使用PyTorch实现逻辑回归:从训练到模型保存与性能评估
1. 引入必要的库
首先,需要引入必要的库。PyTorch用于构建和训练模型,pandas和numpy用于数据处理,scikit-learn用于计算性能指标。
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
import numpy as np
from sklearn.metrics import accuracy_score, recall_score, f1_score
2. 加载自定义数据集
假设有一个CSV文件custom_dataset.csv
,其中包含特征(自变量)和标签(因变量)。我们使用pandas来加载数据,并进行预处理。
# 加载自定义数据集
data = pd.read_csv('custom_dataset.csv')# 假设数据集中有多列特征和一个二分类标签
X = data.iloc[:, :-1].values.astype(np.float32) # 特征
y = data.iloc[:, -1].values.astype(np.float32) # 标签# 将标签转换为0和1
y = np.where(y == 'positive', 1, 0)
3. 构建逻辑回归模型
使用PyTorch来构建逻辑回归模型。
# 构建逻辑回归模型
class LogisticRegression(nn.Module):def __init__(self, num_features):super(LogisticRegression, self).__init__()self.linear = nn.Linear(num_features, 1)def forward(self, x):return torch.sigmoid(self.linear(x))# 初始化模型
num_features = X.shape[1]
model = LogisticRegression(num_features)
4. 定义损失函数和优化器
我们使用二元交叉熵损失函数和随机梯度下降(SGD)优化器。
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
5. 训练模型
使用自定义数据集训练模型。
# 将数据转换为PyTorch的张量
X_tensor = torch.tensor(X)
y_tensor = torch.tensor(y.reshape(-1, 1))# 训练模型
num_epochs = 100
batch_size = 32
for epoch in range(num_epochs):for i in range(0, len(X), batch_size):X_batch = X_tensor[i:i+batch_size]y_batch = y_tensor[i:i+batch_size]# 前向传播outputs = model(X_batch)loss = criterion(outputs, y_batch)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()if (epoch+1) % 10 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')
6. 保存模型
训练完成后,我们可以使用PyTorch的state_dict
方法保存模型。
# 保存模型
torch.save(model.state_dict(), 'logistic_regression_model.pth')
7. 加载模型并进行预测
在需要时,我们可以使用PyTorch的load
方法加载模型,并进行预测。
# 加载模型
model = LogisticRegression(num_features)
model.load_state_dict(torch.load('logistic_regression_model.pth'))
model.eval()# 进行预测
with torch.no_grad():X_test = torch.tensor(X[:5])predictions = model(X_test)predicted_labels = (predictions > 0.5).float().numpy().flatten()print("Predicted Labels:", predicted_labels)
8. 性能评估
计算预测结果的精确度、召回率和F1分数。
# 假设前5个样本为测试集,真实标签如下
y_true = y[:5]# 计算性能指标
accuracy = accuracy_score(y_true, predicted_labels)
recall = recall_score(y_true, predicted_labels)
f1 = f1_score(y_true, predicted_labels)print(f'Accuracy: {accuracy:.4f}')
print(f'Recall: {recall:.4f}')
print(f'F1 Score: {f1:.4f}')
相关文章:
使用PyTorch实现逻辑回归:从训练到模型保存与性能评估
1. 引入必要的库 首先,需要引入必要的库。PyTorch用于构建和训练模型,pandas和numpy用于数据处理,scikit-learn用于计算性能指标。 import torch import torch.nn as nn import torch.optim as optim import pandas as pd import numpy as …...
【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.24 随机宇宙:生成现实世界数据的艺术
1.24 随机宇宙:生成现实世界数据的艺术 目录 #mermaid-svg-vN1An9qZ6t4JUcGa {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-vN1An9qZ6t4JUcGa .error-icon{fill:#552222;}#mermaid-svg-vN1An9qZ6t4JUc…...
C#面试常考随笔8:using关键字有哪些用法?
1. using 指令:引入命名空间 最常用的用法。通过using 命名空间名字,可以在程序中直接使用该命名空间中的类型,而无需指定类型的完整命名空间路径。例如: using System; using System.Collections.Generic; class Program {sta…...
lstm代码解析1.2
在使用 LSTM(长短期记忆网络)进行训练时,model.fit 方法的输入数据 X 和目标数据 y 的形状要求是不同的。具体来说: 1. 输入数据 X 的形状 LSTM 层期望输入数据 X 是三维张量,形状为 (samples, timesteps, features)…...
JavaScript系列(52)--编译优化技术详解
JavaScript编译优化技术详解 🚀 今天,让我们深入探讨JavaScript的编译优化技术。通过理解和应用这些技术,我们可以显著提升JavaScript代码的执行效率。 编译优化基础概念 🌟 💡 小知识:JavaScript引擎通常…...
【Python】第七弹---Python基础进阶:深入字典操作与文件处理技巧
✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】【MySQL】【Python】 目录 1、字典 1.1、字典是什么 1.2、创建字典 1.3、查找 key 1.4、新增/修改元素 1.5、删除元素 1.6、遍历…...
【狂热算法篇】探秘图论之Dijkstra 算法:穿越图的迷宫的最短路径力量(通俗易懂版)
羑悻的小杀马特.-CSDN博客羑悻的小杀马特.擅长C/C题海汇总,AI学习,c的不归之路,等方面的知识,羑悻的小杀马特.关注算法,c,c语言,青少年编程领域.https://blog.csdn.net/2401_82648291?typebbshttps://blog.csdn.net/2401_82648291?typebbshttps://blog.csdn.net/2401_8264829…...
Electricity Market Optimization 探索系列(一)
本文参考链接:Linear Programming Mini Example 先从一个线性规划的例子说起: 问题背景: 现在需要使用两台发电机满足用户的用电需求,发电机一的发电功率上限是 6MW,发电机二的发电功率上限是 4MW,发电…...
<iframe>标签和定时调用函数setInterval
iframe 标签和定时调用函数 setInterval 问题描述:解决方法: 问题描述: 今天遇到一个前端问题,在浏览器页面上传Excel文件后,然后点击导入按钮,经后端Java类读取文件内容校验后,将校验结果返回…...
网工_HDLC协议
2025.01.25:网工老姜学习笔记 第9节 HDLC协议 9.1 HDLC高级数据链路控制9.2 HDLC帧格式(*控制字段)9.2.1 信息帧(承载用户数据,0开头)9.2.2 监督帧(帮助信息可靠传输,10开头…...
Elasticsearch:如何搜索含有复合词的语言
作者:来自 Elastic Peter Straer 复合词在文本分析和标记过程中给搜索引擎带来挑战,因为它们会掩盖词语成分之间的有意义的联系。连字分解器标记过滤器等工具可以通过解构复合词来帮助解决这些问题。 德语以其长复合词而闻名:Rindfleischetik…...
【Go语言圣经】第六节:方法
第六章:方法 6.1 方法声明 在函数声明时,在其名字之前放上一个变量,这就是声明了变量对应类型的一个方法,相当于为这种类型定义了一个独占的方法。 下例为 Point 类型声明了计算两个点之间距离的方法: package mai…...
[答疑]DDD伪创新哪有资格和仿制药比
DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 远航 2025-1-24 10:40 最近的热门话题仿制药,想到您经常批评的伪创新,这两者是不是很像? UMLChina潘加宇 伪创新哪有资格和仿制药比。 仿制药的…...
MySQL(高级特性篇) 13 章——事务基础知识
一、数据库事务概述 事务是数据库区别于文件系统的重要特性之一 (1)存储引擎支持情况 SHOW ENGINES命令来查看当前MySQL支持的存储引擎都有哪些,以及这些存储引擎是否支持事务能看出在MySQL中,只有InnoDB是支持事务的 &#x…...
javascript常用函数大全
javascript函数一共可分为五类: •常规函数 •数组函数 •日期函数 •数学函数 •字符串函数 1.常规函数 javascript常规函数包括以下9个函数: (1)alert函数:显示一个警告对话框,包括一个OK按钮。 (2)confirm函数:显…...
第26节课:内容安全策略(CSP)—构建安全网页的防御盾
目录 CSP基础CSP的作用CSP的主要属性 配置CSP通过响应头配置CSP通过HTML <meta>标签配置CSP属性设置详解指定多个来源 配置示例说明 常见错误配置实践:CSP与XSS防护示例1:防止内联脚本和样式说明示例2:限制图片来源说明 限制与注意事项…...
【大坑】使用element-ui弹窗$confirm自动弹出
插入element-ui的弹窗后页面一刷新自动弹出,事件绑定、调用位置(生命周期)均没有问题,通过不断注释组件发现是main.js全局引入导致的问题。如果需要在某些组件中使用三方弹窗,可以按需引入,而不是全局注册 …...
Spring的AOP思想中事物管理注意点
我们以事务管理实现AOP思想 通过在Service层加入事务管理,因为Service层可能使用多个DAO(多条SQL语句) 要保证这些SQL要么同时成功,要么同时失败,例如:学生Serivce:删除学生的时候,还需要删除学生关联信息(选课信息) 只有都删除成功才提交,如果有一条执行失败…...
PHP Mail:高效邮件发送解决方案详解
PHP Mail:高效邮件发送解决方案详解 引言 在互联网时代,邮件作为最常用的沟通方式之一,已经成为企业和个人不可或缺的通讯工具。PHP作为一种流行的服务器端脚本语言,在邮件发送方面具有天然的优势。本文将详细介绍PHP Mail&…...
python recv的概念和使用案例
recv 是网络编程中用于从套接字接收数据的核心函数,常见于 TCP/UDP 通信。以下是其概念、用法和案例详解: 概念 作用:从已连接(TCP)或已绑定(UDP)的套接字接收数据。参数: bufsize:…...
安卓(android)读取手机通讯录【Android移动开发基础案例教程(第2版)黑马程序员】
一、实验目的(如果代码有错漏,可在代码地址查看) 1.熟悉内容提供者(Content Provider)的概念和作用。 2.掌握内容提供者的创建和使用方法。 4.掌握内容URI的结构和用途。 二、实验条件 1.熟悉内容提供者的工作原理。 2.掌握内容提供者访问其…...
Java知识速记 == 与equals
Java知识速记 与equals 1. 操作符概述 操作符用于比较基本数据类型的值,或者比较引用类型的对象是否指向同一内存地址。对于基本数据类型,例如int、float等,会比较其值;但对于对象,只会比较两个对象的引用ÿ…...
web集群
项目名称 基于keepalivednginx构建一个高可用、高性能的web集群 项目架构图 项目描述 基本描述 构建一个基于 Nginx 的 7 层负载均衡的 Web 集群系统,模拟企业级业务环境,实现高并发和高可用性的 Web 集群。通过压力测试验证集群性能,找…...
HTMLCSS :下雪了
这段代码创建了一个动态的雪花飘落加载动画,通过 CSS 技术实现了雪花的下落和消失效果,为页面添加了视觉吸引力和动态感。 大家复制代码时,可能会因格式转换出现错乱,导致样式失效。建议先少量复制代码进行测试,若未能…...
Kafka SSL(TLS)安全协议
文章目录 Kafka SSL(TLS)安全协议1. Kafka SSL 的作用1.1 数据加密1.2 身份认证1.3 数据完整性1.4 防止中间人攻击1.5 确保安全的分布式环境1.6 防止拒绝服务(DoS)攻击 2. Kafka SSL 配置步骤(1)创建 SSL 证…...
WebForms SortedList 深度解析
WebForms SortedList 深度解析 引言 在Web开发领域,对于数据结构的理解与应用至关重要。其中,SortedList类在WebForms中是一个常用的数据结构,它能够帮助开发者高效地管理有序数据集合。本文将深入解析SortedList类在WebForms中的应用,包括其基本概念、常用方法、性能特点…...
项目集成Spring Security认证部分
一、需求分析 在本项目中,使用了Spring Security框架来进行认证和授权管理。由于是前后端分离的项目,所有认证的请求需要通过Token来验证身份,系统中包括了用户登录、角色授权以及资源访问控制等功能。 系统中的资源控制: 白名单…...
【PyTorch】7.自动微分模块:开启神经网络 “进化之门” 的魔法钥匙
目录 1. 梯度基本计算 2. 控制梯度计算 3. 梯度计算注意 4. 小节 个人主页:Icomi 专栏地址:PyTorch入门 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活…...
【算法】回溯算法专题① ——子集型回溯 python
目录 引入变形实战演练总结 引入 子集 https://leetcode.cn/problems/subsets/description/ 给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 …...
Nginx 安装配置指南
Nginx 安装配置指南 引言 Nginx 是一款高性能的 HTTP 和反向代理服务器,同时也可以作为 IMAP/POP3/SMTP 代理服务器。由于其稳定性、丰富的功能集以及低资源消耗而被广泛应用于各种场景。本文将为您详细介绍 Nginx 的安装与配置过程。 系统要求 在安装 Nginx 之…...
深度学习 DAY3:NLP发展史
NLP发展史 NLP发展脉络简要梳理如下: (远古模型,上图没有但也可以算NLP) 1940 - BOW(无序统计模型) 1950 - n-gram(基于词序的模型) (近代模型) 2001 - Neural language models&am…...
Spring Data JPA 实战:构建高性能数据访问层
1 简介 1.1 Spring Data JPA 概述 1.1.1 什么是 Spring Data JPA? Spring Data JPA 是 Spring Data 项目的一部分,旨在简化对基于 JPA 的数据库访问操作。它通过提供一致的编程模型和接口,使得开发者可以更轻松地与关系型数据库进行交互,同时减少了样板代码的编写。Spri…...
全程Kali linux---CTFshow misc入门(25-37)
第二十五题: 提示:flag在图片下面。 直接检查CRC,检测到错误,就直接暴力破解。 暴力破解CRC的python代码。 import binascii import struct def brute_force_ihdr_crc(filename): # 读取文件二进制数据 with open(filen…...
【Elasticsearch】match_bool_prefix 查询 vs match_phrase_prefix 查询
Match Bool Prefix Query vs. Match Phrase Prefix Query 在 Elasticsearch 中,match_bool_prefix 查询和 match_phrase_prefix 查询虽然都支持前缀匹配,但它们的行为和用途有所不同。以下是它们之间的主要区别: 1. match_bool_prefix 查询…...
被裁与人生的意义--春节随想
还有两个月就要被迫离开工作了十多年的公司了,不过有幸安安稳稳的过了一个春节,很知足! 我是最后一批要离开的,一百多号同事都没“活到”蛇年。看着一批批仁人志士被“秋后斩首”,马上轮到我们十来个,个中滋味很难言清…...
DNS缓存详解(DNS Cache Detailed Explanation)
DNS缓存详解 清空DNS缓存可以让网页访问更快捷。本文将从什么是DNS缓存、为什么清空DNS缓存、如何清空DNS缓存、清空DNS缓存存在的问题四个方面详细阐述DNS缓存清空的相关知识。 一、什么是DNS缓存 1、DNS缓存的定义: DNS缓存是域名系统服务在遇到DNS查询时自动…...
深度学习之“线性代数”
线性代数在深度学习中是解决多维数学对象计算问题的核心工具。这些数学对象包括标量、向量、矩阵和张量,借助它们可以高效地对数据进行操作和建模。以下将详细介绍这些数学对象及其在深度学习中的典型用途。 数学对象概述 标量 标量是最简单的数学对象࿰…...
【论文阅读】RAG-Reward: Optimizing RAG with Reward Modeling and RLHF
研究背景 研究问题:这篇文章要解决的问题是如何优化检索增强生成(RAG)系统,特别是通过奖励建模和人类反馈强化学习(RLHF)来提高大型语言模型(LLMs)在RAG任务中的效果。研究难点&…...
新一代搜索引擎,是 ES 的15倍?
Manticore Search介绍 Manticore Search 是一个使用 C 开发的高性能搜索引擎,创建于 2017 年,其前身是 Sphinx Search 。Manticore Search 充分利用了 Sphinx,显着改进了它的功能,修复了数百个错误,几乎完全重写了代码…...
鸿蒙物流项目之实现广告页
目录: 1、广告页布局2、倒计时的实现 1、广告页布局 鸿蒙官方有提供实现广告页的方法,这里我们不使用,使用自定义广告页。 2、倒计时的实现 在页面加载时实现倒计时功能,在页面倒计时为0时跳转其他页面后销毁页面后同时也要销毁定…...
自制虚拟机(C/C++)(二、分析引导扇区,虚拟机读二进制文件img软盘)
先修复上一次的bug,添加新指令,并增加图形界面 #include <graphics.h> #include <conio.h> #include <windows.h> #include <commdlg.h> #include <iostream> #include <fstream> #include <sstream> #inclu…...
S4 HANA给科目分配允许记账的税码
本文主要介绍在S4 HANA OP中给科目分配允许记账的税码相关设置。具体请参照如下内容: 1. 给科目分配允许记账的税码 以上配置定义了总账科目可以使用什么税码进行记账。通常在科目主数据中会明确总账科目的“Tax Category”来请明确总账科目可以使用什么类型的税码…...
【LeetCode 刷题】回溯算法-组合问题
此博客为《代码随想录》二叉树章节的学习笔记,主要内容为回溯算法组合问题相关的题目解析。 文章目录 77. 组合216.组合总和III17.电话号码的字母组合39. 组合总和40. 组合总和 II 77. 组合 题目链接 class Solution:def combinationSum3(self, k: int, n: int) …...
Automatic Prefix Caching
APC技术,遇到新prompt和老prompt前缀完全相等的,则复用老prompt的KV cache,避免重新计算。 VLLM代码实例: # set enable_prefix_cachingTrue to enable APC llm LLM(modellmsys/longchat-13b-16k,enable_prefix_cachingTrue ) 应…...
DDD - 领域事件_解耦微服务的关键
文章目录 Pre领域事件的核心概念领域事件的作用领域事件的识别领域事件的技术实现领域事件的运行机制案例领域事件驱动的优势 Pre DDD - 微服务设计与领域驱动设计实战(中)_ 解决微服务拆分难题 EDA - Spring Boot构建基于事件驱动的消息系统 领域事件的核心概念 领域事件&a…...
吴晓波 历代经济变革得失@简明“中国经济史” - 读书笔记
目录 《历代经济变革得失》读书笔记一、核心观点二、主要内容(一)导论(二)春秋战国时期(三)汉代(四)北宋(五)明清时期(六)近现代&…...
Ubuntu下的Doxygen+VScode实现C/C++接口文档自动生成
Ubuntu下的DoxygenVScode实现C/C接口文档自动生成 Chapter1 Ubuntu下的DoxygenVScode实现C/C接口文档自动生成1、 Doxygen简介1. 安装Doxygen1)方法一:2)方法二:2. doxygen注释自动生成插件3. doxygen注释基本语法4. doxygen的生成…...
论文阅读:Realistic Noise Synthesis with Diffusion Models
这篇文章是 2025 AAAI 的一篇工作,主要介绍的是用扩散模型实现对真实噪声的仿真模拟 Abstract 深度去噪模型需要大量来自现实世界的训练数据,而获取这些数据颇具挑战性。当前的噪声合成技术难以准确模拟复杂的噪声分布。我们提出一种新颖的逼真噪声合成…...
【Linux系统】计算机世界的基石:冯诺依曼架构与操作系统设计
文章目录 一.冯诺依曼体系结构1.1 为什么体系结构中要存在内存?1.2 冯诺依曼瓶颈 二.操作系统2.1 设计目的2.2 系统调用与库函数 一.冯诺依曼体系结构 冯诺依曼体系结构(Von Neumann Architecture)是计算机的基本设计理念之一,由…...
p1044 栈
两种递推细节不同 1,将1和n在序列末尾的情况单独放出来处理,因为dp[0]0; 2,将所有情况统一处理,这种情况就要要求dp[1]1; 这里的n在解题中可以看做是元素数量 思路是,根据出栈最后一个元素,统计它前面的元素数量的输出序列数和…...