当前位置: 首页 > news >正文

【STM32-学习笔记-7-】USART串口通信

文章目录

  • USART串口通信
    • Ⅰ、硬件电路
    • Ⅱ、常见的电平标准
    • Ⅲ、串口参数及时序
    • Ⅳ、STM32的USART简介
      • 数据帧
      • 起始位侦测
      • 数据采样
      • 波特率发生器
    • Ⅴ、USART函数介绍
    • Ⅵ、USART_InitTypeDef结构体参数
      • 1、USART_BaudRate
      • 2、USART_WordLength
      • 3、USART_StopBits
      • 4、USART_Parity
      • 5、USART_Mode
      • 6、USART_HardwareFlowControl
    • Ⅶ、串口发送数据
      • 可变参数函数,模拟实现printf
    • Ⅷ、串口接收数据(包含发送)
    • Ⅸ、USART收发数据包
      • 1、收发HEX数据包
      • 2、收发文本数据包

USART串口通信

USARTUniversal Synchronous/Asynchronous Receiver/Transmitter,通用同步/异步收发器)是一种用于串行通信的硬件模块,它支持同步(需要SCL时钟线)和异步两种通信模式

Ⅰ、硬件电路

image-20241228154308723

  • TX 为发送端, RX 为接收端
  • 若是设备之间的电平标准不一致时,则需要加上电平转换芯片

Ⅱ、常见的电平标准

  1. TTL电平
    • 供电范围在0~5V
    • 输出:
      • 高电平1大于2.7V
      • 低电平0小于0.5V
    • 输入:
      • 高电平1大于2.0V
      • 低电平0小于0.8V
    • TTL电平输入脚悬空时内部认为是高电平,且TTL电平输出不能驱动CMOS电平输入
  2. CMOS电平
    • 供电范围在3~15V
    • 输出:
      • 高电平1大于4.6V
      • 低电平0小于0.05V
    • 输入:
      • 高电平1大于3.5V
      • 低电平0小于1.5V
  3. LVTTL电平
    • 是TTL的一种低功耗变种,供电电压通常小于等于3.3V
    • 输出:
      • 高电平1大于2.4V
      • 低电平0小于0.4V
    • 输入:
      • 高电平1大于2.0V
      • 低电平0小于0.8V
  4. RS232电平
    • 输出:
      • -5~-15V 输出1
      • +5~+15V 输出0
    • 输入:
      • -3~-15V 输入1
      • +3~+15V 输入0
  5. LVDS电平
    • 低电压差分信号,驱动器由驱动差分线对的电流源组成,电流通常为3.5mA
    • 接收器具有很高的输入阻抗,输入端允许信号上携带的直流偏置电平范围为0.227~2.173V
  6. RS485电平
    • 采用差分传输方式,输出A、B之间的电压差:高电平+2~+6V低电平-2~-6V
  • STM32使用的是TTL电平

Ⅲ、串口参数及时序

  1. 波特率(Baud Rate)
    • 波特率是串口通信中每秒传输的符号数,通常以bps(位/秒)为单位
    • 波特率必须在通信双方之间匹配,否则会导致数据传输错误
  2. 数据位(Data Bits)
    • 数据位是指每个字符中用于传输实际数据的位数
    • 常见的数据位设置有8位
  3. 停止位(Stop Bits)
    • 停止位是在每个字符传输结束后,用于标识字符结束的位数
    • 可以是1位、1.5位或2位停止位
  4. 奇偶校验(Parity)
    • 奇偶校验是一种错误检测机制,通过在数据位后面添加一个校验位来实现
    • 可以设置为无校验(None)、奇校验(Odd)、偶校验(Even)或标记/空格校验(Mark/Space)
  • 波特率:串口通信的速率

  • 起始位:标志一个数据帧的开始,固定为低电平

  • 数据位:数据帧的有效载荷,1为高电平,0为低电平,低位先行

  • 校验位:用于数据验证,根据数据位计算得来

  • 停止位:用于数据帧间隔,固定为高电平

  • 一个数据帧10位
    • 起始位:1bit
    • 数据位:8bit(1byte)
    • 停止位:1bit

image-20241228160015933

  • 一个数据帧11位
    • 起始位:1bit
    • 数据位:8bit
    • 校验位:1bit
    • 停止位:1bit

image-20241228160032152

  • 实测串口时序

image-20241228160155805

Ⅳ、STM32的USART简介

  • USART是STM32内部集成的硬件外设,可根据数据寄存器的一个字节数据自动生成数据帧时序,从TX引脚发送出去,也可自动接收RX引脚的数据帧时序,拼接为一个字节数据,存放在数据寄存器里

  • 自带波特率发生器,最高达4.5Mbits/s(可据此配置通讯的波特率

  • 可配置数据位长度(无校验位8bit,有校验位9bit)、停止位长度(0.5/1/1.5/2 确定了帧的间隔

  • 可选校验位(无校验/奇校验/偶校验)

  • 支持同步模式(有时钟CLK输出)、硬件流控制(可控的发送和接收数据)、DMA(串口支持DMA转运数据)、智能卡、IrDA、LIN

  • STM32F103C8T6 USART资源: USART1(挂载在上APB2总线上)、 USART(APB1)、 USART3(APB1

image-20241229145512719

  • 流控:
    • nCTS: 清除发送,若是高电平,在当前数据传输结束时阻断下一次的数据发送(判断对方是否准备好接收数据
    • nRTS: 发送请求,若是低电平,表明USART准备好接收数据(告诉对方自己是否准备好接收数据

image-20241229152925780

  • TXERXNE 是判断发送状态和接收状态的重要标志位

image-20241229165609863

  • TDRRDR都是通过DR寄存器来实现其功能

数据帧

image-20241229170041255

image-20241229172307272

起始位侦测

image-20241229172941339

数据采样

image-20241229173342805

  • 进行三次数据采样,增加容错
  • 采样时钟是波特率的16倍

波特率发生器

  • 发送器和接收器的波特率由波特率寄存器BRR里的DIV确定

  • 计算公式:

    • 波特率 = f P C L K 2 / 1 16 ∗ D I V 波特率 = \frac{f_{PCLK2/1} }{16 * DIV} 波特率=16DIVfPCLK2/1

    • 解释:PCLK1或PLCK2的时钟频率除以16倍的DIV

image-20241229174442754

  • DIV分为整数部分(12bit)和小数部分(4bit),整数部分高位补0,小数部分低位补0

Ⅴ、USART函数介绍

// 重置指定的USART为默认值
void USART_DeInit(USART_TypeDef* USARTx);// 初始化指定的USART,根据初始化结构体配置参数
void USART_Init(USART_TypeDef* USARTx, USART_InitTypeDef* USART_InitStruct);
// 初始化USART初始化结构体的默认值
void USART_StructInit(USART_InitTypeDef* USART_InitStruct);
// 初始化指定的USART时钟,根据时钟初始化结构体配置参数
void USART_ClockInit(USART_TypeDef* USARTx, USART_ClockInitTypeDef* USART_ClockInitStruct);
// 初始化USART时钟初始化结构体的默认值
void USART_ClockStructInit(USART_ClockInitTypeDef* USART_ClockInitStruct);// 开启或关闭指定的USART
void USART_Cmd(USART_TypeDef* USARTx, FunctionalState NewState);// 开启或关闭USART的中断
void USART_ITConfig(USART_TypeDef* USARTx, uint16_t USART_IT, FunctionalState NewState);// 开启或关闭USART的DMA请求
void USART_DMACmd(USART_TypeDef* USARTx, uint16_t USART_DMAReq, FunctionalState NewState);// 设置USART地址
void USART_SetAddress(USART_TypeDef* USARTx, uint8_t USART_Address);// 配置USART唤醒模式
void USART_WakeUpConfig(USART_TypeDef* USARTx, uint16_t USART_WakeUp);// 开启或关闭USART接收器唤醒功能
void USART_ReceiverWakeUpCmd(USART_TypeDef* USARTx, FunctionalState NewState);// 配置USART LIN断裂检测长度
void USART_LINBreakDetectLengthConfig(USART_TypeDef* USARTx, uint16_t USART_LINBreakDetectLength);// 开启或关闭USART LIN模式
void USART_LINCmd(USART_TypeDef* USARTx, FunctionalState NewState);// 通过USART发送数据
void USART_SendData(USART_TypeDef* USARTx, uint16_t Data);
// 通过USART接收数据
uint16_t USART_ReceiveData(USART_TypeDef* USARTx);// 发送USART断点信号
void USART_SendBreak(USART_TypeDef* USARTx);// 设置USART保护时间
void USART_SetGuardTime(USART_TypeDef* USARTx, uint8_t USART_GuardTime);// 设置USART预分频器
void USART_SetPrescaler(USART_TypeDef* USARTx, uint8_t USART_Prescaler);// 开启或关闭USART智能卡模式
void USART_SmartCardCmd(USART_TypeDef* USARTx, FunctionalState NewState);
// 开启或关闭USART智能卡NACK应答
void USART_SmartCardNACKCmd(USART_TypeDef* USARTx, FunctionalState NewState);
// 开启或关闭USART半双工模式
void USART_HalfDuplexCmd(USART_TypeDef* USARTx, FunctionalState NewState);// 开启或关闭USART 8位过采样模式
void USART_OverSampling8Cmd(USART_TypeDef* USARTx, FunctionalState NewState);// 开启或关闭USART单线方法
void USART_OneBitMethodCmd(USART_TypeDef* USARTx, FunctionalState NewState);// 配置USART IrDA模式
void USART_IrDAConfig(USART_TypeDef* USARTx, uint16_t USART_IrDAMode);// 开启或关闭USART IrDA模式
void USART_IrDACmd(USART_TypeDef* USARTx, FunctionalState NewState);// 获取USART标志状态
FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG);
// 清除USART标志
void USART_ClearFlag(USART_TypeDef* USARTx, uint16_t USART_FLAG);// 获取USART中断状态
ITStatus USART_GetITStatus(USART_TypeDef* USARTx, uint16_t USART_IT);
// 清除USART中断待处理位
void USART_ClearITPendingBit(USART_TypeDef* USARTx, uint16_t USART_IT);

Ⅵ、USART_InitTypeDef结构体参数

成员名称描述
uint32_t USART_BaudRateUSART通信波特率,使用公式计算:IntegerDivider = ((PCLKx) / (16 * USART_BaudRate))
uint16_t USART_WordLength指定每帧传输或接收的数据位数量,可以是8位、9位等,取决于@ref USART_Word_Length
uint16_t USART_StopBits指定传输的停止位数量,可以是1位或2位,取决于@ref USART_Stop_Bits
uint16_t USART_Parity指定奇偶校验模式,包括奇校验、偶校验或无校验,取决于@ref USART_Parity
uint16_t USART_Mode指定是否启用接收或发送模式,取决于@ref USART_Mode
uint16_t USART_HardwareFlowControl指定是否启用硬件流控制模式,如RTS/CTS,取决于@ref USART_Hardware_Flow_Control成员名称

1、USART_BaudRate

  • 类型uint32_t(无符号32位整数)
  • 用途配置USART通信的波特率
  • 说明:通过设置这个成员,可以定义USART通信的速率,即每秒传输的比特数。波特率的计算涉及到外设时钟频率(PCLKx)和这个成员的值。计算公式如前所述,用于确定整数除数和分数除数,以设置USART的时钟分频,确保正确的波特率

2、USART_WordLength

  • 类型uint16_t(无符号16位整数)

  • 用途指定每帧传输或接收的数据位数量

  • 说明:这个参数决定了数据帧中数据位的长度。它可以是8位、9位等,具体值取决于@ref USART_Word_Length枚举

    • @ref USART_Word_Length:

    • 配置USART(通用同步/异步收发传输器)的数据位长度

      宏定义

      1. USART_WordLength_8b
        • ((uint16_t)0x0000)
        • 描述:定义了一个8位数据长度的宏。当USART配置为8位数据长度时,每个数据帧包含8个数据位
      2. USART_WordLength_9b
        • ((uint16_t)0x1000)
        • 描述:定义了一个9位数据长度的宏。当USART配置为9位数据长度时,每个数据帧包含9个数据位

      宏函数

      1. IS_USART_WORD_LENGTH(LENGTH)
        • 描述:这是一个宏函数,用于检查给定的数据位长度是否有效
        • 参数LENGTH,代表USART的数据位长度
        • 功能:检查LENGTH是否等于USART_WordLength_8bUSART_WordLength_9b
        • 返回值:如果LENGTH有效,返回1(真),否则返回0(假)

      表格:

      宏定义描述
      USART_WordLength_8b0x00008位数据长度
      USART_WordLength_9b0x10009位数据长度
      宏函数描述
      IS_USART_WORD_LENGTH(LENGTH)检查LENGTH是否为有效的USART数据位长度

3、USART_StopBits

  • 类型uint16_t(无符号16位整数)

  • 用途指定传输的停止位数量

  • 说明:这个参数定义了在数据帧结束后传输的停止位的数量,可以是1位或2位,具体值取决于@ref USART_Stop_Bits枚举

    • @ref USART_Stop_Bits:

    • 定义了USART(通用同步/异步收发传输器)的停止位配置

      宏定义

      1. USART_StopBits_1
        • ((uint16_t)0x0000)
        • 描述:定义了一个1个停止位的宏。在USART通信中,1个停止位是最常见的配置
      2. USART_StopBits_0_5
        • ((uint16_t)0x1000)
        • 描述:定义了0.5个停止位的宏。这种配置不常见,主要用于某些特定的通信协议
      3. USART_StopBits_2
        • ((uint16_t)0x2000)
        • 描述:定义了2个停止位的宏。这种配置用于提高数据传输的可靠性,特别是在噪声较大的通信环境中
      4. USART_StopBits_1_5
        • ((uint16_t)0x3000)
        • 描述:定义了1.5个停止位的宏。这种配置同样不常见,主要用于某些特定的通信协议

      宏函数

      1. IS_USART_STOPBITS(STOPBITS)
        • 描述:这是一个宏函数,用于检查给定的停止位设置是否有效
        • 参数STOPBITS,代表USART的停止位设置
        • 功能:检查STOPBITS是否等于USART_StopBits_1USART_StopBits_0_5USART_StopBits_2USART_StopBits_1_5中的任一个
        • 返回值:如果STOPBITS有效,返回1(真),否则返回0(假)

      表格:

      宏定义描述
      USART_StopBits_10x00001个停止位
      USART_StopBits_0_50x10000.5个停止位
      USART_StopBits_20x20002个停止位
      USART_StopBits_1_50x30001.5个停止位
      宏函数描述
      IS_USART_STOPBITS(STOPBITS)检查STOPBITS是否为有效的USART停止位设置

4、USART_Parity

  • 类型uint16_t(无符号16位整数)

  • 用途指定奇偶校验模式

  • 说明:这个参数决定了是否启用奇偶校验,以及使用哪种类型的校验(奇校验、偶校验或无校验)。当启用校验时,计算出的校验位会被插入到传输数据的最高有效位(MSB)位置。具体值取决于@ref USART_Parity枚举

    • @ref USART_Parity:

    • 定义了USART(通用同步/异步收发传输器)的奇偶校验配置

      宏定义

      1. USART_Parity_No
        • ((uint16_t)0x0000)
        • 描述:定义了一个无奇偶校验的宏。当设置为无奇偶校验时,USART通信不包含校验位
      2. USART_Parity_Even
        • ((uint16_t)0x0400)
        • 描述:定义了一个偶校验的宏。当设置为偶校验时,USART通信中的数据帧会包含一个校验位,使得数据位加上校验位的总和为偶数
      3. USART_Parity_Odd
        • ((uint16_t)0x0600)
        • 描述:定义了一个奇校验的宏。当设置为奇校验时,USART通信中的数据帧会包含一个校验位,使得数据位加上校验位的总和为奇数

      宏函数

      1. IS_USART_PARITY(PARITY)
        • 描述:这是一个宏函数,用于检查给定的奇偶校验设置是否有效
        • 参数PARITY,代表USART的奇偶校验设置
        • 功能:检查PARITY是否等于USART_Parity_NoUSART_Parity_EvenUSART_Parity_Odd中的任一个
        • 返回值:如果PARITY有效,返回1(真),否则返回0(假)

      表格:

      宏定义描述
      USART_Parity_No0x0000无奇偶校验
      USART_Parity_Even0x0400偶校验
      USART_Parity_Odd0x0600奇校验
      宏函数描述
      IS_USART_PARITY(PARITY)检查PARITY是否为有效的USART奇偶校验设置

5、USART_Mode

  • 类型uint16_t(无符号16位整数)

  • 用途指定是否启用接收或发送模式

  • 说明:这个参数决定了USART是处于接收模式、发送模式,还是两者都启用。具体值取决于@ref USART_Mode枚举

    • @ref USART_Mode:

    • 定义了USART(通用同步/异步收发传输器)的工作模式

      宏定义

      1. USART_Mode_Rx
        • ((uint16_t)0x0004)
        • 描述:定义了一个仅接收模式的宏。当设置为仅接收模式时,USART仅用于接收数据
      2. USART_Mode_Tx
        • ((uint16_t)0x0008)
        • 描述:定义了一个仅发送模式的宏。当设置为仅发送模式时,USART仅用于发送数据

      宏函数

      1. IS_USART_MODE(MODE)
        • 描述:这是一个宏函数,用于检查给定的工作模式设置是否有效
        • 参数MODE,代表USART的工作模式设置
        • 功能:检查MODE是否为有效的接收模式、发送模式或两者的组合(即接收和发送模式)。它通过与0xFFF3进行按位与操作来确保只有接收和发送模式位被设置,其他位应为0。同时,也检查MODE不为0,因为0表示没有启用任何模式
        • 返回值:如果MODE有效,返回1(真),否则返回0(假)

      表格:

      宏定义描述
      USART_Mode_Rx0x0004仅接收模式
      USART_Mode_Tx0x0008仅发送模式
      宏函数描述
      IS_USART_MODE(MODE)检查MODE是否为有效的USART工作模式设置

6、USART_HardwareFlowControl

  • 类型uint16_t(无符号16位整数)

  • 用途指定是否启用硬件流控制模式

  • 说明:硬件流控制用于控制数据的传输速率,以防止接收器溢出。这个参数决定了是否启用硬件流控制,如RTS/CTS(请求发送/清除发送)。具体值取决于@ref USART_Hardware_Flow_Control枚举

    • @ref USART_Hardware_Flow_Control:

    • 定义了USART(通用同步/异步收发传输器)的硬件流控制配置

      宏定义解释

      1. USART_HardwareFlowControl_None
        • ((uint16_t)0x0000)
        • 描述:定义了一个无硬件流控制的宏。当设置为无硬件流控制时,USART通信不使用任何硬件流控制信号
      2. USART_HardwareFlowControl_RTS
        • ((uint16_t)0x0100)
        • 描述:定义了一个仅使用请求发送(RTS)信号的硬件流控制宏。RTS信号用于通知接收设备是否准备好接收数据
      3. USART_HardwareFlowControl_CTS
        • ((uint16_t)0x0200)
        • 描述:定义了一个仅使用清除发送(CTS)信号的硬件流控制宏。CTS信号用于通知发送设备是否应该开始发送数据
      4. USART_HardwareFlowControl_RTS_CTS
        • ((uint16_t)0x0300)
        • 描述:定义了一个同时使用RTS和CTS信号的硬件流控制宏。这种配置提供了双向的硬件流控制,以确保数据传输的同步和可靠性

      宏函数

      1. IS_USART_HARDWARE_FLOW_CONTROL(CONTROL)
        • 描述:这是一个宏函数,用于检查给定的硬件流控制设置是否有效
        • 参数CONTROL,代表USART的硬件流控制设置
        • 功能:检查CONTROL是否等于USART_HardwareFlowControl_NoneUSART_HardwareFlowControl_RTSUSART_HardwareFlowControl_CTSUSART_HardwareFlowControl_RTS_CTS中的任一个
        • 返回值:如果CONTROL有效,返回1(真),否则返回0(假)

      表格:

      宏定义描述
      USART_HardwareFlowControl_None0x0000无硬件流控制
      USART_HardwareFlowControl_RTS0x0100使用RTS硬件流控制
      USART_HardwareFlowControl_CTS0x0200使用CTS硬件流控制
      USART_HardwareFlowControl_RTS_CTS0x0300同时使用RTS和CTS硬件流控制
      宏函数描述
      IS_USART_HARDWARE_FLOW_CONTROL(CONTROL)检查CONTROL是否为有效的USART硬件流控制设置

Ⅶ、串口发送数据

#include "stm32f10x.h"                  // Device header
#include <stdio.h>	//为了移植printf
//USART串口
//TX-->PA9void Serial_Init(void)
{//使能GPIO和USART时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);//初始化GPIOGPIO_InitTypeDef GPIO_InitStruct;GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9;GPIO_Init(GPIOA, &GPIO_InitStruct);//配置USARTUSART_InitTypeDef USART_InitStruct;USART_InitStruct.USART_BaudRate = 9600;//配置波特率USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//是否选择硬件流控USART_InitStruct.USART_Mode = USART_Mode_Tx;//仅发送模式USART_InitStruct.USART_Parity = USART_Parity_No;//无校验USART_InitStruct.USART_StopBits = USART_StopBits_1;//1个停止位USART_InitStruct.USART_WordLength = USART_WordLength_8b;//数据帧包含8个数据位USART_Init(USART1, &USART_InitStruct);//初始化USATR1USART_Cmd(USART1, ENABLE);//开启USART串口通信
}//发送一个字节
void Serial_SendByte(uint8_t Byte)
{USART_SendData(USART1, Byte);//发送一个字节//获取USART标志状态(等待)传输数据寄存器空标志while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
}/*************************************************************************************** 名称		Serial_SendArray* 功能		通过串口发送数组* 参数		uint16_t* Arr数组指针* 参数		uint16_t Length数组长度* 返回值	无*****************************/
void Serial_SendArray(uint8_t* Arr, uint16_t Length)
{uint16_t i = 0;for(i = 0;i<Length;i++){Serial_SendByte(Arr[i]);}
}/*************************************************************************************** 名称		Serial_SendString* 功能		通过串口发送字符串* 参数		char* String("xxxxxxx")* 返回值	无*****************************/
void Serial_SendString(char* String)
{while(*String != '\0'){Serial_SendByte(*String);String++;}
}//返回num的SQ次方(内部函数)
static uint32_t Serial_GetSquare(const int num, int SQ)
{uint32_t ret = 1;while(SQ--)ret *= num;return ret;
}
/*************************************************************************************** 名称		Serial_SendNum* 功能		通过串口发送数字* 参数		数字,及数字长* 返回值	无*****************************/
void Serial_SendNum(uint32_t Num, uint8_t Length)
{uint8_t i = 0;for(i = 0; i < Length; i++){Serial_SendByte((Num / Serial_GetSquare(10, Length - i - 1) % 10) + '0');//'\0'是为了偏移,可将数字转换为其对应的ASCII字符}
}//重定向printf,须勾选魔法棒中的Use MicroLlB
int fputc(int ch, FILE *stream)
{Serial_SendByte(ch);return ch;
}

可变参数函数,模拟实现printf

#include <stdarg.h>void Serial_Printf(char* format, ...)
{char String[200];va_list arg;va_start(arg, format);vsprintf(String, format, arg);va_end(arg);Serial_SendString(String);
}

Ⅷ、串口接收数据(包含发送)

#include "stm32f10x.h"                  // Device header
#include <stdio.h>	//为了移植printf
//USART串口
//TX-->PA9
//RX-->PA10uint8_t Serial_RxData = 0;//接收的数据
uint8_t Serial_RxFlag = 0;//标志位void Serial_Init(void)
{//使能GPIO和USART时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);//初始化发送GPIOGPIO_InitTypeDef GPIO_InitStruct;GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9;GPIO_Init(GPIOA, &GPIO_InitStruct);//初始化接收GPIOGPIO_InitStruct.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10;GPIO_Init(GPIOA, &GPIO_InitStruct);//配置USARTUSART_InitTypeDef USART_InitStruct;USART_InitStruct.USART_BaudRate = 9600;//配置波特率USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//是否选择硬件流控USART_InitStruct.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;//发送+接收模式USART_InitStruct.USART_Parity = USART_Parity_No;//无校验USART_InitStruct.USART_StopBits = USART_StopBits_1;//1个停止位USART_InitStruct.USART_WordLength = USART_WordLength_8b;//数据帧包含8个数据位USART_Init(USART1, &USART_InitStruct);//初始化USATR1//开启USART的中断USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//设置NVICNVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//配置嵌套向量中断控制器(NVIC)的优先级分组NVIC_InitTypeDef NVIC_InitStruct;NVIC_InitStruct.NVIC_IRQChannel = USART1_IRQn;//选择IRQ通道NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;//启用这个IRQ通道NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 2;//设置抢占优先级为1NVIC_InitStruct.NVIC_IRQChannelSubPriority  = 1;//设置响应优先级为1NVIC_Init(&NVIC_InitStruct);	USART_Cmd(USART1, ENABLE);//开启USART串口通信
}//发送一个字节
void Serial_SendByte(uint8_t Byte)
{USART_SendData(USART1, Byte);//发送一个字节//获取USART标志状态(等待)传输数据寄存器空标志while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
}/*************************************************************************************** 名称		Serial_SendArray* 功能		通过串口发送数组* 参数		uint16_t* Arr数组指针* 参数		uint16_t Length数组长度* 返回值	无*****************************/
void Serial_SendArray(uint8_t* Arr, uint16_t Length)
{uint16_t i = 0;for(i = 0;i<Length;i++){Serial_SendByte(Arr[i]);}
}/*************************************************************************************** 名称		Serial_SendString* 功能		通过串口发送字符串* 参数		char* String("xxxxxxx")* 返回值	无*****************************/
void Serial_SendString(char* String)
{while(*String != '\0'){Serial_SendByte(*String);String++;}
}//返回num的SQ次方(内部函数)
static uint32_t Serial_GetSquare(const int num, int SQ)
{uint32_t ret = 1;while(SQ--)ret *= num;return ret;
}
/*************************************************************************************** 名称		Serial_SendNum* 功能		通过串口发送数字* 参数		数字,及数字长* 返回值	无*****************************/
void Serial_SendNum(uint32_t Num, uint8_t Length)
{uint8_t i = 0;for(i = 0; i < Length; i++){Serial_SendByte((Num / Serial_GetSquare(10, Length - i - 1) % 10) + '0');//'\0'是为了偏移,可将数字转换为其对应的ASCII字符}
}//重定向printf,须勾选魔法棒中的Use MicroLlB
int fputc(int ch, FILE *stream)
{Serial_SendByte(ch);return ch;
}
//**********************************************************************************
uint8_t Serial_GetFlag(void)//获取标志
{if(Serial_RxFlag == 1){Serial_RxFlag = 0;return 1;}return 0;
}uint8_t Serial_GetData(void)//获取数据
{return Serial_RxData;
}//中断函数
void USART1_IRQHandler(void)
{if(USART_GetITStatus(USART1, USART_IT_RXNE) == SET)//判断中断标志位{Serial_RxData = USART_ReceiveData(USART1);Serial_RxFlag = 1;USART_ClearITPendingBit(USART1, USART_IT_RXNE);}
}

Ⅸ、USART收发数据包

1、收发HEX数据包

包头:FF

包尾:FE

image-20250102193414382

image-20250102193525005

含包头包尾固定包长的数据包
uint8_t Serial_RxPacketFlag = 0;//数据包标志位uint8_t Serial_RxPacket[4] = { 0 };//接收数据包的缓冲数组...
...
//**********************************************************************************
uint8_t Serial_GetPacketFlag(void)//获取数据包标志
{if(Serial_RxPacketFlag == 1){Serial_RxPacketFlag = 0;return 1;}return 0;
}/*************************************************************************************** 名称		Serial_SendPacket* 功能		发送数据量为4字节的HEX数据包* 参数		Serial_RxPacket_4bt* 返回值	无*****************************/
void Serial_SendPacket(uint8_t* Serial_RxPacket_4bt)
{Serial_SendByte(0xFF);//发送包头Serial_SendArray(Serial_RxPacket_4bt, 4);//发送数据Serial_SendByte(0xFE);//发送包尾
}//中断函数
void USART1_IRQHandler(void)
{static uint8_t RxState = 0;//初始化状态static uint8_t Count = 0;//记录接收数据的个数if(USART_GetITStatus(USART1, USART_IT_RXNE) == SET)//判断中断标志位{uint8_t RxData = USART_ReceiveData(USART1);//获取数据if(RxState == 0)//等待包头{if(RxData == 0xFF)//接收到包头{RxState = 1;//转移至状态1Count = 0;}}else if(RxState == 1)//接收数据{Serial_RxPacket[Count] = RxData;Count++;if(Count >= 4){RxState = 2;//转移至状态2Count = 0;//状态清零}}else if(RxState == 2)//等待包尾{if(RxData == 0xFE)//接收到包尾{RxState = 0;//转移至状态0Serial_RxPacketFlag = 1;//接收到数据包表标志位}			}USART_ClearITPendingBit(USART1, USART_IT_RXNE);}
}

2、收发文本数据包

包头:@

包尾:换行符

image-20250103161415797

image-20250103161500805

含包头包尾固定包长的数据包
#include "stm32f10x.h"                  // Device header
#include <stdio.h>	//为了移植printf
//USART串口
//TX-->PA9
//RX-->PA10#define RxPacket_Length_MAX 200	//接收文本数据包的最大长度
uint8_t Serial_RxPacketFlag = 0;//数据包标志位//需要手动清零char Serial_RxPacket[RxPacket_Length_MAX] = { 0 };//接收文本数据包的缓冲数组void Serial_Init(void)
{//使能GPIO和USART时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);//初始化发送GPIOGPIO_InitTypeDef GPIO_InitStruct;GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9;GPIO_Init(GPIOA, &GPIO_InitStruct);//初始化接收GPIOGPIO_InitStruct.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10;GPIO_Init(GPIOA, &GPIO_InitStruct);//配置USARTUSART_InitTypeDef USART_InitStruct;USART_InitStruct.USART_BaudRate = 9600;//配置波特率USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//是否选择硬件流控USART_InitStruct.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;//发送+接收模式USART_InitStruct.USART_Parity = USART_Parity_No;//无校验USART_InitStruct.USART_StopBits = USART_StopBits_1;//1个停止位USART_InitStruct.USART_WordLength = USART_WordLength_8b;//数据帧包含8个数据位USART_Init(USART1, &USART_InitStruct);//初始化USATR1//开启USART的中断USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//设置NVICNVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//配置嵌套向量中断控制器(NVIC)的优先级分组NVIC_InitTypeDef NVIC_InitStruct;NVIC_InitStruct.NVIC_IRQChannel = USART1_IRQn;//选择IRQ通道NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;//启用这个IRQ通道NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 2;//设置抢占优先级为1NVIC_InitStruct.NVIC_IRQChannelSubPriority  = 1;//设置响应优先级为1NVIC_Init(&NVIC_InitStruct);	USART_Cmd(USART1, ENABLE);//开启USART串口通信
}//发送一个字节
void Serial_SendByte(uint8_t Byte)
{USART_SendData(USART1, Byte);//发送一个字节//获取USART标志状态(等待)传输数据寄存器空标志while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
}/*************************************************************************************** 名称		Serial_SendArray* 功能		通过串口发送数组* 参数		uint16_t* Arr数组指针* 参数		uint16_t Length数组长度* 返回值	无*****************************/
void Serial_SendArray(uint8_t* Arr, uint16_t Length)
{uint16_t i = 0;for(i = 0;i<Length;i++){Serial_SendByte(Arr[i]);}
}/*************************************************************************************** 名称		Serial_SendString* 功能		通过串口发送字符串* 参数		char* String("xxxxxxx")* 返回值	无*****************************/
void Serial_SendString(char* String)
{while(*String != '\0'){Serial_SendByte(*String);String++;}
}//返回num的SQ次方(内部函数)
static uint32_t Serial_GetSquare(const int num, int SQ)
{uint32_t ret = 1;while(SQ--)ret *= num;return ret;
}
/*************************************************************************************** 名称		Serial_SendNum* 功能		通过串口发送数字* 参数		数字,及数字长* 返回值	无*****************************/
void Serial_SendNum(uint32_t Num, uint8_t Length)
{uint8_t i = 0;for(i = 0; i < Length; i++){Serial_SendByte((Num / Serial_GetSquare(10, Length - i - 1) % 10) + '0');//'\0'是为了偏移,可将数字转换为其对应的ASCII字符}
}//重定向printf,须勾选魔法棒中的Use MicroLlB
int fputc(int ch, FILE *stream)
{Serial_SendByte(ch);return ch;
}/*************************************************************************************** 名称		Serial_SendHEXPacket* 功能		发送数据量为4字节的HEX数据包* 参数		Serial_RxPacket_4bt* 返回值	无*****************************/
void Serial_SendHEXPacket(uint8_t* Serial_RxPacket_4bt)
{Serial_SendByte(0xFF);//发送包头Serial_SendArray(Serial_RxPacket_4bt, 4);//发送数据Serial_SendByte(0xFE);//发送包尾
}//中断函数
void USART1_IRQHandler(void)
{static uint8_t RxState = 0;//初始化状态static uint8_t Count = 0;//记录接收数据的个数if(USART_GetITStatus(USART1, USART_IT_RXNE) == SET)//判断中断标志位{uint8_t RxData = USART_ReceiveData(USART1);//获取数据if(RxState == 0)//等待包头{if(RxData == '@' && Serial_RxPacketFlag == 0)//接收到包头(且防止传输过快导致数据错位){RxState = 1;//转移至状态1Count = 0;}}else if(RxState == 1)//接收数据{if(RxData == '\r')//判断是否是包尾1{RxState = 2;//转移至状态2}else{Serial_RxPacket[Count] = RxData;Count++;}}else if(RxState == 2)//等待包尾{if(RxData == '\n')//接收到包尾2{RxState = 0;//转移至状态0Serial_RxPacket[Count] = '\0';//添加结束标志位				Serial_RxPacketFlag = 1;//接收到数据包标志位}}USART_ClearITPendingBit(USART1, USART_IT_RXNE);}
}

.h头文件

#ifndef __SERIAL_H__
#define __SERIAL_H__
#include "stdint.h"extern char Serial_RxPacket[];//接收文本数据包的缓冲数组
extern uint8_t Serial_RxPacketFlag;//数据包标志位//需要手动清零void Serial_Init(void);
void Serial_SendByte(uint8_t Byte);
void Serial_SendArray(uint8_t* Arr, uint16_t Length);
void Serial_SendString(char* String);
void Serial_SendNum(uint32_t Num, uint8_t Length);void Serial_SendHEXPacket(uint8_t* Serial_RxPacket_4bt);//发送数据量为4字节的数据包#endif

相关文章:

【STM32-学习笔记-7-】USART串口通信

文章目录 USART串口通信Ⅰ、硬件电路Ⅱ、常见的电平标准Ⅲ、串口参数及时序Ⅳ、STM32的USART简介数据帧起始位侦测数据采样波特率发生器 Ⅴ、USART函数介绍Ⅵ、USART_InitTypeDef结构体参数1、USART_BaudRate2、USART_WordLength3、USART_StopBits4、USART_Parity5、USART_Mode…...

实现类似Excel的筛选

以下是在 DataGridView 中实现类似 Excel 下拉筛选功能的解决方案&#xff1a; 解决思路 为 DataGridView 的列添加 DataGridViewComboBoxColumn 类型的列&#xff0c;用于显示下拉筛选列表。为 DataGridView 的 ColumnHeaderMouseClick 事件添加处理程序&#xff0c;当用户点…...

【Rust】结构体定义域实例化

目录 思维导图 1. 结构体的定义与实例化 1.1 结构体的基本概念 1.2 定义结构体 1.3 创建结构体实例 1.4 结构体的定义与实例化示例 2. 访问与修改结构体字段 2.1 访问字段 2.2 修改字段 3. 结构体实例的构造函数 3.1 构造函数的定义 3.2 使用字段初始化简写 4. 结…...

VB.NET 正则表达式完全指南

VB.NET 正则表达式完全指南 VB.NET通过 System.Text.RegularExpressions 命名空间提供正则表达式支持。本指南将详细介绍VB.NET中正则表达式的使用方法、性能优化和最佳实践。 1. 基础知识 1.1 导入命名空间 Imports System.Text.RegularExpressions1.2 基本使用 Public C…...

ASP.NET Core - 配置系统之自定义配置提供程序

ASP.NET Core - 配置系统之自定义配置提供程序 4. 自定义配置提供程序IConfigurationSourceIConfigurationProvider 4. 自定义配置提供程序 在 .NET Core 配置系统中封装一个配置提供程序关键在于提供相应的 IconfigurationSource 实现和 IConfigurationProvider 接口实现&…...

大语言模型的稀疏性:提升效率与性能的新方向

大语言模型的稀疏性&#xff1a;提升效率与性能的新方向 大语言模型&#xff08;LLM, Large Language Model&#xff09;随着参数规模的不断扩大&#xff0c;其性能得到了显著提升&#xff0c;但也带来了巨大的计算和存储开销。稀疏性&#xff08;Sparsity&#xff09;作为一种…...

迅为RK3568开发板篇OpenHarmony配置HDF驱动控制LED-新增 topeet子系统-编写 bundle.json文件

bundle.json 文件内容如下所示&#xff1a; 下面是对各个字段的解释&#xff1a; 1. name: "ohos/demos" - 这是组件或项目的名称&#xff0c;这里表示它属于 OHOS&#xff08;OpenHarmony OS&#xff09;生态系统下的一个名为"demos"的组件。 2. descri…...

vulnhub靶场【IA系列】之Tornado

前言 靶机&#xff1a;IA-Tornado&#xff0c;IP地址为192.168.10.11 攻击&#xff1a;kali&#xff0c;IP地址为192.168.10.2 都采用虚拟机&#xff0c;网卡为桥接模式 本文所用靶场、kali镜像以及相关工具&#xff0c;我放置在网盘中&#xff0c;可以复制后面链接查看 htt…...

GB44495-2024 汽车整车信息安全技术要求 - V2X部分前置要求

背景 GB 44495-2024《汽车整车信息安全技术要求》中关于V2X&#xff08;车与外界通信&#xff09;的部分&#xff0c;主要关注于通信安全要求&#xff0c;旨在确保车辆在与外部设备进行数据交互时的信息安全。其测试大致可分为消息层&#xff08;数据无异常&#xff09;、应用…...

基于mediapipe的手势游戏控制

基于mediapipe的手势游戏控制 ​ 玩游戏&#xff0c;那不是有手就行!!! mediapipe介绍 ​ Mediapipe是Google在2019年开发并提出的一款开源的跨平台多媒体处理框架&#xff0c;用于构建基于机器学习的应用程序&#xff0c;特别是涉及到计算机视觉、音频处理、姿势估计等领域。…...

K8S 节点选择器

今天我们来实验 pod 调度的 nodeName 与 nodeSelector。官网描述如下&#xff1a; 假设有如下三个节点的 K8S 集群&#xff1a; k8s31master 是控制节点 k8s31node1、k8s31node2 是工作节点 容器运行时是 containerd 一、镜像准备 1.1、镜像拉取 docker pull tomcat:8.5-jre8…...

IEC103 转 ModbusTCP 网关

一、产品概述 IEC103 转 ModbusTCP 网关型号 SG-TCP-IEC103 &#xff0c;是三格电子推出的工业级网关&#xff08;以下简 称网关&#xff09;&#xff0c;主要用于 IEC103 数据采集、 DLT645-1997/2007 数据采集&#xff0c; IEC103 支持遥测和遥 信&#xff0c;可接…...

docker swarm 部署问题 和 指定节点部署服务

问题原因&#xff1a; docker swarm 部署遇到的问题&#xff0c; 先前docker compose部署&#xff0c;分别创建了 cloud 网络&#xff1b; 昨进行swarm 集群部署&#xff1b;只是删了57 机器cloud 网络&#xff1b;在创建swarm集群后创建cloud 58机器 没有删除先前的cloud 网络…...

09.VSCODE:安装 Git for Windows

在 Windows 下安装著名的源代码管理工具&#xff1a;git。 git 工具两大作用&#xff1a; 管理我们自己的源代码获取他人&#xff08;开源的&#xff09;源代码 当前我们更需要第2点。 为什么要安装 git 一、 得到更多库 之前课程中我们安装了 msys2&#xff0c;从而可以通…...

基于R计算皮尔逊相关系数

# 基于R计算皮尔逊相关系数 # 函数 基本基本函数 cor.test ## 两组数据读入 xread.csv("1.csv",header T) yread.csv("2.csv",header T) ## 计算 cor.test(1,2,method"pearson") 结果 Pearsons product-moment correlationdata: 1 and 2…...

vue 纯前端导出 Excel

方法一&#xff1a; 1、安装"file-saver" npm i -S file-saver xlsx 2、引入 在需要导出功能的 .vue 文件中引入 import FileSaver from "file-saver"; import XLSX from "xlsx"; 3、简单示例&#xff08;复制即可食用&#xff09;&#x…...

APISQL在线一键安装教程

本文档将指导您在 Linux 服务器上使用 Docker 安装 APISQL 软件。提供了两种安装方式&#xff1a;在线安装和离线安装&#xff0c;您可以根据实际环境选择合适的安装方式。 1. 准备工作 1.1 硬件要求 Linux (x86_64) 服务器 1.2 软件要求 Docker Engine 推荐版本&#xff…...

数据结构《MapSet哈希表》

文章目录 一、搜索树1.1 定义1.2 模拟实现搜索 二、Map2.1 定义2.2 Map.Entry2.3 TreeMap的使用2.4 Map的常用方法 三、Set3.1 定义3.2 TreeSet的使用3.3 Set的常用方法 四、哈希表4.1 哈希表的概念4.2 冲突4.2.1 冲突的概念4.2.2 冲突的避免1. 选择合适的哈希函数2. 负载因子调…...

【PCL】sample_consensus 模块—— Random Sample Consensus model(随机样本一致性模型,RANSAC)

1、随机样本一致性模型&#xff08;RANSAC&#xff09;简介 在本教程中&#xff0c;我们将学习如何使用带有平面模型的随机样本一致性&#xff08;RANSAC&#xff09;来获取适合该模型的点云。 1.1理论背景 RANSAC 是“随机样本一致性”&#xff08;RANdom SAmple Consensus…...

【MATLAB代码】CV和CA模型组成的IMM(滤波方式为UKF),可复制粘贴源代码

该代码实现了一维无迹卡尔曼滤波器(UKF)与交互式多模型(IMM)结合的状态估计。代码分为多个部分,主要功能包括参数定义、观测数据生成、状态估计、模型更新以及结果可视化。 文章目录 运行结果程序代码主要功能代码结构应用场景注意事项运行结果 程序代码 下方源代码直接粘…...

docker-compose部署kafka 3.3.1 kraft

一、服务器&#xff1a; 节点1:10.1.1.165 节点2:10.1.1.164 节点3:10.1.1.169二、添加环境地址解析 vim /etc/hosts kafka1 10.1.1.165 kafka2 10.1.1.164 kafka3 10.1.1.169三、节点配置 节点1 version: "3" services:kafka1:image: bitnami/kafka:3.3.1contain…...

Linux 串口检查状态的实用方法

在 Linux 系统中&#xff0c;串口通信是非常常见的操作&#xff0c;尤其在嵌入式系统、工业设备以及其他需要串行通信的场景中。为了确保串口设备的正常工作&#xff0c;检查串口的连接状态和配置信息是非常重要的。本篇文章将介绍如何在 Linux 上检查串口的连接状态&#xff0…...

使用FRP进行内网穿透

一、基本概念 内网穿透&#xff1a;它是一种网络技术或方法&#xff0c;旨在允许外部网络&#xff08;如互联网&#xff09;访问位于内部网络&#xff08;内网&#xff09;中的设备或服务。由于内部网络通常处于NAT&#xff08;网络地址转换&#xff09;、防火墙或其他安全机制…...

Ubuntu打开文件夹不显示文件

1.情况介绍 使用ubuntu打开文件夹不显示文件夹里面的内容&#xff0c;而是直接打开了资源查看器。 2.解决办法 命令行安装nautilus sudo apt-get install nautilus...

HarmonyOS NEXT应用开发边学边玩系列:从零实现一影视APP (三、影视搜索页功能实现)

在HarmonyOS NEXT开发环境中&#xff0c;可以使用nutpi/axios库来简化网络请求的操作。本文将展示如何使用HarmonyOS NEXT框架和nutpi/axios库&#xff0c;从零开始实现一个简单的影视APP&#xff0c;主要关注影视搜索页的功能实现。 为什么选择nutpi/axios&#xff1f; nutpi…...

探秘 JMeter 前置处理器:让性能测试如虎添翼

想象一下&#xff0c;你是一位超级英雄&#xff0c;要对一个庞大的虚拟城市&#xff08;Web 应用&#xff09;进行全面的 “健康检查”。JMeter 就是你的神奇工具包&#xff0c;而其中的前置处理器&#xff0c;就像是这个工具包里的各种超级武器&#xff0c;能帮助你轻松应对各…...

如何在gitlab cicd中实现每月10号上午执行

在 GitLab CI/CD 中&#xff0c;可以通过设置定时触发器&#xff08;Schedules&#xff09;和脚本中的时间判断逻辑结合&#xff0c;确保任务只在每月 10 号的上午运行。 以下是实现的步骤&#xff1a; 1. 设置定时触发器 GitLab 提供了 Schedules 功能&#xff0c;可以指定每…...

深度学习基础知识

深度学习是人工智能&#xff08;AI&#xff09;和机器学习&#xff08;ML&#xff09;领域的一个重要分支&#xff0c;以下是对深度学习基础知识的归纳&#xff1a; 一、定义与原理 定义&#xff1a;深度学习是一种使计算机能够从经验中学习并以概念层次结构的方式理解世界的机…...

面试加分项:Android Framework AMS 全面概述和知识要点

第一章:AMS 的架构与组件 1.1 AMS 整体架构 在 Android 系统的庞大体系中,AMS(Activity Manager Service)就如同一个中枢神经系统,是整个系统的核心服务之一,对应用的性能和用户体验有着直接且关键的影响 。它的整体架构由 Client 端和 Service 端两大部分组成,这两端相…...

网安——CSS

一、CSS基础概念 CSS有两个重要的概念&#xff0c;分为样式和布局 CSS的样式分为两种&#xff0c;一种是文字的样式&#xff0c;一种是盒模型的样式 CSS的另一个重要的特质就是辅助页面布局&#xff0c;完成HTML不能完成的功能&#xff0c;比如并排显示或精确定位显示 从HT…...

知识图谱常见的主流图数据库

在知识图谱中&#xff0c;主流使用的图数据库包括以下几种&#xff1a; Neo4j&#xff1a;这是目前全球部署最广泛的图数据库之一&#xff0c;具有强大的查询性能和灵活的数据模型&#xff0c;适用于复杂关系数据的存储和查询。 JanusGraph&#xff1a;JanusGraph是一个开源的…...

阀井可燃气体监测仪,开启地下管网安全新篇章-旭华智能

在城市的脉络中&#xff0c;地下管网犹如隐秘的动脉&#xff0c;支撑着现代生活的运转。而在这庞大网络的关键节点上&#xff0c;阀井扮演着不可或缺的角色。然而&#xff0c;由于其密闭性和复杂性&#xff0c;阀井内部一旦发生可燃气体泄漏&#xff0c;将对公共安全构成严重威…...

【6】Word:海名公司文秘❗

目录 题目 List.docx Word.docx List.docx和Word.docx 题目 List.docx 选中1/4全角空格复制→选中全部文本→开始→替换&#xff1a;粘贴将1/4全角空格 替换成 空格选中全部文本→插入→表格→将文本转化成表格→勾选和布局→自动调整→勾选 选中第一列&#xff0c;单机右键…...

微信原生小程序自定义封装组件(以导航navbar为例)

封装 topnav.js const App getApp(); Component({// 组件的属性列表properties: {pageName: String, //中间的titleshowNav: { //判断是否显示左上角的按钮 type: Boolean,value: true},showHome: { //判断是否显示左上角的home按钮type: Boolean,value: true},showLocat…...

<OS 有关>Ubuntu 24 安装 openssh-server, tailscale+ssh 慢增加

更新日志&#xff1a; Created on 14Jan.2025 by Dave , added openssh-server, tailescape Updated on 15Jan.2025, added "tailescape - tailscape ssh" 前期准备&#xff1a; 1. 更新可用软件包的数据库 2. 升级系统中所有已安装的软件包到最新版本 3. 安装 cur…...

HQL(JPQL)和原生SQL实现查询自定义返回类

维修申请实例RepairApplyInstance: package com.byx.scaffold.common.entity.jpa;import com.byx.scaffold.common.entity.jpaEnum.RepairStatusConstant; import lombok.Data;import javax.persistence.Convert; import javax.persistence.Entity; import javax.persistence…...

微信小程序 实现拼图功能

微信小程序 实现拼图 效果示例功能描述代码示例 效果示例 微信小程序 碎片拼图 功能描述 在微信小程序中&#xff0c;实现一个简单的拼图小游戏。用户需要将四张碎片图片拖动到目标图片的正确位置&#xff0c;具体功能如下&#xff1a; 拖动功能&#xff1a; 用户可以通过手指…...

《C++11》并发库:简介与应用

在C11之前&#xff0c;C并没有提供原生的并发支持。开发者通常需要依赖于操作系统的API&#xff08;如Windows的CreateThread或POSIX的pthread_create&#xff09;或者第三方库&#xff08;如Boost.Thread&#xff09;来创建和管理线程。这些方式存在以下几个问题&#xff1a; …...

【RDMA学习笔记】1:RDMA(Remote Direct Memory Access)介绍

从帝国理工的PPT学习。 什么是RDMA Remote Direct Memory Access&#xff0c;也就是Remote的DMA&#xff0c;是一种硬件机制&#xff0c;能直接访问远端结点的内存&#xff0c;而不需要处理器介入。 其中&#xff1a; Remote&#xff1a;跨node进行数据传输Direct&#xff…...

Autodl转发端口,在本地机器上运行Autodl服务器中的ipynb文件

通过 SSH 隧道将远程端口转发到本地机器 输入服务器示例的SSH指令和密码&#xff0c;将远程的6006端口代理到本地 在服务器终端&#xff0c;激活conda虚拟环境 conda activate posecnnexport PYOPENGL_PLATFORMegljupyter notebook --no-browser --port6006 --allow-root从…...

【Linux】常见指令(一)

Linux常见指令 01.whoami02.pwd03.ls04.mkdir05.cd 本文LInux环境为&#xff0c;使用XShell远程登陆到Linux。 具体如何环境搭建&#xff0c;大家可以查看其他博客。 01.whoami whoami 指令用来查看当前账户是谁。 如上图所示&#xff0c;使用whoami指令&#xff0c;查看到现在…...

AI学习之自然语言处理(NLP)

自然语言处理&#xff08;Natural Language Processing&#xff0c;NLP&#xff09;是计算机科学、人工智能和语言学领域的交叉学科&#xff0c;旨在让计算机能够理解、处理和生成人类语言。以下为你详细介绍&#xff1a; 自然语言处理的关键技术 词法分析&#xff1a;将文本…...

全面解析锁服务设计:内存锁、数据库锁与分布式锁的选择与实现

在构建分布式系统时&#xff0c;锁服务通常用于控制多个线程或进程对共享资源的访问。为了灵活适配不同的锁实现方式&#xff0c;我们可以设计一个基础的锁服务接口&#xff0c;然后根据需求提供不同的实现。例如&#xff0c;内存锁、数据库锁和分布式锁。 1. 锁服务基础接口设…...

jenkins-系统配置概述

一. 引文&#xff1a; Jenkins除了强大的功能插件实现的持续交付集成外&#xff0c; 本身也是有一些比较重要的可配项。 接下来我们来看一看。 配置入口: 系统管理-->系统设置 二. 基础配置&#xff1a; 1.主目录(home directory): Jenkins所有的数据文件存放路径(可通过…...

《数据思维》之数据可视化_读书笔记

文章目录 系列文章目录前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 前言 数据之道&#xff0c;路漫漫其修远兮&#xff0c;吾将上下而求索。 一、数据可视化 最基础的数据可视化方法就是统计图。一个好的统计图应该满足四个标准&#xff1a;准确、有…...

kafka消费堆积问题探索

背景 我们的商城项目用PHP写的&#xff0c;原本写日志方案用的是PHP的方案&#xff0c;但是&#xff0c;这个方案导致资源消耗一直降不下来&#xff0c;使用了20个CPU。后面考虑使用通过kafka的方案写日志&#xff0c;商城中把产生的日志丢到kafka中&#xff0c;在以go写的项目…...

一文掌握Docker

目录 1.快速入门 1.1.部署MySQL 1.2.命令解读 2.Docker基础 2.1.常见命令 2.1.1.命令介绍 2.1.2.演示 2.1.3.命令别名 2.2.数据卷 2.2.1.什么是数据卷 2.2.2.数据卷命令 2.2.3.挂载本地目录或文件 2.3.镜像 2.3.1.镜像结构 2.3.2.Dockerfile构建镜像 2.3.3.构建…...

慧集通(DataLinkX)iPaaS集成平台-系统管理之UI库管理、流程模板

UI库管理 UI库管理分为平台级和自建两种&#xff0c;其中平台级就是慧集通平台自己内置的一些ui库所有客户均可调用&#xff0c;自建则是平台支持使用者自己根据规则自己新增对应的UI库。具体界面如下&#xff1a; 自建UI库新增界面&#xff1a; 注&#xff1a;平台级UI库不支…...

【学习笔记】Macbook管理多个不同的Python版本

在MacBook上管理不同项目的不同Python版本&#xff0c;可以使用多种方法。以下是一些常见的方法&#xff1a; 1. 使用 pyenv pyenv 是一个非常流行的工具&#xff0c;可以让你轻松安装和切换多个Python版本。以下是安装和使用 pyenv 的步骤&#xff1a; 安装 pyenv 安装依赖…...

前端如何设计一个回溯用户操作的方案

同一个项目&#xff0c;为什么我本地无法复现&#xff0c;只有客户的设备才复现&#xff1f; 如何获取用户的操作路径呢&#xff1f; 两种方案&#xff1a;埋点和rrweb 埋点就很简单了&#xff0c;将所有可能操作的节点都进行预埋数据&#xff1b;但埋点简单并不省心&#xff…...