【机器学习】自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
一、使用tensorflow框架实现逻辑回归
1. 数据部分:
- 首先自定义了一个简单的数据集,特征
X
是 100 个随机样本,每个样本一个特征,目标值y
基于线性关系并添加了噪声。 - tensorflow框架不需要
numpy
数组转换为相应的张量,可以直接在模型中使用数据集。
2. 模型定义部分:
方案 1:model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(1,))])
解释:
- 此方案使用
tf.keras.Sequential
构建模型,在列表中直接定义了一个Dense
层,input_shape=(1,)
表明输入数据的形状。 - 编译模型时,选择随机梯度下降(SGD)优化器和均方误差损失函数。
- 训练完成后,使用
sklearn
的指标评估模型,并输出模型的系数和截距。
import tensorflow as tf
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score# 自定义数据集
X = np.random.rand(100, 1).astype(np.float32)
y = 2 * X + 1 + 0.3 * np.random.randn(100, 1).astype(np.float32)# 构建模型
model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(1,))
])# 编译模型
model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01),loss='mean_squared_error')# 训练模型
history = model.fit(X, y, epochs=1000, verbose=0)# 模型评估
y_pred = model.predict(X)
mse = mean_squared_error(y, y_pred)
r2 = r2_score(y, y_pred)
print(f"均方误差 (MSE): {mse}")
print(f"决定系数 (R²): {r2}")# 输出模型的系数和截距
weights, biases = model.layers[0].get_weights()
print(f"模型系数: {weights[0][0]}")
print(f"模型截距: {biases[0]}")
方案 2:model = tf.keras.Sequential()
解释:
- 这种方式先创建一个空的
Sequential
模型,再使用add
方法添加Dense
层。 - 后续编译、训练、评估和输出模型参数的步骤与方案 1 类似。
import tensorflow as tf
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score# 自定义数据集
X = np.random.rand(100, 1).astype(np.float32)
y = 2 * X + 1 + 0.3 * np.random.randn(100, 1).astype(np.float32)# 构建模型
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(1, input_shape=(1,)))# 编译模型
model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01),loss='mean_squared_error')# 训练模型
history = model.fit(X, y, epochs=1000, verbose=0)# 模型评估
y_pred = model.predict(X)
mse = mean_squared_error(y, y_pred)
r2 = r2_score(y, y_pred)
print(f"均方误差 (MSE): {mse}")
print(f"决定系数 (R²): {r2}")# 输出模型的系数和截距
weights, biases = model.layers[0].get_weights()
print(f"模型系数: {weights[0][0]}")
print(f"模型截距: {biases[0]}")
方案 3:自定义模型类
解释:
- 继承
Model
基类创建自定义模型类Linear
,在__init__
方法中定义Dense
层。 call
方法用于实现前向传播逻辑,类似于 PyTorch 中的forward
方法。- 后续的编译、训练、评估和参数输出流程和前面方案一致。
import tensorflow as tf
from tensorflow.keras import Model
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score# 自定义数据集
X = np.random.rand(100, 1).astype(np.float32)
y = 2 * X + 1 + 0.3 * np.random.randn(100, 1).astype(np.float32)# 自定义模型类
class Linear(Model):def __init__(self):super(Linear, self).__init__()self.linear = tf.keras.layers.Dense(1)def call(self, x, **kwargs):x = self.linear(x)return x# 构建模型
model = Linear()# 编译模型
model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01),loss='mean_squared_error')# 训练模型
history = model.fit(X, y, epochs=1000, verbose=0)# 模型评估
y_pred = model.predict(X)
mse = mean_squared_error(y, y_pred)
r2 = r2_score(y, y_pred)
print(f"均方误差 (MSE): {mse}")
print(f"决定系数 (R²): {r2}")# 输出模型的系数和截距
weights, biases = model.linear.get_weights()
print(f"模型系数: {weights[0][0]}")
print(f"模型截距: {biases[0]}")
方案 4:函数式 API 构建模型
解释:
- 使用函数式 API 构建模型,先定义输入层,再定义
Dense
层,最后使用Model
类将输入和输出连接起来形成模型。 - 编译、训练、评估和参数输出的步骤和前面方案相同。注意这里通过
model.layers[1]
获取Dense
层的权重和偏置,因为第一层是输入层。
import tensorflow as tf
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score# 自定义数据集
X = np.random.rand(100, 1).astype(np.float32)
y = 2 * X + 1 + 0.3 * np.random.randn(100, 1).astype(np.float32)# 定义函数构建模型
def linear():input = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)y = tf.keras.layers.Dense(1)(input)model = tf.keras.models.Model(inputs=input, outputs=y)return model# 构建模型
model = linear()# 编译模型
model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01),loss='mean_squared_error')# 训练模型
history = model.fit(X, y, epochs=1000, verbose=0)# 模型评估
y_pred = model.predict(X)
mse = mean_squared_error(y, y_pred)
r2 = r2_score(y, y_pred)
print(f"均方误差 (MSE): {mse}")
print(f"决定系数 (R²): {r2}")# 输出模型的系数和截距
weights, biases = model.layers[1].get_weights()
print(f"模型系数: {weights[0][0]}")
print(f"模型截距: {biases[0]}")
3. 训练和评估部分:
- 使用
fit
方法对模型进行训练,verbose=0
表示不显示训练过程中的详细信息,训练过程中的损失信息会存储在history
对象中。 - 通过多个 epoch 进行训练,每个 epoch 包含前向传播、损失计算、反向传播和参数更新。
- 使用
predict
方法进行预测,计算均方误差和决定系数评估模型性能,通过model.linear.get_weights()
获取模型的系数和截距。
二、保存tensorflow框架逻辑回模型
方式 1:保存为 HDF5 文件(后缀名 .h5
)
这种方式会保存模型的结构、权重以及训练配置(如优化器、损失函数等),加载时可以直接得到一个完整可用的模型。
import tensorflow as tf
import numpy as np# 自定义数据集
# 生成 1000 个样本,每个样本有 2 个特征
X = np.random.randn(1000, 2).astype(np.float32)
# 根据特征生成标签
y = (2 * X[:, 0] + 3 * X[:, 1] > 0).astype(np.float32).reshape(-1, 1)# 构建逻辑回归模型
model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(2,), activation='sigmoid')
])# 编译模型
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=100, batch_size=32, verbose=1)# 保存模型为 HDF5 文件
model.save('logistic_regression_model.h5')# 加载 HDF5 文件模型
loaded_model = tf.keras.models.load_model('logistic_regression_model.h5')# 生成新的测试数据
X_test = np.random.randn(100, 2).astype(np.float32)
y_test = (2 * X_test[:, 0] + 3 * X_test[:, 1] > 0).astype(np.float32).reshape(-1, 1)# 进行预测
y_pred_probs = loaded_model.predict(X_test)
y_pred = (y_pred_probs > 0.5).astype(np.float32)# 计算准确率
accuracy = tf.keras.metrics.BinaryAccuracy()
accuracy.update_state(y_test, y_pred)
print(f"预测准确率: {accuracy.result().numpy()}")
代码解释
- 数据生成与模型构建:生成自定义数据集,构建并编译逻辑回归模型,然后进行训练。
- 保存模型:使用
model.save('logistic_regression_model.h5')
将模型保存为 HDF5 文件。 - 加载模型:使用
tf.keras.models.load_model('logistic_regression_model.h5')
加载保存的模型。 - 预测与评估:生成新的测试数据,使用加载的模型进行预测,并计算预测准确率。
方式 2:只保存参数
这种方式只保存模型的权重参数,不保存模型的结构和训练配置。加载时需要先定义与原模型相同结构的模型,再将保存的参数加载到新模型中。
import tensorflow as tf
import numpy as np# 自定义数据集
# 生成 1000 个样本,每个样本有 2 个特征
X = np.random.randn(1000, 2).astype(np.float32)
# 根据特征生成标签
y = (2 * X[:, 0] + 3 * X[:, 1] > 0).astype(np.float32).reshape(-1, 1)# 构建逻辑回归模型
model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(2,), activation='sigmoid')
])# 编译模型
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=100, batch_size=32, verbose=1)# 只保存模型参数
model.save_weights('logistic_regression_weights.h5')# 重新定义相同结构的模型
new_model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(2,), activation='sigmoid')
])# 编译新模型
new_model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])# 加载保存的参数到新模型
new_model.load_weights('logistic_regression_weights.h5')# 生成新的测试数据
X_test = np.random.randn(100, 2).astype(np.float32)
y_test = (2 * X_test[:, 0] + 3 * X_test[:, 1] > 0).astype(np.float32).reshape(-1, 1)# 进行预测
y_pred_probs = new_model.predict(X_test)
y_pred = (y_pred_probs > 0.5).astype(np.float32)# 计算准确率
accuracy = tf.keras.metrics.BinaryAccuracy()
accuracy.update_state(y_test, y_pred)
print(f"预测准确率: {accuracy.result().numpy()}")
代码解释
- 数据生成与模型构建:同样生成自定义数据集,构建并编译逻辑回归模型,进行训练。
- 保存参数:使用
model.save_weights('logistic_regression_weights.h5')
只保存模型的权重参数。 - 重新定义模型:重新定义一个与原模型结构相同的新模型,并进行编译。
- 加载参数:使用
new_model.load_weights('logistic_regression_weights.h5')
将保存的参数加载到新模型中。 - 预测与评估:生成新的测试数据,使用加载参数后的新模型进行预测,并计算预测准确率。
通过以上两种方式,可以根据实际需求选择合适的模型保存方法。
三、加载tensorflow框架逻辑回归模型
方案 1:加载保存为 HDF5 文件的模型
当用户将模型保存为 HDF5 文件(后缀名 .h5
)时,使用 tf.keras.models.load_model
函数可以直接加载整个模型,包括模型的结构、权重以及训练配置。
import tensorflow as tf
import numpy as np# 生成一些示例数据用于预测
X_test = np.random.randn(100, 2).astype(np.float32)
y_test = (2 * X_test[:, 0] + 3 * X_test[:, 1] > 0).astype(np.float32).reshape(-1, 1)# 加载保存为 HDF5 文件的模型
loaded_model = tf.keras.models.load_model('logistic_regression_model.h5')# 进行预测
y_pred_probs = loaded_model.predict(X_test)
y_pred = (y_pred_probs > 0.5).astype(np.float32)# 计算准确率
accuracy = tf.keras.metrics.BinaryAccuracy()
accuracy.update_state(y_test, y_pred)
print(f"预测准确率: {accuracy.result().numpy()}")
代码解释
- 数据准备:生成一些示例数据
X_test
和对应的标签y_test
,用于后续的预测和评估。 - 模型加载:使用
tf.keras.models.load_model('logistic_regression_model.h5')
加载之前保存为 HDF5 文件的模型。 - 预测与评估:使用加载的模型对测试数据进行预测,将预测概率转换为标签,然后计算预测准确率。
方案 2:加载只保存的参数(权重和偏置)
当用户只保存了模型的参数(权重和偏置)时,需要先定义一个与原模型结构相同的新模型,然后使用 load_weights
方法将保存的参数加载到新模型中。
import tensorflow as tf
import numpy as np# 生成一些示例数据用于预测
X_test = np.random.randn(100, 2).astype(np.float32)
y_test = (2 * X_test[:, 0] + 3 * X_test[:, 1] > 0).astype(np.float32).reshape(-1, 1)# 重新定义相同结构的模型
new_model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(2,), activation='sigmoid')
])# 编译新模型
new_model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])# 加载保存的参数
new_model.load_weights('logistic_regression_weights.h5')# 进行预测
y_pred_probs = new_model.predict(X_test)
y_pred = (y_pred_probs > 0.5).astype(np.float32)# 计算准确率
accuracy = tf.keras.metrics.BinaryAccuracy()
accuracy.update_state(y_test, y_pred)
print(f"预测准确率: {accuracy.result().numpy()}")
代码解释
- 数据准备:同样生成示例数据
X_test
和y_test
用于预测和评估。 - 模型定义与编译:重新定义一个与原模型结构相同的新模型
new_model
,并进行编译,设置优化器、损失函数和评估指标。 - 参数加载:使用
new_model.load_weights('logistic_regression_weights.h5')
将之前保存的参数加载到新模型中。 - 预测与评估:使用加载参数后的新模型对测试数据进行预测,将预测概率转换为标签,最后计算预测准确率。
通过以上两种方案,可以根据不同的保存方式正确加载 TensorFlow 模型。
四、完整流程
1. 实现思路
① 导入必要的库
在开始之前,需要导入 TensorFlow 用于构建和训练模型,NumPy 用于数据处理,以及一些评估指标相关的库。
② 生成自定义数据集
自定义数据集可以根据具体需求生成,这里以一个简单的二维数据集为例,每个样本有两个特征,标签为 0 或 1。
③ 构建逻辑回归模型
一共有4种方式,案例使用其中的TensorFlow的tf.keras.Sequential
构建模型,在列表中直接定义了一个 Dense
层,input_shape=(1,)
表明输入数据的形状。
④ 训练模型
使用生成的数据集对模型进行训练。
⑤ 保存模型
可以选择将模型保存为 HDF5 文件或只保存模型的参数,案例为保存为 HDF5 文件。
⑥ 加载模型并进行预测
此案例为加载 HDF5 文件模型
2. 代码示例
import tensorflow as tf
import numpy as np
from sklearn.metrics import accuracy_score# 生成 1000 个样本,每个样本有 2 个特征
X = np.random.randn(1000, 2).astype(np.float32)
# 根据特征生成标签
y = (2 * X[:, 0] + 3 * X[:, 1] > 0).astype(np.float32).reshape(-1, 1)# 构建逻辑回归模型
model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(2,), activation='sigmoid')
])# 编译模型
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=100, batch_size=32, verbose=1)# 保存模型
model.save('logistic_regression_model')# 加载模型
loaded_model = tf.keras.models.load_model('logistic_regression_model')# 生成新的测试数据
X_test = np.random.randn(100, 2).astype(np.float32)
y_test = (2 * X_test[:, 0] + 3 * X_test[:, 1] > 0).astype(np.float32).reshape(-1, 1)# 进行预测
y_pred_probs = loaded_model.predict(X_test)
y_pred = (y_pred_probs > 0.5).astype(np.float32)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"预测准确率: {accuracy}")
3. 代码解释
① 数据集生成:
使用 np.random.randn
生成具有两个特征的随机样本,根据特征的线性组合生成标签。
② 模型构建:
使用 tf.keras.Sequential
构建一个简单的逻辑回归模型,包含一个具有 sigmoid
激活函数的全连接层。
③ 模型编译:
使用 adam
优化器和 binary_crossentropy
损失函数进行编译,并监控准确率指标。
④ 模型训练:
使用 fit
方法对模型进行训练,指定训练轮数和批次大小。
⑤ 模型保存:
使用 model.save
方法将模型保存到指定目录。
⑥ 模型加载与预测:
使用 tf.keras.models.load_model
加载保存的模型,生成新的测试数据进行预测,并计算预测准确率。
相关文章:
【机器学习】自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
一、使用tensorflow框架实现逻辑回归 1. 数据部分: 首先自定义了一个简单的数据集,特征 X 是 100 个随机样本,每个样本一个特征,目标值 y 基于线性关系并添加了噪声。tensorflow框架不需要numpy 数组转换为相应的张量࿰…...
RK3568中使用QT opencv(显示基础图像)
文章目录 一、查看对应的开发环境是否有opencv的库二、QT使用opencv 一、查看对应的开发环境是否有opencv的库 在开发板中的/usr/lib目录下查看是否有opencv的库: 这里使用的是正点原子的ubuntu虚拟机,在他的虚拟机里面已经安装好了opencv的库。 二、…...
Brave132 编译指南 Windows 篇:获取源码(六)
1. 引言 在 Brave 浏览器 132 版本的编译过程中,获取源代码是至关重要的第一步。源代码包含了 Brave 浏览器的所有核心功能、特性和组件的实现细节,是深入理解、定制和优化 Brave 的基础。通过获取和管理源代码,开发者能够深入探索 Brave 的…...
解决 pip install 出现 error: subprocess-exited-with-error 错误的方法
解决 pip install 出现 error: subprocess-exited-with-error 错误的方法_pip安装报错 subprocess-CSDN博客文章浏览阅读10w次,点赞62次,收藏86次。通过上述步骤,我们成功解决了 pip install 时出现的 error: subprocess-exited-with-error 错…...
网络安全攻防实战:从基础防护到高级对抗
📝个人主页🌹:一ge科研小菜鸡-CSDN博客 🌹🌹期待您的关注 🌹🌹 引言 在信息化时代,网络安全已经成为企业、政府和个人必须重视的问题。从数据泄露到勒索软件攻击,每一次…...
DeepSeek大模型技术解析:从架构到应用的全面探索
一、引言 在人工智能领域,大模型的发展日新月异,其中DeepSeek大模型凭借其卓越的性能和广泛的应用场景,迅速成为业界的焦点。本文旨在深入剖析DeepSeek大模型的技术细节,从架构到应用进行全面探索,以期为读者提供一个…...
Deepseek的api调用报错乱码问题
最近的deepseek也是很火,但是在调用api的过程中也会出现一些大大小小的问题,所以这里也给出一种问题和他的解决方案,报错的类型如下图所示 API Streaming Failed Command failed with exit code 1: powershell (Get-CimInstance -ClassName W…...
.NET Core 中依赖注入的使用
ASP.NET Core中服务注入的地方 在ASP.NET Core项目中一般不需要自己创建ServiceCollection、IServiceProvider。在Program.cs的builder.Build()之前向builder.Services中注入。在Controller中可以通过构造方法注入服务。 低使用频率的服务 把Action用到的服务通过Action的参…...
Mysql Resultset 解析记录
Mysql Resultset 解析记录 结果集消息头字段定义结果数据完整spicy文件 结果集消息头 消息头由消息体长度消息序列号消息体组成;消息头长度为3字节,消息序列号长度为1字节。 结果集的消息头消息体内容为结果集的列数。 结果集消息头的spicy1格式如下&a…...
ThinkPhp伪静态设置后,访问静态资源也提示找不到Controller
ThinkPhp没有配置伪静态时,除了默认的IndexController能访问,其他路由Controller都访问不到,提示404错误。配置了伪静态后就解决了这个问题。 但是当我的ThinkPhp后台项目中有静态资源放在public目录(或子目录)中需要…...
【回溯+剪枝】找出所有子集的异或总和再求和 全排列Ⅱ
文章目录 1863. 找出所有子集的异或总和再求和解题思路:子集问题解法(回溯 剪枝)47. 全排列 II解题思路:排序 回溯 剪枝 1863. 找出所有子集的异或总和再求和 1863. 找出所有子集的异或总和再求和 一个数组的 异或总和 定义为…...
单细胞-第五节 多样本数据分析,打分R包AUCell
文件在单细胞\5_GC_py\1_single_cell\3.AUCell.Rmd 1.基因 rm(list = ls()) load("g.Rdata")2.AUCell https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897923 IF: NA NA NA用这个文章里的方法,将单细胞亚群的marker基因与ros相关基因取交集,用作AUCell的基因集…...
锁升级过程与优化操作
前文我们学习了CAS自旋锁知道CAS对应的就是一条指令操作,属于一种轻量级锁,那么有轻必有重,从无锁到轻量级锁到重量级锁是一个升级过程,此文我们对锁升级的过程以及一些优化锁的操作一探究竟。 1. 锁升级 从前文 《程序员不可能不…...
android主题设置为..DarkActionBar.Bridge时自定义DatePicker选中日期颜色
安卓自定义DatePicker选中日期颜色 背景:解决方案:方案一:方案二:实践效果: 背景: 最近在尝试用原生安卓实现仿element-ui表单校验功能,其中的的选择日期涉及到安卓DatePicker组件的使用&#…...
Kafka常见问题之 `javax.management.InstanceAlreadyExistsException`
文章目录 Kafka常见问题之 javax.management.InstanceAlreadyExistsException1. 概述2. 常见原因3. 具体异常示例4. 解决方案4.1 确保单一 Kafka Producer 实例4.2 配置 Kafka Broker 和 Producer 使用唯一的 JMX 名称(对于Producer重点检查 client.id)4…...
数据分析系列--③RapidMiner算子说明及数据预处理
一、算子说明 1.新建过程 2.算子状态灯 状态灯说明: (1)状态指示灯: 红色:指示灯说明有参数未被设置或输入端口未被连接等问题; 黄色:指示灯说明还未执行算子,不管配置是否基本齐全; 绿色:指示灯说明一切正常,已成功执行算子。 (2)三角…...
Gradle配置指南:深入解析settings.gradle.kts(Kotlin DSL版)
文章目录 Gradle配置指南:深入解析settings.gradle.kts(Kotlin DSL版)settings.gradle.kts 基础配置选项单项目配置多项目配置 高级配置选项插件管理(Plugin Management)基础配置模板案例:Android项目标准配…...
专为课堂打造:宏碁推出三款全新耐用型 Chromebook
IT之家 1 月 25 日消息,宏碁(Acer)昨日(1 月 24 日)发布公告,针对教育市场,推出 Chromebook Spin 512 (R857T)、Chromebook Spin 511 (R757T) 和 Chromebook 511 (C737) 三款产品,兼…...
电商系统-用户认证(三)基于公钥解析JWT令牌
一、 基于私钥生成jwt令牌 步骤: 导入认证服务 将shangcheng_user_auth工程导入到项目中去,如下图 启动eureka,再启动认证服务 3) 认证服务中创建测试类 public class CreateJwtTest { /**** 创建令牌测试*/Testpublic voi…...
验证回文串
hello 大家好!今天开写一个新章节,每一天一道算法题。让我们一起来学习算法思维吧! function isPalindrome(s) {// 第一步:将字符串中的所有大写字符转换为小写字符s s.toLowerCase();// 第二步:使用正则表达式移除所…...
Java定时任务实现方案(四)——Spring Task
Spring Task 这篇笔记,我们要来介绍实现Java定时任务的第四个方案,使用Spring Task,以及该方案的优点和缺点。 Spring Task是Spring框架提供的一个轻量级任务调度框架,用于简化任务调度的开放,通过注解或XML配置的…...
Python 数据分析 - Matplotlib 绘图
Python 数据分析 - Matplotlib 绘图 简介绘图折线图单线多线子图 散点图直方图条形图纵置横置多条 饼图 简介 Matplotlib 是 Python 提供的一个绘图库,通过该库我们可以很容易的绘制出折线图、直方图、散点图、饼图等丰富的统计图,安装使用 pip install…...
深入探讨数据库索引类型:B-tree、Hash、GIN与GiST的对比与应用
title: 深入探讨数据库索引类型:B-tree、Hash、GIN与GiST的对比与应用 date: 2025/1/26 updated: 2025/1/26 author: cmdragon excerpt: 在现代数据库管理系统中,索引技术是提高查询性能的重要手段。当数据量不断增长时,如何快速、有效地访问这些数据成为了数据库设计的核…...
【Redis】hash 类型的介绍和常用命令
1. 介绍 Redis 中存储的 key-value 本身就是哈希表的结构,存储的 value 也可以是一个哈希表的结构 这里每一个 key 对应的一个 哈希类型用 field-value 来表示 2. 常用命令 命令 介绍 时间复杂度 hset key field value 用于设置哈希表 key 中字段 field 的值为…...
World Creator地形导入UE
修改导出分辨率1009x1009, 虚幻默认参数的整体分辨率是1009 导出预设选择高度图(heigh map)格式选择PNG 16位,或者RAW 16位,需要反转y轴(与虚幻不同),命名格式会自动带一个 , 将改成_ 或者删掉自己命名 &am…...
mybatis(104/134)
动态sql标签,用于选择查询 if标签 where标签 :自动生成where,取决于后面有没有条件,会自动去除条件前面的and和or,不会去除语句后面的 trim标签:自动生成where,在语句后自动去除后缀and和or for…...
制造企业的成本核算
一、生产成本与制造费用的区别 (1)生产成本,是直接用于产品生产,构成产品实体的材料成本。 包括企业在生产经营过程中实际消耗的原材料、辅助材料、备品备件、外购半成品、燃料、动力包装物以及其它直接材料,和直接参加产品生产的工人工资,以及按生产工人的工资总额和规…...
Windows中本地组策略编辑器gpedit.msc打不开/微软远程桌面无法复制粘贴
目录 背景 解决gpedit.msc打不开 解决复制粘贴 剪贴板的问题 启用远程桌面剪贴板与驱动器 重启RDP剪贴板监视程序 以上都不行?可能是操作被Win11系统阻止 最后 背景 远程桌面无法复制粘贴,需要查看下主机策略组设置,结果按WinR输入…...
详解排序算法
文章目录 1. 排序算法分类2. 比较排序算法介绍2.1 插入排序2.1.1 直接插入排序2.1.2 希尔排序 2.2 选择排序2.2.1 直接选择排序2.2.2 堆排序2.2.2.1 向下调整算法建堆2.2.2.2 向上调整算法建堆2.2.2.3 进行堆排序2.2.2.4 堆排序时间、空间复杂度分析2.2.2.5 利用堆排序解决TOP-…...
练习题 - Django 4.x File 文件上传使用示例和配置方法
在现代的 web 应用开发中,文件上传是一个常见的功能,无论是用户上传头像、上传文档,还是其他类型的文件,处理文件上传都是开发者必须掌握的技能之一。Django 作为一个流行的 Python web 框架,提供了便捷的文件上传功能和配置方法。学习如何在 Django 中实现文件上传,不仅…...
Vue 响应式渲染 - 待办事项简单实现
Vue 渐进式JavaScript 框架 基于Vue2的学习笔记 - Vue 响应式渲染 - 待办事项简单实现 目录 待办事项简单实现 页面初始化 双向绑定的指令 增加留言列表设置 增加删除按钮 最后优化 总结 待办事项简单实现 页面初始化 对页面进行vue的引入、创建输入框和按钮及实例化V…...
【福州市AOI小区面】shp数据学校大厦商场等占地范围面数据内容测评
AOI城区小区面样图和数据范围查看: — 字段里面有name字段。分类比较多tpye:每个值代表一个类型。比如字段type中1549代表小区住宅,1563代表学校。小区、学校等占地面积范围数据 —— 小区范围占地面积面数据shp格式 无偏移坐标,只…...
llama.cpp LLM_ARCH_DEEPSEEK and LLM_ARCH_DEEPSEEK2
llama.cpp LLM_ARCH_DEEPSEEK and LLM_ARCH_DEEPSEEK2 1. LLM_ARCH_DEEPSEEK and LLM_ARCH_DEEPSEEK22. LLM_ARCH_DEEPSEEK and LLM_ARCH_DEEPSEEK23. struct ggml_cgraph * build_deepseek() and struct ggml_cgraph * build_deepseek2()References 不宜吹捧中国大语言模型的同…...
k8s简介,k8s环境搭建
目录 K8s简介环境搭建和准备工作修改主机名(所有节点)配置静态IP(所有节点)关闭防火墙和seLinux,清除iptables规则(所有节点)关闭交换分区(所有节点)修改/etc/hosts文件&…...
2024年个人总结
序 照例,每年都有的个人年度总结来了,看了很多其他大佬的总结,感觉自己的2024过于单薄,故事也不太丰满,自己就回去比较,自己哪里做的不好 ?但后来发现已经进入了一个思维误区。 年度总结年度总结…...
【落羽的落羽 数据结构篇】顺序表
文章目录 一、线性表二、顺序表1. 概念与分类2. 准备工作3. 静态顺序表4. 动态顺序表4.1 定义顺序表结构4.2 顺序表的初始化4.3 检查空间是否足够4.3 尾部插入数据4.4 头部插入数据4.5 尾部删除数据4.6 头部删除数据4.7 在指定位置插入数据4.8 在指定位置删除数据4.9 顺序表的销…...
麒麟操作系统服务架构保姆级教程(十四)iptables防火墙四表五链和防火墙应用案例
如果你想拥有你从未拥有过的东西,那么你必须去做你从未做过的事情 防火墙在运维工作中有着不可或缺的重要性。首先,它是保障网络安全的关键防线,通过设置访问控制规则,可精准过滤非法网络流量,有效阻挡外部黑客攻击、恶…...
Linux之详谈——权限管理
目录 小 峰 编 程 编辑 一、权限概述 1、什么是权限 2、为什么要设置权限 3、Linux中的权限类别- 4、Linux中文件所有者 1)所有者分类(谁) 2)所有者的表示方法 ① u(the user who owns it)(属主权限&…...
第05章 13 椭球体张量可视化应用一则-神经束追踪
在神经束追踪(Tractography)中,椭球体张量(Ellipsoid Tensor)通常用于描述神经纤维的方向和扩散特性。这种技术广泛应用于磁共振成像(MRI)的扩散张量成像(DTI)数据中。VT…...
Celery
https://www.bilibili.com/video/BV1RGDEY5ERB 架构 简单任务 执行 包结构 本示例: app 添加任务 获取结果 配置延时任务 任务配置 beat 提交定时任务...
JavaScript系列(48)-- 3D渲染引擎实现详解
JavaScript 3D渲染引擎实现详解 🎮 今天,让我们深入探讨JavaScript的3D渲染引擎实现。通过WebGL和现代JavaScript技术,我们可以构建一个功能完整的3D渲染系统。 3D渲染基础概念 🌟 💡 小知识:3D渲染引擎的…...
Golang并发机制及CSP并发模型
Golang 并发机制及 CSP 并发模型 Golang 是一门为并发而生的语言,其并发机制基于 CSP(Communicating Sequential Processes,通信顺序过程) 模型。CSP 是一种描述并发系统中交互模式的正式语言,强调通过通信来共享内存…...
使用 Docker + Nginx + Certbot 实现自动化管理 SSL 证书
使用 Docker Nginx Certbot 实现自动化管理 SSL 证书 在互联网安全环境日益重要的今天,为站点或应用部署 HTTPS 已经成为一种常态。然而,手动申请并续期证书既繁琐又容易出错。本文将以 Nginx Certbot 为示例,基于 Docker 容器来搭建一个…...
游戏策划的分类
P3游戏策划分类 1.程序2.美术3.策划 程序:一般分为客户端程序和服务器程序 客户端程序一般负责游戏的前端画面表现 服务器程序负责游戏的后端运算 美术:角色原画,角色模型动作,场景原画,场景模型,UI设计&a…...
Edge-TTS在广电系统中的语音合成技术的创新应用
Edge-TTS在广电系统中的语音合成技术的创新应用 作者:本人是一名县级融媒体中心的工程师,多年来一直坚持学习、提升自己。喜欢Python编程、人工智能、网络安全等多领域的技术。 摘要 随着人工智能技术的快速发展,文字转语音(Te…...
python学opencv|读取图像(四十七)使用cv2.bitwise_not()函数实现图像按位取反运算
【0】基础定义 按位与运算:两个等长度二进制数上下对齐,全1取1,其余取0。按位或运算:两个等长度二进制数上下对齐,有1取1,其余取0。 按位取反运算:一个二进制数,0变1,1变0。 【1】…...
一文讲解Java中Object类常用的方法
在Java中,经常提到一个词“万物皆对象”,其中的“万物”指的是Java中的所有类,而这些类都是Object类的子类; Object主要提供了11个方法,大致可以分为六类: 对象比较: public native int has…...
【算法篇·更新中】C++秒入门(附练习用题目)
一.二分 1.二分查找 我们来看这样一道题: 有一个保证有序的数组a,它的长度为n。现在我们需要知道这个序列是否含有x。 数据范围:保证n<1e9 我们看到这道题之后,第一时间想到的就是暴力枚举了,可是我们发现直接枚举…...
面向对象编程 vs 面向过程编程
面向对象编程 vs 面向过程编程:深入解析这两种编程范式的区别 在当今软件开发领域,编程范式的选择对于项目的可维护性和可扩展性至关重要。面向对象编程(OOP)和面向过程编程(POP)是两种根本的编程思想。本…...
【Rust自学】16.2. 使用消息传递来跨线程传递数据
喜欢的话别忘了点赞、收藏加关注哦(加关注即可阅读全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 16.2.1. 消息传递 有一种很流行而且能保证安全并发的技术(或者叫机制ÿ…...