【深度学习|DenseNet-121】Densely Connected Convolutional Networks内部结构和参数设置
【深度学习|DenseNet-121】Densely Connected Convolutional Networks内部结构和参数设置
【深度学习|DenseNet-121】Densely Connected Convolutional Networks内部结构和参数设置
文章目录
- 【深度学习|DenseNet-121】Densely Connected Convolutional Networks内部结构和参数设置
- 前言
- 1. 网络总体结构
- 2. 具体层次结构
- (1) 输入层(Input Layer)
- (2) 第一卷积层(Conv1)
- (3) Dense Block 1 (DB1)
- (4) Transition Layer 1 (TL1)
- (5) Dense Block 2 (DB2)
- (6) Transition Layer 2 (TL2)
- (7) Dense Block 3 (DB3)
- (8) Transition Layer 3 (TL3)
- (9) Dense Block 4 (DB4)
- (10) 全局平均池化层(Global Average Pooling)
- (11) 全连接层(Fully Connected Layer)
- 3. 参数设置
- 4. 总结
- 2025年计算机视觉研究进展与应用国际学术会议 (ACVRA 2025)
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议详细信息可参考:https://ais.cn/u/mmmiUz
前言
DenseNet121 是 DenseNet(Densely Connected Convolutional Networks)架构中的一个重要版本,它采用了密集连接(dense connection)策略,其中每一层都与前面所有的层相连接。DenseNet121的“121”表示它包含121个卷积层。接下来,我将逐层详细说明 DenseNet121 的内部结构和参数设置。
1. 网络总体结构
DenseNet121 的总体架构分为以下几个主要部分:
- 卷积层(Convolutional Layer):最开始的卷积层(Conv1),用于对输入图像进行初步处理。
- 密集块(Dense Blocks):DenseNet121 包含4个密集块,每个密集块由若干个密集单元(Dense Units)组成。每个密集单元的输出连接到后续所有单元,并且每个密集单元的输入是所有前面单元的输出。
- 过渡层(Transition Layers):每个密集块之间会有一个过渡层,它包括一个1×1卷积层和一个2×2的平均池化层(Average Pooling)。
- 全局平均池化层(Global Average Pooling):在最后一个密集块后使用全局平均池化。
- 全连接层(Fully Connected Layer):全连接层用于输出预测结果。
2. 具体层次结构
(1) 输入层(Input Layer)
- 输入尺寸通常为 224×224×3,即输入的图像大小为224x224,具有3个颜色通道(RGB)。
(2) 第一卷积层(Conv1)
- 卷积层:1个卷积层,过滤器大小为7×7,步长为2,输出通道数为64。
- BatchNorm:进行批归一化,减少内部协方差偏移。
- ReLU 激活:应用ReLU激活函数。
- 池化层:3×3最大池化,步长为2,减小空间维度。
输入的大小为 224×224×3,经过这个层之后输出 112×112×64。
(3) Dense Block 1 (DB1)
- 层数:包含6个Dense Units。
- 每个Dense Unit:每个Dense Unit由3层组成:1×1卷积层(瓶颈层,减少通道数),3×3卷积层(标准卷积层,增加特征数量)。每个Dense Unit的输出特征图将与前面所有的输出特征图连接。
在Dense Block 1 之后,输出的特征图维度为 56×56×256。
(4) Transition Layer 1 (TL1)
- 1×1卷积层:用于降低通道数,通常减少至128个通道。
- 平均池化层:进行2×2平均池化,步长为2,减小空间维度。
输出的特征图维度为 28×28×128。
(5) Dense Block 2 (DB2)
- 层数:包含12个Dense Units。
- 每个Dense Unit:和第一个密集块相同,由1×1卷积层和3×3卷积层组成,每个单元的输出连接到所有前面的单元。
在Dense Block 2 之后,输出的特征图维度为 28×28×512。
(6) Transition Layer 2 (TL2)
- 1×1卷积层:减少通道数,通常减少至256个通道。
- 平均池化层:2×2平均池化,步长为2。
输出的特征图维度为 14×14×256。
(7) Dense Block 3 (DB3)
- 层数:包含24个Dense Units。
- 每个Dense Unit:同样是由1×1卷积和3×3卷积组成,每个单元的输出连接到前面的所有单元。
在Dense Block 3 之后,输出的特征图维度为 14×14×1024。
(8) Transition Layer 3 (TL3)
- 1×1卷积层:将通道数减少到512。
- 平均池化层:进行2×2的平均池化。
输出的特征图维度为 7×7×512。
(9) Dense Block 4 (DB4)
- 层数:包含16个Dense Units。
- 每个Dense Unit:继续由1×1卷积层和3×3卷积层构成,所有单元的输出继续连接。
在Dense Block 4之后,输出的特征图维度为 7×7×1024。
(10) 全局平均池化层(Global Average Pooling)
- 池化层:将特征图的每个通道进行平均池化,从 7×7×1024 压缩成 1×1×1024。
输出的维度为 1×1×1024。
(11) 全连接层(Fully Connected Layer)
- FC层:最后通过一个全连接层映射到目标类别数的维度。例如,在分类任务中,如果有1000个类别,则输出维度为1000。
3. 参数设置
- Growth Rate:每个Dense Unit的增长率(growth rate)通常设定为32,这表示每经过一个Dense Unit,输出的特征图的通道数将增加32个。
- Dropout:DenseNet121的实现中,通常会加入dropout层,防止过拟合。它的使用通常是0.2到0.5之间。
- 初始化方法:通常使用He初始化(He Initialization)来初始化卷积层,以避免梯度消失问题。
- 激活函数:在所有卷积层后应用ReLU激活函数。
- 批归一化:所有卷积层和全连接层后面都应用了批归一化(Batch Normalization)操作。
4. 总结
- DenseNet121 是一个非常高效且深度的神经网络,通过密集连接每个层的输出,使得模型能够有效地重用特征并减少参数量。尽管具有较多的层数,但由于密集连接,它的参数量相比于传统的深度神经网络(例如VGG)要少得多,且能够取得更好的性能。
2025年计算机视觉研究进展与应用国际学术会议 (ACVRA 2025)
- 2025 International Conference on Advances in Computer Vision Research and Applications
- 2025年2月28-3月2日 广州
- 会议官网:www.acvra.org
- EI检索稳定
- 接受/拒稿通知:投稿后1周左右
相关文章:
【深度学习|DenseNet-121】Densely Connected Convolutional Networks内部结构和参数设置
【深度学习|DenseNet-121】Densely Connected Convolutional Networks内部结构和参数设置 【深度学习|DenseNet-121】Densely Connected Convolutional Networks内部结构和参数设置 文章目录 【深度学习|DenseNet-121】Densely Connected Convolutional Networks内部结构和参数…...
【问题】Qt c++ 界面 lineEdit、comboBox、tableWidget.... SIGSEGV错误
蛋疼的错误集锦----今日分错误: 在主界面或者对话框的构造函数中,准备对一些对象赋值初始化值时,报了以上错误。!!!! 一脸懵逼的,各种确认,因为是最基础的赋值想不到错在…...
Hugging Face 推出最小体积多模态模型,浏览器运行成为现实!
1. SmolVLM 模型家族简介 1.1 什么是 SmolVLM-256M 和 SmolVLM-500M,它们为何如此重要? 在人工智能的多模态模型领域,如何在有限的计算资源下实现强大性能一直是一个重要的挑战。SmolVLM-256M 和 SmolVLM-500M 是最近推出的两款视觉语言模型,它们不仅突破了传统“大模型”…...
30289_SC65XX功能机MMI开发笔记(ums9117)
建立窗口步骤: 引入图片资源 放入图片 然后跑make pprj new job8 可能会有bug,宏定义 还会有开关灯报错,看命令行注释掉 接着把ture改成false 然后命令行new一遍,编译一遍没报错后 把编译器的win文件删掉, 再跑一遍虚拟机命令行…...
提供ZYNQ,MPSOC,RFSOC生成BOOT.BIN的小工具
如图: 这里提供了三种.bif,三种批处理.bat文件,一个bootgen.exe可执行文件和这个批处理文件运行是需要的动态库文件。 我们先看一下.bat文件,以BOOT_RFSOC为例: del temp\boot.bin bootgen -image output_rfsoc.bif -arch zynqmp…...
滤波电路汇总
0、前言 1. 引言 滤波电路是电子系统中不可或缺的组成部分,其主要功能是选择性地通过或衰减特定频率范围内的信号。在现代电子技术中,滤波电路广泛应用于信号处理、通信系统、音频设备、电源设计等多个领域。通过滤波,可以去除信号中的噪声和干扰,提高信号的质量和稳定性…...
springboot 动态配置定时任务
要在Spring Boot中动态配置定时任务,可以使用ScheduledTaskRegistrar类来实现。 首先,创建一个定时任务类,该类需要实现Runnable接口。例如: Component public class MyTask implements Runnable {Overridepublic void run() {/…...
Github 2025-01-25Rust开源项目日报Top10
根据Github Trendings的统计,今日(2025-01-25统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Rust项目10Python项目1Vue项目1JavaScript项目1Deno: 现代JavaScript和TypeScript运行时 创建周期:2118 天开发语言:Rust, JavaScript协议类型…...
【Linux网络编程】数据链路层
前言: 数据链路层非常简单,对于程序员来说,这里只需要大致了解即可,本篇文章不做重点说明。 数据链路层介绍 数据链路层是OSI位于物理层之上和网络层之下,这一层的报文叫做帧。它的主要任务是确保数据从一个节点可靠地…...
MongoDB 数据库备份和恢复全攻略
在当今数据驱动的时代,数据库的稳定运行和数据安全至关重要。MongoDB 作为一款流行的 NoSQL 数据库,以其灵活的文档模型和高扩展性备受青睐。然而,无论数据库多么强大,数据丢失的风险始终存在,因此掌握 MongoDB 的备份…...
一文了解性能优化的方法
背景 在应用上线后,用户感知较明显的,除了功能满足需求之外,再者就是程序的性能了。因此,在日常开发中,我们除了满足基本的功能之外,还应该考虑性能因素。关注并可以优化程序性能,也是体现开发能…...
百度APP iOS端磁盘优化实践(上)
01 概览 在APP的开发中,磁盘管理已成为不可忽视的部分。随着功能的复杂化和数据量的快速增长,如何高效管理磁盘空间直接关系到用户体验和APP性能。本文将结合磁盘管理的实践经验,详细介绍iOS沙盒环境下的文件存储规范,探讨业务缓…...
人工智能丨基于机器学习的视觉 CV 处理技术
从自动驾驶汽车到面部识别系统,CV无处不在,赋予计算机“看”的能力。无论是图像处理、模式识别,还是视频分析,机器学习都是推动这些技术进步的核心动力。这篇文章将深入探讨基于机器学习的计算机视觉处理技术,包括它的…...
SparX实战:使用SparX实现图像分类任务(一)
摘要 SparX是一种新提出的稀疏跨层连接机制,旨在提升视觉Mamba和Transformer网络的性能。该论文由香港大学的俞益洲教授及其研究团队撰写,并将在AAAI 2025会议上发表。论文的主要目标是解决现有视觉模型在跨层特征聚合方面的不足,尤其是在计…...
vue事件总线(原理、优缺点)
目录 一、原理二、使用方法三、优缺点优点缺点 四、使用注意事项具体代码参考: 一、原理 在Vue中,事件总线(Event Bus)是一种可实现任意组件间通信的通信方式。 要实现这个功能必须满足两点要求: (1&#…...
[c语言日寄]assert函数功能详解
【作者主页】siy2333 【专栏介绍】⌈c语言日寄⌋:这是一个专注于C语言刷题的专栏,精选题目,搭配详细题解、拓展算法。从基础语法到复杂算法,题目涉及的知识点全面覆盖,助力你系统提升。无论你是初学者,还是…...
08-Elasticsearch
黑马商城作为一个电商项目,商品的搜索肯定是访问频率最高的页面之一。目前搜索功能是基于数据库的模糊搜索来实现的,存在很多问题。 首先,查询效率较低。 由于数据库模糊查询不走索引,在数据量较大的时候,查询性能很…...
贪心算法-条约游戏II
hello 大家好!今天开写一个新章节,每一天一道算法题。让我们一起来学习算法思维吧! /*** 计算到达数组最后一个元素的最小跳跃次数* param {number[]} nums - 输入的整数数组* return {number} - 最小跳跃次数*/ function jump(nums) {// 数…...
Hive:内部表和外部表,内外转换
内部表和外部表 内部表示例 给表添加数据 外部表示例 给表添加数据 外部表示例 用location指定表目录位置,那么表的位置在实际指定的位置,但是可以被映射 外部表和内部表的区别 删除表后使用show tables in shao; 已经没有被删除的表,说明元数据已经被删除(mysql里面存放),但是…...
AndroidCompose Navigation导航精通1-基本页面导航与ViewPager
文章目录 前言基本页面导航库依赖导航核心部件简单NavHost实现ViewPagerPager切换逻辑图阐述Pager导航实战前言 在当今的移动应用开发中,导航是用户与应用交互的核心环节。随着 Android Compose 的兴起,它为开发者提供了一种全新的、声明式的方式来构建用户界面,同时也带来…...
基于ESP8266的多功能环境监测与反馈系统开发指南
项目概述 本系统集成了物联网开发板、高精度时钟模块、环境传感器和可视化显示模块,构建了一个智能环境监测与反馈装置。通过ESP8266 NodeMCU作为核心控制器,结合DS3231实时时钟、DHT11温湿度传感器、光敏电阻和OLED显示屏,实现了环境参数的…...
十三先天记
没有一刻,只有当下在我心里。我像星星之间的空间一样空虚。他们是我看到的第一件事,我知道的第一件事。 在接下来的时间里,我意识到我是谁,我是谁。我知道星星在我上方,星球的固体金属体在我脚下。这个支持我的世界是泰…...
JVM垃圾回收器的原理和调优详解!
全文目录: 开篇语前言摘要概述垃圾回收器分类及原理1. Serial 垃圾回收器2. Parallel 垃圾回收器3. CMS 垃圾回收器4. G1 垃圾回收器 源码解析示例代码 使用案例分享案例 1:Web 服务的 GC 调优案例 2:大数据任务的 GC 优化 应用场景案例垃圾回…...
TypeScript 学习 -类型 - 5
类 属性必须初始化 在构造函数中赋值在定义时给一个默认值 子类 子类构造函数必须使用 super() 修饰符 默认是 publicprivate 只能在当前类中被调用protected 只能在当前类 或 子类中被调用readonly 一定要被初始化, 不可以修改static 静态成员 / 静态函数 构造函数 如果被定义…...
Django 项目中使用 MySQL 数据库的完整指南
在现代 Web 开发中,数据库是应用程序的核心组件之一。Django 作为一个强大的 Python Web 框架,默认支持多种数据库后端,包括 SQLite、PostgreSQL 和 MySQL。本文将详细介绍如何在 Django 项目中使用 MySQL 作为数据库,并实现多环境(开发、测试、生产)的配置管理。 ©…...
单片机基础模块学习——PCF8591芯片
一、A/D、D/A模块 A——Analog 模拟信号:连续变化的信号(很多传感器原始输出的信号都为此类信号)D——Digital 数字信号:只有高电平和低电平两种变化(单片机芯片、微控制芯片所能处理的都是数字信号) 下面…...
gradle和maven的区别以及怎么选择使用它们
目录 区别 1. 配置方式 2. 依赖管理 3. 构建性能 4. 灵活性和扩展性 5. 多项目构建 如何选择使用 选择 Maven 的场景 选择 Gradle 的场景 区别 1. 配置方式 Maven: 使用基于 XML 的 pom.xml 文件进行配置。所有的项目信息、依赖管理、构建插件等都在这个文…...
【面试】【前端】前端网络面试题总结
一、前端网络面试题总结 网络相关知识是前端开发的核心内容之一,面试中通常会考察协议、网络模型、性能优化及常见网络问题的处理。以下是针对前端网络面试题的总结: (一)协议森林(大话网络协议) 网络协议…...
Qt 5.14.2 学习记录 —— 이십일 Qt网络和音频
文章目录 1、UDP带有界面的Udp服务器(回显服务器) 2、TCP回显服务器 3、HTTP客户端4、音频 和Linux的网络一样,Qt封装了Linux的网络API,即Socket API。网络编程是在应用层写,需要传输层支持,传输层有UDP和T…...
C++小病毒-1.0勒索(更新次数:2)
内容供学习使用,不得转卖,代码复制后请1小时内删除,此代码会危害计算机安全,谨慎操作 在C20环境下,并在虚拟机里运行此代码!,病毒带来后果自负! 使用时请删除在main()里的注释,并修改位置至C:\\(看我代码注释)//可以改成WIN Main() #include <iostream> #i…...
labelimg闪退的解决办法
其实就是你的python版本太高不稳定不支持labelimg 标记时出现闪退 问题原因:python版本过高 解决方案 第一步: 在python3.9以上的版本运行软件会闪退,这个时候我们需要创建一个3.9或者及以下的虚拟环境 conda cr…...
使用脚本执行地理处理工具
确定工具箱的别名,查看当前使用的arcgis的许可级别,确保工具可访问后,即可使用脚本执行工具. 操作方法 1.在arcmap中打开目标地图 2.打开python窗口 3.创建一个变量,引用要裁剪的输入要素类 in_features "<路径>" 4.创建一个变量,引用用于裁剪的图层 cl…...
【数据分享】2014-2025年我国道路数据(免费获取/全国/分省)
道路数据是我们在各项研究中经常使用的数据!道路数据虽然很常用,但是却基本没有能下载最近年份道路数据的网站,所以很多人不知道如何获到道路数据。 本次我们给大家分享的是2014-2025年的全国范围的道路数据!数据格式为shp矢量格…...
Mybatis-plus 更新 Null 的策略踩坑记
一个bug 在一个管理页面,有一个非必填字段被设置成空了并提交更新,再次打开的时候,发现字段还在,并没有被更新成功。 使用的数据库映射框架是 Mybatis-plus ,对于Mybatis 在更新字段的时候会对空进行校验,…...
图解 script 标签中的 async 和 defer 属性
<script> 当浏览器解析到这个标签时,它会立即停止解析HTML文档,转而去加载并执行这个脚本。这意味着如果将<script>放在页面顶部,它可能会延迟整个页面的加载速度,因为浏览器必须等待脚本执行完毕才能继续解析HTML。…...
C++ Lambda 表达式的本质及原理分析
目录 1.引言 2.Lambda 的本质 3.Lambda 的捕获机制的本质 4.捕获方式的实现与底层原理 5.默认捕获的实现原理 6.捕获 this 的机制 7.捕获的限制与注意事项 8.总结 1.引言 C 中的 Lambda 表达式是一种匿名函数,最早在 C11 引入,用于简化函数对象的…...
08.OSPF 特殊区域及其他特性
OSPF 特殊区域及其他特性 一. 前言OSPF的四个特殊区域Stub末梢区域Totally Stub完全末梢区域NSSATotally NSSA完全的NSSA二.Stub 区域和 Totally Stub 区域(1)网络规模变大引发的问题(2)传输区域和末端区域(3)Stub 区域(4)Totally Stub 区域三.NSSA 区域和 Totally NSS…...
计网week1+2
计网 一.概念 1.什么是Internet 节点:主机及其运行的应用程序、路由器、交换机 边:通信链路,接入网链路主机连接到互联网的链路,光纤、网输电缆 协议:对等层的实体之间通信要遵守的标准,规定了语法、语义…...
日志收集Day008
1.zk集群优化 修改zookeeper的堆内存大小,一般情况下,生产环境给到2G足以,如果规模较大可以适当调大到4G。 (1)配置ZK的堆内存 vim /app/softwares/zk/conf/java.env export JAVA_HOME/sortwares/jdk1.8.0_291 export JVMFLAGS"-Xms2…...
使用PC版本剪映制作照片MV
目录 制作MV模板时长调整拖动边缘缩短法分割删除法变速法整体调整法 制作MV 导入音乐 导入歌词 点击歌词 和片头可以修改字体: 还可以给字幕添加动画效果: 导入照片,自动创建照片轨: 修改片头字幕:增加两条字幕轨&…...
性能测试全链路监控模式有哪些?
目录 性能测试全链路监控的模式有哪些呢? 1. 调用链追踪(Trace) 2. 分布式追踪与日志聚合 3. 实时性能指标采集 4. 资源利用率监控 5. 自动化测试与回滚机制 6. 用户体验质量(QoE)评估 性能测试中的全链路监控模…...
【吉林乡镇界】面图层shp格式arcgis数据乡镇名称和编码wgs84无偏移内容测评
标题中的“吉林省乡镇界面图层shp格式arcgis数据乡镇名称和编码wgs84无偏移”揭示了这是一个地理信息系统(GIS)相关的数据集,主要用于描绘吉林省的乡镇边界。这个数据集包含了一系列的文件,它们是ArcGIS软件能够识别和处理的Shape…...
SpringAI 搭建智能体(二):搭建客服系统智能体
在现代人工智能应用中,智能体(Agent) 是一个重要的概念,它的核心能力是自主性与灵活性。一个智能体不仅能够理解用户的需求,还能拆解任务、调用工具完成具体操作,并在复杂场景中高效运行。在本篇博客中&…...
JAVA设计模式:依赖倒转原则(DIP)在Spring框架中的实践体现
文章目录 一、DIP原则深度解析1.1 核心定义1.2 现实比喻 二、Spring中的DIP实现机制2.1 传统实现 vs Spring实现对比 三、Spring中DIP的完整示例3.1 领域模型定义3.2 具体实现3.3 高层业务类3.4 配置类 四、Spring实现DIP的关键技术4.1 依赖注入方式对比4.2 自动装配注解 五、D…...
LeetCode题练习与总结:N 叉树的前序遍历--589
一、题目描述 给定一个 n 叉树的根节点 root ,返回 其节点值的 前序遍历 。 n 叉树 在输入中按层序遍历进行序列化表示,每组子节点由空值 null 分隔(请参见示例)。 示例 1: 输入:root [1,null,3,2,4,nu…...
WebSocket 详解:全双工通信的实现与应用
目录 一、什么是 WebSocket?(简介) 二、为什么需要 WebSocket? 三、HTTP 与 WebSocket 的区别 WebSocket 的劣势 WebSocket 的常见应用场景 WebSocket 握手过程 WebSocket 事件处理和生命周期 一、什么是 WebSocket…...
【漫话机器学习系列】064.梯度下降小口诀(Gradient Descent rule of thume)
梯度下降小口诀 为了帮助记忆梯度下降的核心原理和关键注意事项,可以用以下简单口诀来总结: 1. 基本原理 损失递减,梯度为引:目标是让损失函数减少,依靠梯度指引方向。负梯度,反向最短:沿着负…...
Vue 3 中的 TypeScript:接口、自定义类型与泛型
在 Vue 3 中,TypeScript 提供了强大的类型系统,帮助我们更好地管理代码的类型安全。通过使用 接口(Interface)、自定义类型(Type Aliases) 和 泛型(Generics),我们可以编…...
[SaaS] 内容创意生产平台
1.即梦 2.讯飞绘镜 typemovie 3.Krea.ai 4.Pika 5.runway 6.pixVerse 7....
低代码系统-产品架构案例介绍、明道云(十一)
明道云HAP-超级应用平台(Hyper Application Platform),其实就是企业级应用平台,跟微搭类似。 通过自设计底层架构,兼容各种平台,使用低代码做到应用搭建、应用运维。 企业级应用平台最大的特点就是隐藏在冰山下的功能很深…...