当前位置: 首页 > news >正文

Python 数据分析 - Matplotlib 绘图

Python 数据分析 - Matplotlib 绘图

  • 简介
  • 绘图
    • 折线图
      • 单线
      • 多线
      • 子图
    • 散点图
    • 直方图
    • 条形图
      • 纵置
      • 横置
      • 多条
    • 饼图

简介

MatplotlibPython 提供的一个绘图库,通过该库我们可以很容易的绘制出折线图、直方图、散点图、饼图等丰富的统计图,安装使用 pip install matplotlib 命令即可,Matplotlib 经常会与 NumPy 一起使用。

在进行数据分析时,可视化工作是一个十分重要的环节,数据可视化可以让我们更加直观、清晰的了解数据,Matplotlib 就是一种可视化实现方式。

绘图

下面我们来学习一下如何使用 Matplotlib 绘制常用统计图。

折线图

折线图可以显示随某一指标变化的连续数据。

单线

首先,我们来看一下如何使用 Matplotlib 绘制一个简单的折线图,具体实现如下:

# import matplotlib.pyplot as plt
from matplotlib import pyplot as plt# 设置中文字体为黑体
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False
x = range(1, 7)
y = [13, 15, 14, 16, 15, 17]
plt.title('折线图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
plt.plot(x, y, marker='o', linestyle='-', color='b', label='数据系列')
plt.show()

在这里插入图片描述
我们在使用中文时可能会现乱码的问题,可以通过如下方式解决:

plt.rcParams['font.sans-serif'] = ['SimHei']

我们还可以改变折线的样式、颜色等,通过示例来看一下。

from matplotlib import pyplot as pltx = range(1, 7)
y = [13, 15, 14, 16, 15, 17]
'''
figsize:设置图片的宽、高,单位为英寸
dpi:设置分辨率
'''
plt.figure(figsize=(8, 5), dpi=80)
plt.title('折线图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
'''
color:颜色
linewidth:线的宽度
marker:折点样式
linestyle:线的样式,主要包括:'-'、'--'、'-.'、':'
'''
plt.plot(x, y, color='red', marker='o', linewidth='1', linestyle='--')
# 保存
# plt.savefig('test.png')
plt.show()

看一下效果:
在这里插入图片描述

多线

有时候我们可能存在多个指标对比的情况,也就是需要在一个图中绘制多条折线,比如:我们要了解张三、李四随着年龄增长体重的变化情况,示例如下所示:

from matplotlib import pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']x = range(15, 25)
y1 = [50, 55, 58, 65, 70, 68, 70, 72, 75, 70]
y2 = [52, 53, 60, 63, 65, 68, 75, 80, 85, 72]
plt.figure(figsize=(10, 6), dpi=80)
plt.title('体重年龄折线图')
plt.xlabel('年龄(岁)')
plt.ylabel('体重(kg)')
plt.plot(x, y1, color='red', label='张三')
plt.plot(x, y2, color='blue', label='李四')
# 添加网格,alpha 为透明度
plt.grid(alpha=0.5)
# 添加图例
plt.legend(loc='upper right')
plt.show()

看一下效果:
在这里插入图片描述

子图

Matplotlib 可以实现在一张图中绘制多个子图,我们通过示例来看一下。

from matplotlib import pyplot as pltimport numpy as npa = np.arange(1, 30)
# 划分子图
fig, axs = plt.subplots(2, 2)
# 绘制子图
axs1 = axs[0, 0]
axs2 = axs[0, 1]
axs3 = axs[1, 0]
axs4 = axs[1, 1]
axs1.plot(a, a)
axs2.plot(a, np.sin(a))
axs3.plot(a, np.log(a))
axs4.plot(a, a ** 2)
plt.show()

看一下效果:
在这里插入图片描述

散点图

散点图表示因变量随自变量而变化的大致趋势,我们通过示例来具体看一下如何绘制散点图。

from matplotlib import pyplot as plt
import numpy as npx = np.arange(0, 20)
# 生成随机数
y = np.random.randint(0, 20, size=20)
plt.title('散点图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
plt.plot(x, y, 'ob')
plt.show()

看一下效果:

在这里插入图片描述

直方图

直方图也被称为质量分布图,主要用来表示数据的分布情况,我们通过示例来看一下如何绘制直方图。

from matplotlib import pyplot as plt
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False# 生成随机数
d1 = np.random.randn(5000)
d2 = np.random.randn(4000)
'''
bins:直方图条目数
alpha:透明度
label:图例名
'''
plt.hist(d1, bins=50, label = 'label1', alpha=0.8)
plt.hist(d2, bins=50, label = 'label2', alpha=0.5)
plt.grid(alpha=0.3)
plt.title('直方图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
# 显示图例
plt.legend()
plt.show()

看一下效果:
在这里插入图片描述

条形图

条形图宽度相同,用高度或长短来表示数据多少,它可以横置或纵置。

纵置

首先,我们来看一下如何绘制纵向条形图,以学生成绩为例,看一下具体实现。

from matplotlib import pyplot as plt
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = Falsearr = np.arange(4)
x = ['张三', '李四', '王五', '赵六']
y = [77, 79, 70, 70]
'''
width:长条形宽度
label:图例名
'''
rects = plt.bar(arr, y, width=0.3, label='语文')
'''
参数1:中点坐标
参数2:显示值
'''
plt.xticks([idx for idx in range(len(x))], x)
plt.title('学生成绩条形图')
plt.xlabel('姓名')
plt.ylabel('成绩')
plt.legend()
# 在条形图上加标注
for rect in rects:height = rect.get_height()plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
plt.show()

看一下效果:
在这里插入图片描述

横置

我们接着再通过示例来看一下如何绘制横向条形图。

from matplotlib import pyplot as plt
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = Falsearr = np.arange(4)
y = ['张三', '李四', '王五', '赵六']
x = [88, 79, 70, 66]
plt.barh(range(4), x, 0.4, label='语文')
plt.yticks(range(4), y)
plt.xlabel('成绩')
plt.ylabel('姓名')
plt.title('学生成绩条形图')
plt.legend(loc='upper right')
for x, y in enumerate(x):plt.text(y + 0.2, x - 0.1, '%s' % y)
plt.show()

看一下效果:

在这里插入图片描述

多条

最后,我们来看一下一个学生要同时显示语文和数学两门成绩时,如何通过 Matplotlib 来绘制条形图。

import matplotlib.pyplot as plt
import numpy as nparr = np.arange(4)
x = ['张三', '李四', '王五', '赵六']
y1 = [88, 75, 77, 66]
y2 = [77, 79, 70, 70]
'''
width:长条形宽度
label:图例名
'''
rects1 = plt.bar(arr, y1, width=0.3, label='语文')
rects2 = plt.bar(arr + 0.3, y2, width=0.3, label='数学')
'''
参数1:中点坐标
参数2:显示值
参数3:间距
'''
plt.xticks([idx + 0.15 for idx in range(len(x))], x, rotation=10)
plt.title('学生成绩条形图')
plt.xlabel('姓名')
plt.ylabel('成绩')
plt.legend()
# 编辑文本
for rect in rects1:height = rect.get_height()plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
for rect in rects2:height = rect.get_height()plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
plt.show()

看一下效果:

在这里插入图片描述

饼图

饼图显示一个数据系列,我们通过示例来看一下如何绘制饼图。

from matplotlib import pyplot as plt
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = Falselabel_list = ['第一部分', '第二部分', '第三部分']
size = [50, 30, 20]
# 各部分颜色
color = ['red', 'green', 'blue']
# 各部分突出值
explode = [0, 0.1, 0]
'''
explode:设置各部分突出
label:设置图例显示内容
labeldistance:设置图例内容距圆心位置
autopct:设置圆里面文本
shadow:设置是否有阴影
startangle:起始角度,默认从 0 开始逆时针转
pctdistance:设置圆内文本距圆心距离
l_text:圆内部文本
p_text:圆外部文本
'''
patches, l_text, p_text = plt.pie(size, explode=explode, colors=color, labels=label_list, labeldistance=1.1, autopct="%1.1f%%", shadow=False, startangle=90, pctdistance=0.6)
# 设置横轴和纵轴大小相等,这样饼才是圆的
plt.axis('equal')
plt.legend(loc='upper left')
plt.show()

看一下效果:
在这里插入图片描述

相关文章:

Python 数据分析 - Matplotlib 绘图

Python 数据分析 - Matplotlib 绘图 简介绘图折线图单线多线子图 散点图直方图条形图纵置横置多条 饼图 简介 Matplotlib 是 Python 提供的一个绘图库,通过该库我们可以很容易的绘制出折线图、直方图、散点图、饼图等丰富的统计图,安装使用 pip install…...

深入探讨数据库索引类型:B-tree、Hash、GIN与GiST的对比与应用

title: 深入探讨数据库索引类型:B-tree、Hash、GIN与GiST的对比与应用 date: 2025/1/26 updated: 2025/1/26 author: cmdragon excerpt: 在现代数据库管理系统中,索引技术是提高查询性能的重要手段。当数据量不断增长时,如何快速、有效地访问这些数据成为了数据库设计的核…...

【Redis】hash 类型的介绍和常用命令

1. 介绍 Redis 中存储的 key-value 本身就是哈希表的结构,存储的 value 也可以是一个哈希表的结构 这里每一个 key 对应的一个 哈希类型用 field-value 来表示 2. 常用命令 命令 介绍 时间复杂度 hset key field value 用于设置哈希表 key 中字段 field 的值为…...

World Creator地形导入UE

修改导出分辨率1009x1009, 虚幻默认参数的整体分辨率是1009 导出预设选择高度图(heigh map)格式选择PNG 16位,或者RAW 16位,需要反转y轴(与虚幻不同),命名格式会自动带一个 , 将改成_ 或者删掉自己命名 &am…...

mybatis(104/134)

动态sql标签,用于选择查询 if标签 where标签 :自动生成where,取决于后面有没有条件,会自动去除条件前面的and和or,不会去除语句后面的 trim标签:自动生成where,在语句后自动去除后缀and和or for…...

制造企业的成本核算

一、生产成本与制造费用的区别 (1)生产成本,是直接用于产品生产,构成产品实体的材料成本。 包括企业在生产经营过程中实际消耗的原材料、辅助材料、备品备件、外购半成品、燃料、动力包装物以及其它直接材料,和直接参加产品生产的工人工资,以及按生产工人的工资总额和规…...

Windows中本地组策略编辑器gpedit.msc打不开/微软远程桌面无法复制粘贴

目录 背景 解决gpedit.msc打不开 解决复制粘贴 剪贴板的问题 启用远程桌面剪贴板与驱动器 重启RDP剪贴板监视程序 以上都不行?可能是操作被Win11系统阻止 最后 背景 远程桌面无法复制粘贴,需要查看下主机策略组设置,结果按WinR输入…...

详解排序算法

文章目录 1. 排序算法分类2. 比较排序算法介绍2.1 插入排序2.1.1 直接插入排序2.1.2 希尔排序 2.2 选择排序2.2.1 直接选择排序2.2.2 堆排序2.2.2.1 向下调整算法建堆2.2.2.2 向上调整算法建堆2.2.2.3 进行堆排序2.2.2.4 堆排序时间、空间复杂度分析2.2.2.5 利用堆排序解决TOP-…...

练习题 - Django 4.x File 文件上传使用示例和配置方法

在现代的 web 应用开发中,文件上传是一个常见的功能,无论是用户上传头像、上传文档,还是其他类型的文件,处理文件上传都是开发者必须掌握的技能之一。Django 作为一个流行的 Python web 框架,提供了便捷的文件上传功能和配置方法。学习如何在 Django 中实现文件上传,不仅…...

Vue 响应式渲染 - 待办事项简单实现

Vue 渐进式JavaScript 框架 基于Vue2的学习笔记 - Vue 响应式渲染 - 待办事项简单实现 目录 待办事项简单实现 页面初始化 双向绑定的指令 增加留言列表设置 增加删除按钮 最后优化 总结 待办事项简单实现 页面初始化 对页面进行vue的引入、创建输入框和按钮及实例化V…...

【福州市AOI小区面】shp数据学校大厦商场等占地范围面数据内容测评

AOI城区小区面样图和数据范围查看: — 字段里面有name字段。分类比较多tpye:每个值代表一个类型。比如字段type中1549代表小区住宅,1563代表学校。小区、学校等占地面积范围数据 —— 小区范围占地面积面数据shp格式 无偏移坐标,只…...

llama.cpp LLM_ARCH_DEEPSEEK and LLM_ARCH_DEEPSEEK2

llama.cpp LLM_ARCH_DEEPSEEK and LLM_ARCH_DEEPSEEK2 1. LLM_ARCH_DEEPSEEK and LLM_ARCH_DEEPSEEK22. LLM_ARCH_DEEPSEEK and LLM_ARCH_DEEPSEEK23. struct ggml_cgraph * build_deepseek() and struct ggml_cgraph * build_deepseek2()References 不宜吹捧中国大语言模型的同…...

k8s简介,k8s环境搭建

目录 K8s简介环境搭建和准备工作修改主机名(所有节点)配置静态IP(所有节点)关闭防火墙和seLinux,清除iptables规则(所有节点)关闭交换分区(所有节点)修改/etc/hosts文件&…...

2024年个人总结

序 照例,每年都有的个人年度总结来了,看了很多其他大佬的总结,感觉自己的2024过于单薄,故事也不太丰满,自己就回去比较,自己哪里做的不好 ?但后来发现已经进入了一个思维误区。 年度总结年度总结…...

【落羽的落羽 数据结构篇】顺序表

文章目录 一、线性表二、顺序表1. 概念与分类2. 准备工作3. 静态顺序表4. 动态顺序表4.1 定义顺序表结构4.2 顺序表的初始化4.3 检查空间是否足够4.3 尾部插入数据4.4 头部插入数据4.5 尾部删除数据4.6 头部删除数据4.7 在指定位置插入数据4.8 在指定位置删除数据4.9 顺序表的销…...

麒麟操作系统服务架构保姆级教程(十四)iptables防火墙四表五链和防火墙应用案例

如果你想拥有你从未拥有过的东西,那么你必须去做你从未做过的事情 防火墙在运维工作中有着不可或缺的重要性。首先,它是保障网络安全的关键防线,通过设置访问控制规则,可精准过滤非法网络流量,有效阻挡外部黑客攻击、恶…...

Linux之详谈——权限管理

目录 小 峰 编 程 ​编辑 一、权限概述 1、什么是权限 2、为什么要设置权限 3、Linux中的权限类别- 4、Linux中文件所有者 1)所有者分类(谁) 2)所有者的表示方法 ① u(the user who owns it)(属主权限&…...

第05章 13 椭球体张量可视化应用一则-神经束追踪

在神经束追踪(Tractography)中,椭球体张量(Ellipsoid Tensor)通常用于描述神经纤维的方向和扩散特性。这种技术广泛应用于磁共振成像(MRI)的扩散张量成像(DTI)数据中。VT…...

Celery

https://www.bilibili.com/video/BV1RGDEY5ERB 架构 简单任务 执行 包结构 本示例: app 添加任务 获取结果 配置延时任务 任务配置 beat 提交定时任务...

JavaScript系列(48)-- 3D渲染引擎实现详解

JavaScript 3D渲染引擎实现详解 🎮 今天,让我们深入探讨JavaScript的3D渲染引擎实现。通过WebGL和现代JavaScript技术,我们可以构建一个功能完整的3D渲染系统。 3D渲染基础概念 🌟 💡 小知识:3D渲染引擎的…...

Golang并发机制及CSP并发模型

Golang 并发机制及 CSP 并发模型 Golang 是一门为并发而生的语言,其并发机制基于 CSP(Communicating Sequential Processes,通信顺序过程) 模型。CSP 是一种描述并发系统中交互模式的正式语言,强调通过通信来共享内存…...

使用 Docker + Nginx + Certbot 实现自动化管理 SSL 证书

使用 Docker Nginx Certbot 实现自动化管理 SSL 证书 在互联网安全环境日益重要的今天,为站点或应用部署 HTTPS 已经成为一种常态。然而,手动申请并续期证书既繁琐又容易出错。本文将以 Nginx Certbot 为示例,基于 Docker 容器来搭建一个…...

游戏策划的分类

P3游戏策划分类 1.程序2.美术3.策划 程序:一般分为客户端程序和服务器程序 客户端程序一般负责游戏的前端画面表现 服务器程序负责游戏的后端运算 美术:角色原画,角色模型动作,场景原画,场景模型,UI设计&a…...

Edge-TTS在广电系统中的语音合成技术的创新应用

Edge-TTS在广电系统中的语音合成技术的创新应用 作者:本人是一名县级融媒体中心的工程师,多年来一直坚持学习、提升自己。喜欢Python编程、人工智能、网络安全等多领域的技术。 摘要 随着人工智能技术的快速发展,文字转语音(Te…...

python学opencv|读取图像(四十七)使用cv2.bitwise_not()函数实现图像按位取反运算

【0】基础定义 按位与运算:两个等长度二进制数上下对齐,全1取1,其余取0。按位或运算:两个等长度二进制数上下对齐,有1取1,其余取0。 按位取反运算:一个二进制数,0变1,1变0。 【1】…...

一文讲解Java中Object类常用的方法

在Java中,经常提到一个词“万物皆对象”,其中的“万物”指的是Java中的所有类,而这些类都是Object类的子类; Object主要提供了11个方法,大致可以分为六类: 对象比较: public native int has…...

【算法篇·更新中】C++秒入门(附练习用题目)

一.二分 1.二分查找 我们来看这样一道题&#xff1a; 有一个保证有序的数组a&#xff0c;它的长度为n。现在我们需要知道这个序列是否含有x。 数据范围&#xff1a;保证n<1e9 我们看到这道题之后&#xff0c;第一时间想到的就是暴力枚举了&#xff0c;可是我们发现直接枚举…...

面向对象编程 vs 面向过程编程

面向对象编程 vs 面向过程编程&#xff1a;深入解析这两种编程范式的区别 在当今软件开发领域&#xff0c;编程范式的选择对于项目的可维护性和可扩展性至关重要。面向对象编程&#xff08;OOP&#xff09;和面向过程编程&#xff08;POP&#xff09;是两种根本的编程思想。本…...

【Rust自学】16.2. 使用消息传递来跨线程传递数据

喜欢的话别忘了点赞、收藏加关注哦&#xff08;加关注即可阅读全文&#xff09;&#xff0c;对接下来的教程有兴趣的可以关注专栏。谢谢喵&#xff01;(&#xff65;ω&#xff65;) 16.2.1. 消息传递 有一种很流行而且能保证安全并发的技术&#xff08;或者叫机制&#xff…...

【四川乡镇界面】图层shp格式arcgis数据乡镇名称和编码2020年wgs84无偏移内容测评

本文将详细解析标题和描述中提到的IT知识点&#xff0c;主要涉及GIS&#xff08;Geographic Information System&#xff0c;地理信息系统&#xff09;技术&#xff0c;以及与之相关的文件格式和坐标系统。 我们要了解的是"shp"格式&#xff0c;这是一种广泛用于存储…...

人物传记之新月篇

相关故事链接&#xff08;及时更新&#xff09;&#xff1a;Python的那些事第四篇&#xff1a;编程中的智慧之光控制结构-CSDN博客 Python的那些事第五篇&#xff1a;数据结构的艺术与应用-CSDN博客 目录 1. C语言程序&#xff1a;增强版加密与解密工具 2. Python程序&#x…...

TypeScript中的函数:类型安全与高级特性

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…...

DDD 和 TDD

领域驱动设计&#xff08;DDD&#xff09; DDD 是一种软件开发方法&#xff0c;强调通过与领域专家的密切合作来构建一个反映业务逻辑的模型。其核心思想是将业务逻辑和技术实现紧密结合&#xff0c;以便更好地解决复杂的业务问题。 DDD 的关键概念&#xff1a; 1. 领域模型 …...

【C语言分支与循环结构详解】

目录 ---------------------------------------begin--------------------------------------- 一、分支结构 1. if语句 2. switch语句 二、循环结构 1. for循环 2. while循环 3. do-while循环 三、嵌套结构 结语 -----------------------------------------end----…...

FaceFusion

文章目录 一、关于 FaceFusion预览 二、安装三、用法 一、关于 FaceFusion FaceFusion 是行业领先的人脸操作平台 github : https://github.com/facefusion/facefusion官方文档&#xff1a;https://docs.facefusion.io/Discord : https://discord.com/invite/facefusion-1141…...

图论——单源最短路的扩展应用

acwing1137.选择最佳路线 本题有两个解决思路 1.建立虚拟源点&#xff0c;连接虚拟源点和 w w w个可作为起点的点&#xff0c;边权为0&#xff0c;这样只需要从虚拟源点开始做一遍最短路算法便可。 2.反向建边&#xff0c;把所有的add(a,b,c)变成add(b,a,c)&#xff0c;这样只…...

Linux shell脚本笔记-One

前言 本文主要汇总有关shell脚本常用的知识点&#xff0c;有时候使用忘记某些用法指令&#xff0c;特此汇总方便后续查阅。 一.shell脚本编写的头部定义: 定义的shell脚本头部有多种写法&#xff0c;具体根基实际系统结构处理&#xff0c;如下: #!/bin/sh &#xff…...

【C语言----函数详解】

目录 ----------------------------------------begin-------------------------------------- 引言 一、函数是什么 二、函数的定义和声明 1. 函数的定义 2. 函数的声明 三、函数的调用 四、函数参数传递 五、函数的返回值 六、递归函数 七、函数指针 八、总结 ---…...

QT交叉编译环境搭建(Cmake和qmake)

介绍一共有两种方法&#xff08;基于qmake和cmake&#xff09;&#xff1a; 1.直接调用虚拟机中的交叉编译工具编译 2.在QT中新建编译套件kits camke和qmake的区别&#xff1a;CMake 和 qmake 都是自动化构建工具&#xff0c;用于简化构建过程&#xff0c;管理编译设置&…...

Zemax 中的屋脊棱镜建模

光学棱镜是一种透明的光学元件&#xff0c;其表面平坦且抛光&#xff0c;可以折射光线。最常见的棱镜类型是三棱镜&#xff0c;它有两个三角形底座和三个矩形或略呈梯形的表面。棱镜通常由玻璃或丙烯酸等材料制成。当光线以一定角度进入棱镜时&#xff0c;它会在穿过棱镜时发生…...

CUDA学习-内存访问

一 访存合并 1.1 说明 本部分内容主要参考: 搞懂 CUDA Shared Memory 上的 bank conflicts 和向量化指令(LDS.128 / float4)的访存特点 - 知乎 1.2 share memory结构 图1.1 share memory结构 放在 shared memory 中的数据是以 4 bytes(即 32 bits)作为 1 个 word,依…...

Nginx 开发总结

文章目录 1. Nginx 基础概念1-1、什么是 Nginx1-2、Nginx 的工作原理1-3、Nginx 的核心特点1-4、Nginx 的常见应用场景1-5、Nginx 与 Apache 的区别1-6、 Nginx 配置的基本结构1-7、Nginx 常见指令 2. Nginx 配置基础2-1、Nginx 配置文件结构2-2、全局配置 (Global Block)2-3、…...

目标跟踪之sort算法(3)

这里写目录标题 1 流程1 预处理2 跟踪 2 代码 参考&#xff1a;sort代码 https://github.com/abewley/sort 1 流程 1 预处理 1.1 获取离线检测数据。1.2 实例化跟踪器。2 跟踪 2.1 轨迹处理。根据上一帧的轨迹预测当前帧的轨迹&#xff0c;剔除到当前轨迹中为空的轨迹得到当前…...

C++/stack_queue

目录 1.stack 1.1stack的介绍 1.2stack的使用 练习题&#xff1a; 1.3stack的模拟实现 2.queue的介绍和使用 2.1queue的介绍 2.2queue的使用 2.3queue的模拟实现 3.priority_queue的介绍和使用 3.1priority_queue的介绍 3.2priority_queue的使用 欢迎 1.stack 1.1stack…...

小程序电商运营内容真实性增强策略及开源链动2+1模式AI智能名片S2B2C商城系统源码的应用探索

摘要&#xff1a;随着互联网技术的不断发展&#xff0c;小程序电商已成为现代商业的重要组成部分。然而&#xff0c;如何在竞争激烈的市场中增强小程序内容的真实性&#xff0c;提高用户信任度&#xff0c;成为电商运营者面临的一大挑战。本文首先探讨了通过图片、视频等方式增…...

「Unity3D」在Unity中使用C#控制显示Android的状态栏

Unity打包的Android默认都是全屏&#xff0c;如果想要在真机上显示状态栏&#xff0c;就需要额外设置&#xff0c;有两种方式&#xff1a; 第一种&#xff0c;使用Android的Java代码去控制&#xff0c;然后以插件的方式放到Unity中&#xff0c;被C#调用。第二种&#xff0c;使…...

基于51单片机和ESP8266(01S)、LCD1602、DS1302、独立按键的WiFi时钟

目录 系列文章目录前言一、效果展示二、原理分析三、各模块代码1、延时2、定时器03、串口通信4、DS13025、LCD16026、独立按键 四、主函数总结 系列文章目录 前言 之前做了一个WiFi定时器时钟&#xff0c;用八位数码管进行显示&#xff0c;但是定时器时钟的精度较低&#xff0…...

AI 浪潮席卷中国年,开启科技新春新纪元

在这博主提前祝大家蛇年快乐呀&#xff01;&#xff01;&#xff01; 随着人工智能&#xff08;AI&#xff09;技术的飞速发展&#xff0c;其影响力已经渗透到社会生活的方方面面。在中国传统节日 —— 春节期间&#xff0c;AI 技术也展现出了巨大的潜力&#xff0c;为中国年带…...

STM32 LED呼吸灯

接线图&#xff1a; 这里将正极接到PA0引脚上&#xff0c;负极接到GND&#xff0c;这样就高电平点亮LED&#xff0c;低电平熄灭。 占空比越大&#xff0c;LED越亮&#xff0c;占空比越小&#xff0c;LED越暗 PWM初始化配置 输出比较函数介绍&#xff1a; 用这四个函数配置输…...

机器学习day4

自定义数据集 使用pytorch框架实现逻辑回归并保存模型&#xff0c;然后保存模型后再加载模型进行预测 import numpy as np import torch import torch.nn as nn import torch.optim as optimizer import matplotlib.pyplot as pltclass1_points np.array([[2.1, 1.8],[1.9, 2…...