制图片来源说明 限制与注意事项…...

【大坑】使用element-ui弹窗$confirm自动弹出

插入element-ui的弹窗后页面一刷新自动弹出&#xff0c;事件绑定、调用位置&#xff08;生命周期&#xff09;均没有问题&#xff0c;通过不断注释组件发现是main.js全局引入导致的问题。如果需要在某些组件中使用三方弹窗&#xff0c;可以按需引入&#xff0c;而不是全局注册 …...

Spring的AOP思想中事物管理注意点

我们以事务管理实现AOP思想 通过在Service层加入事务管理,因为Service层可能使用多个DAO(多条SQL语句) 要保证这些SQL要么同时成功,要么同时失败,例如:学生Serivce:删除学生的时候,还需要删除学生关联信息(选课信息) 只有都删除成功才提交,如果有一条执行失败…...

PHP Mail:高效邮件发送解决方案详解

PHP Mail&#xff1a;高效邮件发送解决方案详解 引言 在互联网时代&#xff0c;邮件作为最常用的沟通方式之一&#xff0c;已经成为企业和个人不可或缺的通讯工具。PHP作为一种流行的服务器端脚本语言&#xff0c;在邮件发送方面具有天然的优势。本文将详细介绍PHP Mail&…...

python recv的概念和使用案例

recv 是网络编程中用于从套接字接收数据的核心函数&#xff0c;常见于 TCP/UDP 通信。以下是其概念、用法和案例详解&#xff1a; 概念 作用&#xff1a;从已连接&#xff08;TCP&#xff09;或已绑定&#xff08;UDP&#xff09;的套接字接收数据。参数&#xff1a; bufsize:…...

安卓(android)读取手机通讯录【Android移动开发基础案例教程(第2版)黑马程序员】

一、实验目的&#xff08;如果代码有错漏&#xff0c;可在代码地址查看&#xff09; 1.熟悉内容提供者(Content Provider)的概念和作用。 2.掌握内容提供者的创建和使用方法。 4.掌握内容URI的结构和用途。 二、实验条件 1.熟悉内容提供者的工作原理。 2.掌握内容提供者访问其…...

Java知识速记 == 与equals

Java知识速记 与equals 1. 操作符概述 操作符用于比较基本数据类型的值&#xff0c;或者比较引用类型的对象是否指向同一内存地址。对于基本数据类型&#xff0c;例如int、float等&#xff0c;会比较其值&#xff1b;但对于对象&#xff0c;只会比较两个对象的引用&#xff…...

web集群

项目名称 基于keepalivednginx构建一个高可用、高性能的web集群 项目架构图 项目描述 基本描述 构建一个基于 Nginx 的 7 层负载均衡的 Web 集群系统&#xff0c;模拟企业级业务环境&#xff0c;实现高并发和高可用性的 Web 集群。通过压力测试验证集群性能&#xff0c;找…...

HTMLCSS :下雪了

这段代码创建了一个动态的雪花飘落加载动画&#xff0c;通过 CSS 技术实现了雪花的下落和消失效果&#xff0c;为页面添加了视觉吸引力和动态感。 大家复制代码时&#xff0c;可能会因格式转换出现错乱&#xff0c;导致样式失效。建议先少量复制代码进行测试&#xff0c;若未能…...

Kafka SSL(TLS)安全协议

文章目录 Kafka SSL&#xff08;TLS&#xff09;安全协议1. Kafka SSL 的作用1.1 数据加密1.2 身份认证1.3 数据完整性1.4 防止中间人攻击1.5 确保安全的分布式环境1.6 防止拒绝服务&#xff08;DoS&#xff09;攻击 2. Kafka SSL 配置步骤&#xff08;1&#xff09;创建 SSL 证…...

WebForms SortedList 深度解析

WebForms SortedList 深度解析 引言 在Web开发领域,对于数据结构的理解与应用至关重要。其中,SortedList类在WebForms中是一个常用的数据结构,它能够帮助开发者高效地管理有序数据集合。本文将深入解析SortedList类在WebForms中的应用,包括其基本概念、常用方法、性能特点…...

项目集成Spring Security认证部分

一、需求分析 在本项目中&#xff0c;使用了Spring Security框架来进行认证和授权管理。由于是前后端分离的项目&#xff0c;所有认证的请求需要通过Token来验证身份&#xff0c;系统中包括了用户登录、角色授权以及资源访问控制等功能。 系统中的资源控制&#xff1a; 白名单…...

【PyTorch】7.自动微分模块:开启神经网络 “进化之门” 的魔法钥匙

目录 1. 梯度基本计算 2. 控制梯度计算 3. 梯度计算注意 4. 小节 个人主页&#xff1a;Icomi 专栏地址&#xff1a;PyTorch入门 在深度学习蓬勃发展的当下&#xff0c;PyTorch 是不可或缺的工具。它作为强大的深度学习框架&#xff0c;为构建和训练神经网络提供了高效且灵活…...

【算法】回溯算法专题① ——子集型回溯 python

目录 引入变形实战演练总结 引入 子集 https://leetcode.cn/problems/subsets/description/ 给你一个整数数组 nums &#xff0c;数组中的元素 互不相同 。返回该数组所有可能的子集&#xff08;幂集&#xff09;。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 …...

Nginx 安装配置指南

Nginx 安装配置指南 引言 Nginx 是一款高性能的 HTTP 和反向代理服务器&#xff0c;同时也可以作为 IMAP/POP3/SMTP 代理服务器。由于其稳定性、丰富的功能集以及低资源消耗而被广泛应用于各种场景。本文将为您详细介绍 Nginx 的安装与配置过程。 系统要求 在安装 Nginx 之…...

深度学习 DAY3:NLP发展史

NLP发展史 NLP发展脉络简要梳理如下&#xff1a; (远古模型&#xff0c;上图没有但也可以算NLP&#xff09; 1940 - BOW&#xff08;无序统计模型&#xff09; 1950 - n-gram&#xff08;基于词序的模型&#xff09; (近代模型&#xff09; 2001 - Neural language models&am…...

Spring Data JPA 实战:构建高性能数据访问层

1 简介 1.1 Spring Data JPA 概述 1.1.1 什么是 Spring Data JPA? Spring Data JPA 是 Spring Data 项目的一部分,旨在简化对基于 JPA 的数据库访问操作。它通过提供一致的编程模型和接口,使得开发者可以更轻松地与关系型数据库进行交互,同时减少了样板代码的编写。Spri…...

全程Kali linux---CTFshow misc入门(25-37)

第二十五题&#xff1a; 提示&#xff1a;flag在图片下面。 直接检查CRC&#xff0c;检测到错误&#xff0c;就直接暴力破解。 暴力破解CRC的python代码。 import binascii import struct def brute_force_ihdr_crc(filename): # 读取文件二进制数据 with open(filen…...

【Elasticsearch】match_bool_prefix 查询 vs match_phrase_prefix 查询

Match Bool Prefix Query vs. Match Phrase Prefix Query 在 Elasticsearch 中&#xff0c;match_bool_prefix 查询和 match_phrase_prefix 查询虽然都支持前缀匹配&#xff0c;但它们的行为和用途有所不同。以下是它们之间的主要区别&#xff1a; 1. match_bool_prefix 查询…...

被裁与人生的意义--春节随想

还有两个月就要被迫离开工作了十多年的公司了&#xff0c;不过有幸安安稳稳的过了一个春节&#xff0c;很知足! 我是最后一批要离开的&#xff0c;一百多号同事都没“活到”蛇年。看着一批批仁人志士被“秋后斩首”&#xff0c;马上轮到我们十来个&#xff0c;个中滋味很难言清…...

DNS缓存详解(DNS Cache Detailed Explanation)

DNS缓存详解 清空DNS缓存可以让网页访问更快捷。本文将从什么是DNS缓存、为什么清空DNS缓存、如何清空DNS缓存、清空DNS缓存存在的问题四个方面详细阐述DNS缓存清空的相关知识。 一、什么是DNS缓存 1、DNS缓存的定义&#xff1a; DNS缓存是域名系统服务在遇到DNS查询时自动…...

深度学习之“线性代数”

线性代数在深度学习中是解决多维数学对象计算问题的核心工具。这些数学对象包括标量、向量、矩阵和张量&#xff0c;借助它们可以高效地对数据进行操作和建模。以下将详细介绍这些数学对象及其在深度学习中的典型用途。 数学对象概述 标量 标量是最简单的数学对象&#xff0…...

【论文阅读】RAG-Reward: Optimizing RAG with Reward Modeling and RLHF

研究背景 研究问题&#xff1a;这篇文章要解决的问题是如何优化检索增强生成&#xff08;RAG&#xff09;系统&#xff0c;特别是通过奖励建模和人类反馈强化学习&#xff08;RLHF&#xff09;来提高大型语言模型&#xff08;LLMs&#xff09;在RAG任务中的效果。研究难点&…...

新一代搜索引擎,是 ES 的15倍?

Manticore Search介绍 Manticore Search 是一个使用 C 开发的高性能搜索引擎&#xff0c;创建于 2017 年&#xff0c;其前身是 Sphinx Search 。Manticore Search 充分利用了 Sphinx&#xff0c;显着改进了它的功能&#xff0c;修复了数百个错误&#xff0c;几乎完全重写了代码…...

鸿蒙物流项目之实现广告页

目录&#xff1a; 1、广告页布局2、倒计时的实现 1、广告页布局 鸿蒙官方有提供实现广告页的方法&#xff0c;这里我们不使用&#xff0c;使用自定义广告页。 2、倒计时的实现 在页面加载时实现倒计时功能&#xff0c;在页面倒计时为0时跳转其他页面后销毁页面后同时也要销毁定…...

自制虚拟机(C/C++)(二、分析引导扇区,虚拟机读二进制文件img软盘)

先修复上一次的bug&#xff0c;添加新指令&#xff0c;并增加图形界面 #include <graphics.h> #include <conio.h> #include <windows.h> #include <commdlg.h> #include <iostream> #include <fstream> #include <sstream> #inclu…...

S4 HANA给科目分配允许记账的税码

本文主要介绍在S4 HANA OP中给科目分配允许记账的税码相关设置。具体请参照如下内容&#xff1a; 1. 给科目分配允许记账的税码 以上配置定义了总账科目可以使用什么税码进行记账。通常在科目主数据中会明确总账科目的“Tax Category”来请明确总账科目可以使用什么类型的税码…...

【LeetCode 刷题】回溯算法-组合问题

此博客为《代码随想录》二叉树章节的学习笔记&#xff0c;主要内容为回溯算法组合问题相关的题目解析。 文章目录 77. 组合216.组合总和III17.电话号码的字母组合39. 组合总和40. 组合总和 II 77. 组合 题目链接 class Solution:def combinationSum3(self, k: int, n: int) …...

Automatic Prefix Caching

APC技术&#xff0c;遇到新prompt和老prompt前缀完全相等的&#xff0c;则复用老prompt的KV cache&#xff0c;避免重新计算。 VLLM代码实例&#xff1a; # set enable_prefix_cachingTrue to enable APC llm LLM(modellmsys/longchat-13b-16k,enable_prefix_cachingTrue ) 应…...

DDD - 领域事件_解耦微服务的关键

文章目录 Pre领域事件的核心概念领域事件的作用领域事件的识别领域事件的技术实现领域事件的运行机制案例领域事件驱动的优势 Pre DDD - 微服务设计与领域驱动设计实战(中)_ 解决微服务拆分难题 EDA - Spring Boot构建基于事件驱动的消息系统 领域事件的核心概念 领域事件&a…...

吴晓波 历代经济变革得失@简明“中国经济史” - 读书笔记

目录 《历代经济变革得失》读书笔记一、核心观点二、主要内容&#xff08;一&#xff09;导论&#xff08;二&#xff09;春秋战国时期&#xff08;三&#xff09;汉代&#xff08;四&#xff09;北宋&#xff08;五&#xff09;明清时期&#xff08;六&#xff09;近现代&…...

Ubuntu下的Doxygen+VScode实现C/C++接口文档自动生成

Ubuntu下的DoxygenVScode实现C/C接口文档自动生成 Chapter1 Ubuntu下的DoxygenVScode实现C/C接口文档自动生成1、 Doxygen简介1. 安装Doxygen1&#xff09;方法一&#xff1a;2&#xff09;方法二&#xff1a;2. doxygen注释自动生成插件3. doxygen注释基本语法4. doxygen的生成…...

论文阅读:Realistic Noise Synthesis with Diffusion Models

这篇文章是 2025 AAAI 的一篇工作&#xff0c;主要介绍的是用扩散模型实现对真实噪声的仿真模拟 Abstract 深度去噪模型需要大量来自现实世界的训练数据&#xff0c;而获取这些数据颇具挑战性。当前的噪声合成技术难以准确模拟复杂的噪声分布。我们提出一种新颖的逼真噪声合成…...