当前位置: 首页 > news >正文

“harmony”整合不同平台的单细胞数据之旅

其实在Seurat v3官方网站的Vignettes中就曾见过该算法,但并没有太多关注,直到看了北大张泽民团队在2019年10月31日发表于Cell《Landscap and Dynamics of Single Immune Cells in Hepatocellular Carcinoma》,为了同时整合两类数据(包括SMART-seq2和10X)(Hemberg-lab单细胞转录组数据分析(七)- 导入10X和SmartSeq2数据Tabula Muris),使不同平台的数据可以整合一起进行非监督聚类(基因共表达聚类分析和可视化),作者使用了harmony算法。

其实该算法于2018年就已经发表于bioRxiv(https://www.biorxiv.org/content/early/2018/11/04/461954) ,其算法逻辑如下图所示:

图片

图1. Harmony算法概述

harmony算法与其他整合算法相比的优势

(1)整合数据的同时对稀有细胞的敏感性依然很好;
(2)省内存;
(3)适合于更复杂的单细胞分析实验设计,可以比较来自不同供体,组织和技术平台的细胞。

基本原理:我们用不同颜色表示不同数据集,用形状表示不同的细胞类型。首先,Harmony应用主成分分析(一文看懂PCA主成分分析)将转录组表达谱嵌入到低维空间中,然后应用迭代过程去除数据集特有的影响。

(A)Harmony概率性地将细胞分配给cluster,从而使每个cluster内数据集的多样性最大化。
(B)Harmony计算每个cluster的所有数据集的全局中心,以及特定数据集的中心。
(C)在每个cluster中,Harmony基于中心为每个数据集计算校正因子。
(D)最后,Harmony使用基于C的特定于细胞的因子校正每个细胞。由于Harmony使用软聚类,因此可以通过多个因子的线性组合对其A中进行的软聚类分配进行线性校正,来修正每个单细胞。
重复步骤A到D,直到收敛为止。聚类分配和数据集之间的依赖性随着每一轮的减少而减小。

安装

library(devtools)
install_github("immunogenomics/harmony")

流程

我们以Seurat v3为例,使用harmony进行数据整合:

library(Seurat)
library(cowplot)
library(harmony)

首先,下载稀疏矩阵示例(https://www.dropbox.com/s/t06tptwbyn7arb6/pbmc_stim.RData?dl=1)并将其移动到文件夹下(例如data/)。

load('data/pbmc_stim.RData') #加载矩阵数据

Initialize Seurat Object

在运行Harmony之前,创建一个Seurat对象并按照标准PCA(用了这么多年的PCA可视化竟然是错的!!!)进行分析。

pbmc <- CreateSeuratObject(counts = cbind(stim.sparse, ctrl.sparse), project = "PBMC", min.cells = 5) %>%Seurat::NormalizeData(verbose = FALSE) %>%FindVariableFeatures(selection.method = "vst", nfeatures = 2000) %>%ScaleData(verbose = FALSE) %>%RunPCA(pc.genes = pbmc@var.genes, npcs = 20, verbose = FALSE)

R语言中%>%的含义是什么呢,管道函数啦,就是把左件的值发送给右件的表达式,并作为右件表达式函数的第一个参数。

pbmc@meta.data$stim <- c(rep("STIM", ncol(stim.sparse)), rep("CTRL", ncol(ctrl.sparse)))#赋值条件变量

未经校正的PC中的数据集之间存在明显差异:

options(repr.plot.height = 5, repr.plot.width = 12)
p1 <- DimPlot(object = pbmc, reduction = "pca", pt.size = .1, group.by = "stim", do.return = TRUE)
p2 <- VlnPlot(object = pbmc, features = "PC_1", group.by = "stim", do.return = TRUE, pt.size = .1)
plot_grid(p1,p2)

图片

Run Harmony

运行Harmony的最简单方法是传递Seurat对象并指定要集成的变量。RunHarmony返回Seurat对象,并使用更正后的Harmony坐标。让我们将plot_convergence设置为TRUE,这样我们就可以确保Harmony目标函数在每一轮中都变得更好。

options(repr.plot.height = 2.5, repr.plot.width = 6)
pbmc <- pbmc %>%
RunHarmony("stim", plot_convergence = TRUE)
Harmony 1/10
Harmony 2/10
Harmony 3/10
Harmony 4/10
Harmony 5/10
Harmony 6/10
Harmony 7/10
Harmony 8/10
Harmony converged after 8 iterations

图片

要直接访问新的Harmony embeddings,请使用Embeddings命令。

harmony_embeddings <- Embeddings(pbmc, 'harmony')
harmony_embeddings[1:5, 1:5]

图片

让我们查看确认数据集在Harmony运行之后的前两个维度中得到很好的整合。

options(repr.plot.height = 5, repr.plot.width = 12)
p1 <- DimPlot(object = pbmc, reduction = "harmony", pt.size = .1, group.by = "stim", do.return = TRUE)
p2 <- VlnPlot(object = pbmc, features = "harmony_1", group.by = "stim", do.return = TRUE, pt.size = .1)
plot_grid(p1,p2)

图片

Downstream analysis

许多下游分析是在低维嵌入而不是基因表达上进行的。要使用校正后的Harmony embeddings而不是PC(还在用PCA降维?快学学大牛最爱的t-SNE算法吧, 附Python/R代码),请设置reduction ='harmony'。例如,让我们使用Harmony降维后的数据执行UMAPNearest Neighbor分析。

pbmc <- pbmc %>%RunUMAP(reduction = "harmony", dims = 1:20) %>%FindNeighbors(reduction = "harmony", dims = 1:20) %>%FindClusters(resolution = 0.5) %>%identity()

图片

在UMAP embedding中,我们可以看到更复杂的结构。由于我们使用harmony embeddings,因此UMAP embeddings混合得很好。

options(repr.plot.height = 4, repr.plot.width = 10)
DimPlot(pbmc, reduction = "umap", group.by = "stim", pt.size = .1, split.by = 'stim')

图片

在这种充分混合的嵌入中,我们可以开始使用聚类分析来识别细胞类型(Celaref | 单细胞测序细胞类型注释工具)。

options(repr.plot.height = 4, repr.plot.width = 6)
DimPlot(pbmc, reduction = "umap", label = TRUE, pt.size = .1)

图片

快来试一试:https://github.com/immunogenomics/harmony

相关文章:

“harmony”整合不同平台的单细胞数据之旅

其实在Seurat v3官方网站的Vignettes中就曾见过该算法&#xff0c;但并没有太多关注&#xff0c;直到看了北大张泽民团队在2019年10月31日发表于Cell的《Landscap and Dynamics of Single Immune Cells in Hepatocellular Carcinoma》&#xff0c;为了同时整合两类数据&#xf…...

[权限提升] 操作系统权限介绍

关注这个专栏的其他相关笔记&#xff1a;[内网安全] 内网渗透 - 学习手册-CSDN博客 权限提升简称提权&#xff0c;顾名思义就是提升自己在目标系统中的权限。现在的操作系统都是多用户操作系统&#xff0c;用户之间都有权限控制&#xff0c;我们通过 Web 漏洞拿到的 Web 进程的…...

大模型本地部署流程介绍

大模型本地部署流程介绍 随着人工智能技术的快速发展&#xff0c;大模型&#xff08;如大型语言模型、图像识别模型等&#xff09;的应用越来越广泛。然而&#xff0c;由于这些模型通常体积庞大且计算资源要求高&#xff0c;如何在本地环境中高效部署成为了一个重要的议题。以…...

浅析百度AOI数据与高德AOI数据的差异性

目录 前言 一、AOI属性数据 1、百度AOI数据 2、高德AOI数据 二、AOI矢量边界 1、百度AOI空间范围 2、高德AOI空间范围 三、数据获取频次和难易程度 1、接口限制 2、数据转换成本 四、总结 前言 在当今数字化时代&#xff0c;地理信息数据的精准性和丰富性对于城市规划…...

LeetCode 119. 杨辉三角 II

题意&#xff1a;求杨辉三角&#xff08;帕斯卡三角&#xff09;的第n行&#xff08;n从0开始&#xff09; 杨辉三角的每一行是二项式排列组合的展开式 第n行为: C n 0 , C n 1 , C n 2 , … , C n n C_{n}^{0}, C_{n}^{1}, C_{n}^{2}, \dots, C_{n}^{n} Cn0​,Cn1​,Cn2​,……...

机器学习-K近邻算法

文章目录 一. 数据集介绍Iris plants dataset 二. 代码三. k值的选择 一. 数据集介绍 鸢尾花数据集 鸢尾花Iris Dataset数据集是机器学习领域经典数据集&#xff0c;鸢尾花数据集包含了150条鸢尾花信息&#xff0c;每50条取自三个鸢尾花中之一&#xff1a;Versicolour、Setosa…...

设计模式Python版 原型模式

文章目录 前言一、原型模式二、原型模式示例三、原型管理器 前言 GOF设计模式分三大类&#xff1a; 创建型模式&#xff1a;关注对象的创建过程&#xff0c;包括单例模式、简单工厂模式、工厂方法模式、抽象工厂模式、原型模式和建造者模式。结构型模式&#xff1a;关注类和对…...

centos安装mysql

下面的方法不行&#xff0c;最后还是通过我自己的博客中的 https://blog.csdn.net/qq_21237549/article/details/133759503 CentOS 安装MySQL 详细教程 安装成功的 通过网盘分享的文件&#xff1a;服务器部署 链接: https://pan.baidu.com/s/12QwjIMgwHcwVeVoal-BKrg 提取码:…...

java 判断Date是上午还是下午

我要用Java生成表格统计信息&#xff0c;如下图所示&#xff1a; 所以就诞生了本文的内容。 在 Java 里&#xff0c;判断 Date 对象代表的时间是上午还是下午有多种方式&#xff0c;下面为你详细介绍不同的实现方法。 方式一&#xff1a;使用 java.util.Calendar Calendar 类…...

Jenkins安装部署(以及常见报错解决方案),jdk版本控制器sdkman

目录 零、环境介绍 一、Jenkins安装 1、插件安装以及更换插件源 2、修改jenkins时区 二、sdkman安装&#xff08;可选&#xff09; 1、sdkman常用方法 2、sdkman常用方法演示 2.1、查看可用的jdk 2.2、下载jdk并切换版本 三、jenkins报错解决 1、下载sdkman后systemc…...

【Linux】gdb——Linux调试器

gdb使用背景 程序的发布方式有两种&#xff0c;debug模式和release模式 Linux gcc/g出来的二进制程序&#xff0c;默认是release模式 要使用gdb调试&#xff0c;必须在源代码生成二进制程序的时候, 加上 -g 选项 gdb使用方法 首先进入gdb gdb test_glist显示代码 断点 b 行…...

978.最长湍流子数组

目录 题目过程解法收获 题目 给定一个整数数组 arr &#xff0c;返回 arr 的 最大湍流子数组的长度 。 如果比较符号在子数组中的每个相邻元素对之间翻转&#xff0c;则该子数组是 湍流子数组 。 更正式地来说&#xff0c;当 arr 的子数组 A[i], A[i1], …, A[j] 满足仅满足…...

LLM - 大模型 ScallingLaws 的指导模型设计与实验环境(PLM) 教程(4)

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/145323420 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 Scaling Laws (缩放法则) 是大模型领域中,用于描述 模型性能(Loss) 与…...

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.19 排序革命:argsort的十大高阶用法

1.19 排序革命&#xff1a;argsort的十大高阶用法 目录 #mermaid-svg-Qu8PcmLkIc1pOQJ7 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-Qu8PcmLkIc1pOQJ7 .error-icon{fill:#552222;}#mermaid-svg-Qu8PcmLkIc1pOQJ…...

记忆力训练day07

逻辑分类联想记忆法 一 课程目标 &#xff08;1&#xff09;掌握如何分类信息 &#xff08;2&#xff09;掌握如何运用逻辑分类方法进行记忆 小试牛刀&#xff1a; 核心的内容&#xff1a; 文字逻辑分类记忆&#xff1a;把文字分类后转换成画面连接记忆。 玫瑰 大树 太阳…...

RK3588平台开发系列讲解(ARM篇)ARM64底层中断处理

文章目录 一、异常级别二、异常分类2.1、同步异常2.2、异步异常三、中断向量表沉淀、分享、成长,让自己和他人都能有所收获!😄 一、异常级别 ARM64处理器确实定义了4个异常级别(Exception Levels, EL),分别是EL0到EL3。这些级别用于管理处理器的特权级别和权限,级别越高…...

算法1-1 模拟与高精度

目录 一 阶乘数码 二 麦森数 三 模拟题 一 阶乘数码 本题中n<1000,1000的阶乘为以下这么大&#xff0c;远超long的范围 402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901…...

(四)线程 和 进程 及相关知识点

目录 一、线程和进程 &#xff08;1&#xff09;进程 &#xff08;2&#xff09;线程 &#xff08;3&#xff09;区别 二、串行、并发、并行 &#xff08;1&#xff09;串行 &#xff08;2&#xff09;并行 &#xff08;3&#xff09;并发 三、爬虫中的线程和进程 &am…...

Tensor 基本操作2 理解 tensor.max 操作,沿着给定的 dim 是什么意思 | PyTorch 深度学习实战

前一篇文章&#xff0c;Tensor 基本操作1 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 目录 Tensor 基本操作torch.max默认指定维度 Tensor 基本操作 torch.max torch.max 实现降维运算&#xff0c;基于指定的 d…...

[牛客]公交线路(dijkstra+链式前向星)

登录—专业IT笔试面试备考平台_牛客网 #include<bits/stdc.h> using namespace std; #define endl \n typedef long long ll; const int N1e65,M1e85; int cnt0,head[N]; int n,m,s,t; struct node {int v,w,next; }edge[M]; void addedge(int u,int v,int w) {cnt;edge…...

面试被问的一些问题汇总(持续更新)

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…...

RocketMQ原理—5.高可用+高并发+高性能架构

大纲 1.RocketMQ的整体架构与运行流程 2.基于NameServer管理Broker集群的架构 3.Broker集群的主从复制架构 4.基于Topic和Queue实现的数据分片架构 5.Broker基于Pull模式的主从复制原理 6.Broker层面到底如何做到数据0丢失 7.数据0丢失与写入高并发的取舍 8.RocketMQ读…...

适配器模式——C++实现

目录 1. 适配器模式简介 2. 角色组成 3. 代码示例 4. 适配器模式、装饰器模式、外观模式的辨析 1. 适配器模式简介 适配器模式是一种结构型模式。 适配器模式的定义&#xff1a;适配器模式将一个类的接口&#xff0c;转换成客户期望的另一个接口。适配器让原本接口不可兼容…...

C语言自定义数据类型详解(一)——结构体类型(上)

什么是自定义数据类型呢&#xff1f;顾名思义&#xff0c;就是我们用户自己定义和设置的类型。 在C语言中&#xff0c;我们的自定义数据类型一共有三种&#xff0c;它们分别是&#xff1a;结构体(struct)&#xff0c;枚举(enum)&#xff0c;联合(union)。接下来&#xff0c;我…...

C语言基础4

sizeof和strlen的区别 ①sizeof是运算符而strlen是函数 ②sizeof可以用类型做参数&#xff0c;strlen只能用char*做参数 ③数组做sizeof参数不退化&#xff0c;而传递给strlen则退化成指针 ④strlen结果是运行时候才能计算出来&#xff0c;而且计算出来的是字符串的长度不是内…...

【Elasticsearch】Elasticsearch的查询

Elasticsearch的查询 DSL查询基础语句叶子查询全文检索查询matchmulti_match 精确查询termrange 复合查询算分函数查询bool查询 排序分页基础分页深度分页 高亮高亮原理实现高亮 RestClient查询基础查询叶子查询复合查询排序和分页高亮 数据聚合DSL实现聚合Bucket聚合带条件聚合…...

第 5 章:声音与音乐系统

5.1 声音效果的应用 在游戏中&#xff0c;声音效果是增强游戏沉浸感和趣味性的重要元素。Pygame 提供了强大的音频处理功能&#xff0c;使得添加各种声音效果变得相对简单。声音效果可以包括角色的动作音效&#xff0c;如跳跃、攻击、受伤时的声音&#xff1b;环境音效&#x…...

第十四讲 JDBC数据库

1. 什么是JDBC JDBC&#xff08;Java Database Connectivity&#xff0c;Java数据库连接&#xff09;&#xff0c;它是一套用于执行SQL语句的Java API。应用程序可通过这套API连接到关系型数据库&#xff0c;并使用SQL语句来完成对数据库中数据的查询、新增、更新和删除等操作…...

2024年除夕

多少年前的除夕&#xff0c;一如今天这样的除夕&#xff1b;多少年后的除夕&#xff0c;也一如多少年前的除夕。 无数个这样的除夕下午&#xff0c;我打开电脑&#xff0c;望着窗外安静的小区&#xff0c;车声渐渐稀疏的马路&#xff0c;想写下一些新的感受时&#xff0c;多少…...

虚幻基础07:蓝图接口

能帮到你的话&#xff0c;就给个赞吧 &#x1f618; 文章目录 作用原理事件函数 作用 实现对象间的通知。 A 通知 B 做什么。 原理 将接口抽象为蓝图&#xff0c;使得任意蓝图都能直接访问。 只需要再传入对象地址&#xff0c;就能执行对象的功能。 事件 黄色&#xff1a;…...

7. 马科维茨资产组合模型+金融研报AI长文本智能体(Qwen-Long)增强方案(理论+Python实战)

目录 0. 承前1. 深度金融研报准备2. 核心AI函数代码讲解2.1 函数概述2.2 输入参数2.3 主要流程2.4 异常处理2.5 清理工作2.7 get_ai_weights函数汇总 3. 汇总代码4. 反思4.1 不足之处4.2 提升思路 5. 启后 0. 承前 本篇博文是对前两篇文章&#xff0c;链接: 5. 马科维茨资产组…...

如何在本地部署deepseek r1模型?

DeepSeek&#xff08;深度求索&#xff09;正式发布了其最新推理模型DeepSeek-R1&#xff0c;引发业界广泛关注。这款模型不仅在性能上与OpenAI的GPT-4相媲美&#xff0c;更以其开源策略和创新的训练方法&#xff0c;为AI发展带来了新的可能性。DeepSeek-R1 在后训练阶段大规模…...

HarmonyOS:状态管理最佳实践

一、概述 在声明式UI编程范式中&#xff0c;UI是应用程序状态的函数&#xff0c;应用程序状态的修改会更新相应的UI界面。ArkUI采用了MVVM模式&#xff0c;其中ViewModel将数据与视图绑定在一起&#xff0c;更新数据的时候直接更新视图。如下图所示&#xff1a; ArkUI的MVVM模式…...

当AI风暴来袭:中美科技商业版图的迥异走向

当AI风暴来袭:中美科技商业版图的迥异走向 美国科技巨头的 AI 豪赌:Stargate 公司的诞生 2025 年,科技界被一则重磅消息所震动:软银、NVIDIA、Oracle 与 OpenAI 共同组建了 Stargate 公司。这一合作堪称豪华阵容,软银作为全球知名的投资巨头,拥有雄厚的资金实力和广泛的…...

马尔科夫模型和隐马尔科夫模型区别

我用一个天气预报和海藻湿度观测的比喻来解释&#xff0c;保证你秒懂&#xff01; 1. 马尔可夫模型&#xff08;Markov Model, MM&#xff09; 特点&#xff1a;状态直接可见 场景&#xff1a;天气预报&#xff08;晴天→雨天→阴天…&#xff09;核心假设&#xff1a; 下一个…...

面向对象设计原则 - SOLID原则 (基于C++)

SOLID 是面向对象编程中的一组五个设计原则&#xff0c;这些原则旨在帮助开发者创建更灵活、可维护和可扩展的软件系统。它们最初由 Robert C. Martin 提出&#xff0c;并在 2000 年左右被广泛接受。每个字母代表一个不同的原则&#xff1a; 单一职责原则 (Single Responsibil…...

ChatGPT 搜索测试整合记忆功能

据 TestingCatalog 报道&#xff0c;OpenAI 正在测试 ChatGPT 搜索的整合记忆功能&#xff0c;被命名为 “Memory in search”2。以下是关于该功能的具体情况123&#xff1a; 功能特点 个性化搜索&#xff1a;启用该功能后&#xff0c;ChatGPT 能利用存储的记忆数据&#xff0…...

PWM频率测量方法

测量PWM&#xff08;脉宽调制&#xff09;信号的频率是嵌入式系统中的常见需求&#xff0c;尤其是在电机控制、LED调光、传感器信号处理等场景中。 在这里介绍两种测量PWM频率的方法&#xff1a;测频法与测周法。 1、测频&#xff08;率&#xff09;法 原理&#xff1a;在闸门…...

【B站保姆级视频教程:Jetson配置YOLOv11环境(一)镜像下载与烧录】

b站同步视频教程&#xff1a;https://www.bilibili.com/video/BV11r6oYkEFb/ 一、引言 在人工智能与计算机视觉快速发展的当下&#xff0c;Jetson系列开发板凭借强大的性能&#xff0c;成为众多开发者进行深度学习项目的热门选择。YOLOv11作为目标检测领域的先进算法&#xf…...

使用QSqlQueryModel创建交替背景色的表格模型

class UserModel(QSqlQueryModel):def __init__(self):super().__init__()self._query "SELECT name, age FROM users"self.refresh()def refresh(self):self.setQuery(self._query)# 重新定义data()方法def data(self, index, role): if role Qt.BackgroundRole…...

计算机网络__基础知识问答

Question: 1&#xff09;在计算机网络的5层结构中&#xff0c;每一层的功能大概是什么&#xff1f; 2&#xff09;交换机的功能&#xff1f;https://www.bilibili.com/video/BV1na4y1L7Ev 3&#xff09;路由器的功能&#xff1f;https://www.bilibili.com/video/BV1hv411k7n…...

C语言数组详解:从基础到进阶的全面解析

在C语言中&#xff0c;数组是一种基本的数据结构&#xff0c;用于存储多个相同类型的数据。数组的引入使得C语言能够高效地存储和操作大量数据。在任何一个C语言程序中&#xff0c;数组都发挥着极其重要的作用。无论是在算法实现、数据存储、还是在复杂程序的设计中&#xff0c…...

微前端架构在前端开发中的实践与挑战

随着单页面应用&#xff08;SPA&#xff09;和前端框架如 React、Vue、Angular 的快速发展&#xff0c;现代前端应用的复杂度日益提升。尤其是当应用规模逐渐增大时&#xff0c;单一的代码库往往难以应对不同团队的协作和版本管理问题。为了应对这一挑战&#xff0c;微前端架构…...

国内flutter环境部署(记录篇)

设置系统环境变量 export PUB_HOSTED_URLhttps://pub.flutter-io.cn export FLUTTER_STORAGE_BASE_URLhttps://storage.flutter-io.cn使用以下命令下载flutter镜像 git clone -b stable https://mirror.ghproxy.com/https://github.com/<github仓库地址>#例如flutter仓…...

Julia DataFrames.jl:深入理解和使用

随着数据科学和机器学习的发展&#xff0c;数据框架广泛应用于数据处理与分析工作中。在 Julia 语言中&#xff0c;DataFrames.jl 是一个强大且灵活的数据框库&#xff0c;为数据操作提供了丰富的功能。本文旨在系统地介绍 DataFrames.jl 的基础概念、使用方法、常见实践和最佳…...

上位机知识篇---DDSSDK

文章目录 前言第一部分&#xff1a;DDS核心特性1.以数据为中心2.发布-订阅模型3.质量服务4.多语言支持 关键概念1.主题2.发布者3.订阅者4. 数据写入者5.数据读取者6.域参与者7.域 DDS的优势1.可伸缩性2.实时性3.可靠性4.容错性 DDS的应用场景1.军事通信系统2.航空航天3.工业自动…...

基于DeepSeek在藏语学习推广和藏语信息化方面可以做哪些工作?

基于DeepSeek对藏语的技术优势&#xff0c;您可在以下三大方向开展创新性工作&#xff0c;以下是20具体落地方案&#xff1a; 一、藏语智能教育工具开发 《三十颂》AI语法教练 开发虚拟助教自动解析藏文句子结构&#xff08;标注格助词/时态变化&#xff09;错误检测系统&…...

如何把obsidian的md文档导出成图片,并加上文档属性

上篇关于这个插件PKMer_Obsidian 插件&#xff1a;Export Image plugin 一键将笔记转换为图片分享的文章 如何把obsidian的md文档导出成图片&#xff0c;并加上水印-CSDN博客 如何导出图片的时候让文档属性也显示出来&#xff0c;啊啊&#xff0c;这个功能找了一晚上&#xf…...

AUTOSAR从入门到精通-车身控制系统BCM(三)

目录 前言 算法原理 什么是车身控制模块BCM 1. BCM ECU的工作原理 a. 硬件架构 b. 控制逻辑 BCM带来的好处 车身控制模块(BCM)的功用 车身控制模块(BCM)能够控制的车身功能系统 BCM的各项功能 1.1内外部灯光控制 1.2 雨刮系统 1.3 车身防盗报警系统 1.4 车锁…...

删除全表数据sql

-- 删除 employees 表中的所有数据 DELETE FROM employees;-- 清空 employees 表中的所有数据 TRUNCATE TABLE employees;TRUNCATE 操作不记录每一行的删除操作&#xff0c;而是直接释放数据页&#xff0c;所以执行速度通常比 DELETE 快。不过它不能和 WHERE 子句一起使用&…...