【原创】大数据治理入门(2)《提升数据质量:质量评估与改进策略》入门必看 高赞实用
提升数据质量:质量评估与改进策略
引言:数据质量的概念
在大数据时代,数据的质量直接影响到数据分析的准确性和可靠性。数据质量是指数据在多大程度上能够满足其预定用途,确保数据的准确性、完整性、一致性和及时性是数据质量的关键要素。高质量的数据能够帮助企业更好地理解市场趋势、优化运营流程、支持业务决策,从而提升企业的竞争力。
质量评估指标:准确性、完整性、一致性、及时性
-
准确性(Accuracy)
- 定义:数据的准确性是指数据与真实情况的吻合程度。错误的数据会导致分析结果的偏差,进而影响决策的正确性。
- 评估方法:
- 数据对比:将数据与已知的事实或标准数据进行对比,检查是否存在误差。
- 来源验证:验证数据的来源是否可靠,是否经过权威机构的认证。
- 异常检测:通过统计分析和数据可视化,发现和处理异常值。
-
完整性(Completeness)
- 定义:数据的完整性是指数据的完整性和无缺失程度。数据缺失会使得分析结果不全面,难以提供全面的视角。
- 评估方法:
- 缺失值检查:检查数据集中是否存在缺失值,统计缺失值的比例。
- 数据补全:通过插值、预测模型等方法补全缺失数据。
- 数据覆盖:确保数据覆盖率高,涵盖所有重要的数据点。
-
一致性(Consistency)
- 定义:数据的一致性是指数据在不同数据源和不同时间点的一致性程度。数据不一致会导致混淆和误解,影响数据分析的可靠性。
- 评估方法:
- 数据对比:对比不同数据源中的相同数据项,检查是否存在差异。
- 数据跟踪:记录数据在不同时间点的变化情况,确保数据的一致性。
- 数据标准化:使用统一的数据格式和标准,减少数据不一致的可能性。
-
及时性(Timeliness)
- 定义:数据的及时性是指数据在需要时能够及时获取和更新的程度。数据的及时性直接影响到决策的时效性。
- 评估方法:
- 数据更新频率:检查数据更新的频率,确保数据的时效性。
- 数据延迟分析:分析数据从生成到可用的时间延迟,找出瓶颈并优化。
- 实时数据处理:采用实时数据处理技术,确保数据能够及时提供。
常见问题:数据缺失、数据不一致、数据错误
-
数据缺失(Missing Data)
- 原因:数据采集不完整、数据传输丢失、人为输入错误等。
- 影响:导致分析结果不全面,影响决策的准确性。
- 应对策略:使用插值、预测模型等方法补全缺失数据,或通过数据采集流程的优化减少数据缺失。
-
数据不一致(Inconsistent Data)
- 原因:不同数据源的数据标准不统一、数据更新不及时、数据处理错误等。
- 影响:导致数据分析结果的混乱,难以得出准确的结论。
- 应对策略:建立数据标准化流程,进行数据对比和数据跟踪,确保数据的一致性。
-
数据错误(Incorrect Data)
- 原因:数据采集错误、数据传输错误、数据处理错误等。
- 影响:导致分析结果的偏差,影响决策的有效性。
- 应对策略:通过数据对比、异常检测等方法发现和纠正错误数据,建立数据校验机制。
改进方法:数据清洗、数据校验、数据标准化
-
数据清洗(Data Cleaning)
- 定义:数据清洗是指通过一系列技术手段,去除数据中的噪声、错误和不完整信息,使数据变得更加准确和可用。
- 方法:
- 去重:去除数据集中重复的记录。
- 补全:使用插值、预测模型等方法补全缺失数据。
- 校对:将数据与已知的事实或标准数据进行对比,发现并纠正错误。
- 工具:使用 Python 的 Pandas 库、SQL 查询、ETL 工具等进行数据清洗。
-
数据校验(Data Validation)
- 定义:数据校验是指通过预定义的规则和算法,检查数据是否符合预期的质量标准。
- 方法:
- 规则校验:定义数据质量规则,例如数据范围、数据格式等,对数据进行校验。
- 逻辑校验:检查数据之间的逻辑关系,例如时间顺序、金额合理性等。
- 统计校验:使用统计方法检查数据的分布和异常值。
- 工具:使用数据质量工具如 Talend、Informatica 等进行数据校验。
-
数据标准化(Data Standardization)
- 定义:数据标准化是指将不同来源和格式的数据转换为统一的标准格式,以便更好地管理和分析。
- 方法:
- 格式统一:将数据的格式统一为标准格式,例如日期格式、地址格式等。
- 编码统一:使用统一的编码标准,例如 ISO 代码、行业编码等。
- 单位统一:将数据的单位统一,例如货币单位、度量单位等。
- 工具:使用 ETL 工具如 Apache NiFi、Talend 等进行数据标准化处理。
实战案例:使用ETL工具提升数据质量
案例背景:某电商公司需要提升其用户行为数据的质量,以便更好地分析用户购买行为,优化推荐算法。
解决方案:
- 数据采集:通过埋点技术,收集用户在网站和移动应用上的行为数据。
- 数据传输:使用 Kafka 消息队列,将数据实时传输到 Hadoop 集群中。
- 数据清洗:使用 Apache NiFi 进行数据清洗,去除重复记录、补全缺失值、校对错误数据。
- 数据校验:通过 Talend 数据质量工具,定义数据规则并进行数据校验,确保数据的准确性和一致性。
- 数据标准化:将数据统一为标准格式,例如将日期格式统一为 YYYY-MM-DD,将地址格式统一为标准化地址。
实施效果:
- 数据准确性提高:通过数据校对和校验,错误数据的比例从 5% 降低到 1%。
- 数据完整性增强:数据清洗和补全处理,使数据缺失率从 10% 降低到 2%。
- 数据分析效率提升:数据标准化使得数据分析更高效,推荐算法的精准度提升了 15%。
- 用户体验改善:推荐算法的优化,使得用户在网站和移动应用上的购买体验显著提升。
其他实战案例
以Pentaho Data Integration(Kettle)为例,这是一种广泛应用于ETL(Extract, Transform, Load)过程中的开源工具,可以帮助企业高效地从多个异构数据库中抽取数据,并对其进行转换处理后加载到目标仓库中24。下面是一个具体的实战案例:
某大型零售连锁企业希望通过构建自己的数据仓库来更好地理解顾客行为模式并优化供应链管理。但是由于其业务遍布全国各地,各个门店使用的POS系统版本各异,导致原始交易数据格式复杂多样。为此,他们选择了Kettle作为主要的技术手段来进行数据集成工作。首先,团队成员编写了一系列脚本来抓取各个店铺每天产生的销售流水;然后利用内置的功能模块完成了诸如日期格式调整、货币符号移除等预处理步骤;最后再把这些经过清洗后的干净数据导入到中心化的Hadoop集群当中供后续深入挖掘分析之用。
在整个项目实施期间,开发人员还特别注意到了以下几个方面的问题解决:
- 处理海量数据时性能瓶颈如何突破;
- 如何保证每次更新操作都能保持历史版本的一致性;
- 对于新增加的数据源怎样快速适配而不影响现有架构稳定性。
通过以上努力,该企业在短短几个月内就实现了预期目标——不仅提高了内部报表生成的速度,而且大大增强了营销活动策划的有效性,最终促成了销售额的增长。
总结:数据质量的持续改进
提升数据质量是一个持续的过程,需要企业在数据采集、处理、存储和使用等各个环节建立严格的质量控制体系。通过数据清洗、数据校验和数据标准化等方法,企业可以显著提高数据的质量,从而更好地支持业务决策和运营优化。希望本文能够帮助您了解数据质量评估和改进策略的基本概念及其重要性。
参考文献或资料链接
- Data Quality Assessment and Improvement: Best Practices and Tools
- Improving Data Quality with Talend
- Apache NiFi: Data Integration and Data Flow Automation
- Using ETL Tools to Enhance Data Quality
如果您对本文有任何疑问或意见,欢迎在评论区留言交流。期待您的支持和关注!
相关文章:
【原创】大数据治理入门(2)《提升数据质量:质量评估与改进策略》入门必看 高赞实用
提升数据质量:质量评估与改进策略 引言:数据质量的概念 在大数据时代,数据的质量直接影响到数据分析的准确性和可靠性。数据质量是指数据在多大程度上能够满足其预定用途,确保数据的准确性、完整性、一致性和及时性是数据质量的…...
GLM: General Language Model Pretraining with Autoregressive Blank Infilling论文解读
论文地址:https://arxiv.org/abs/2103.10360 参考:https://zhuanlan.zhihu.com/p/532851481 GLM混合了自注意力和masked注意力,而且使用了2D位置编码。第一维的含义是在PartA中的位置,如5 5 5。第二维的含义是在Span内部的位置&a…...
总结SpringBoot项目中读取resource目录下的文件多种方法
系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 例如:第一章 Python 机器学习入门之pandas的使用 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目…...
云原生第四次作业
下载 [rootopenEuler-1 ~]# wget https://archive.apache.org/dist/httpd/httpd-2.4.46.tar.gz 压缩 配置实验环境 [rootopenEuler-1 httpd-2.4.46]# yum -y install apr apr-devel cyrus-sasl-devel expat-devel libdb-devel openldap-devel apr-util-devel apr-util pcre-d…...
day10_Structured Steaming
文章目录 Structured Steaming一、结构化流介绍(了解)1、有界和无界数据2、基本介绍3、使用三大步骤(掌握)4.回顾sparkSQL的词频统计案例 二、结构化流的编程模型(掌握)1、数据结构2、读取数据源2.1 File Source2.2 Socket Source…...
设计模式-工厂模式/抽象工厂模式
工厂模式 定义 定义一个创建对象的接口,让子类决定实列化哪一个类,工厂模式使一个类的实例化延迟到其子类; 工厂方法模式是简单工厂模式的延伸。在工厂方法模式中,核心工厂类不在负责产品的创建,而是将具体的创建工作…...
【算法学习】——整数划分问题详解(动态规划)
🧮整数划分问题是一个较为常见的算法题,很多问题从整数划分这里出发,进行包装,形成新的题目,所以完全理解整数划分的解决思路对于之后的进一步学习算法是很有帮助的。 「整数划分」通常使用「动态规划」解决࿰…...
【新教程】Ubuntu 24.04 单节点安装slurm
背景 网上教程老旧,不适用。 详细步骤 1、安装slurm sudo apt install slurm-wlm slurm-wlm-doc -y检查是否安装成功: slurmd --version如果得到slurm-wlm 23.11.4,表明安装成功。 2、配置slurm。 使用命令: sudo vi /etc/s…...
window下用vim
Windows 默认不支持 vim 命令,需要手动安装后才能使用。以下是解决方案: 1. 安装 Vim 编辑器 方法 1:通过 Scoop 或 Chocolatey 安装 使用 Scoop: 安装 Scoop(如果尚未安装):iwr -useb get.sco…...
citrix netscaler13.1 重写负载均衡响应头(基础版)
在 Citrix NetScaler 13.1 中,Rewrite Actions 用于对负载均衡响应进行修改,包括替换、删除和插入 HTTP 响应头。这些操作可以通过自定义策略来完成,帮助你根据需求调整请求内容。以下是三种常见的操作: 1. Replace (替换响应头)…...
使用PWM生成模式驱动BLDC三相无刷直流电机
引言 在 TI 的无刷直流 (BLDC) DRV8x 产品系列使用的栅极驱动器应用中,通常使用一些控制模式来切换MOSFET 开关的输出栅极。这些控制模式包括:1x、3x、6x 和独立脉宽调制 (PWM) 模式。 不过,DRV8x 产品系列(例如 DRV8311&…...
常见的php框架有哪几个?
一直以来,PHP作为一种广泛使用的编程语言,拥有着许多优秀的框架来帮助开发人员快速构建稳定的Web应用程序。本文降为大家介绍几种常见的PHP的主流框架,以及它们相关的特点和使用场景。如有问题,欢迎指正! 1.Laravel&a…...
机器学习(2):线性回归Python实现
1 概念回顾 1.1 模型假设 线性回归模型假设因变量y yy与自变量x xx之间的关系可以用以下线性方程表示: y β 0 β 1 ⋅ X 1 β 2 ⋅ X 2 … β n ⋅ X n ε y 是因变量 (待预测值);X1, X2, ... Xn 是自变量(特征)β0, β1,…...
Unity-Mirror网络框架-从入门到精通之RigidbodyPhysics示例
文章目录 前言示例一、球体的基础配置二、三个球体的设置差异三、示例意图LatencySimulation前言 在现代游戏开发中,网络功能日益成为提升游戏体验的关键组成部分。本系列文章将为读者提供对Mirror网络框架的深入了解,涵盖从基础到高级的多个主题。Mirror是一个用于Unity的开…...
【Unity-Animator】通过 StateMachineBehaviour 实现回调
StateMachineBehaviour 简介 StateMachineBehaviour是一个基类,所有状态脚本都派生自该类。它可以在状态机进入、退出或更新状态时执行代码,而无需编写自己的逻辑来测试和检测状态的变化。这使得开发者可以更方便地处理状态转换时的逻辑,例…...
并行服务、远程SSH无法下载conda,报错404
原下载代码无效,报错404 wget -c https://repo.anaconda.com/archive/Anaconda3-2023.03-1-Linux-x86_64.sh 使用下面代码下载 wget --user-agent"User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.2.12) Gecko/20101026 Firefox/3.6.12…...
cuquantum 简介
1. 关于 cuquantum 概述 官方文档: https://docs.nvidia.com/cuda/cuquantum/latest/appliance/overview.html#prerequisites NVIDIA 的 cuQuantum 是一个专门用于量子计算的高性能库,旨在加速量子电路的模拟和量子算法的执行。cuQuantum 提供了一系列…...
小程序如何引入腾讯位置服务
小程序如何引入腾讯位置服务 1.添加服务 登录 微信公众平台 注意:小程序要企业版的 第三方服务 -> 服务 -> 开发者资源 -> 开通腾讯位置服务 在设置 -> 第三方设置 中可以看到开通的服务,如果没有就在插件管理中添加插件 2.腾讯位置服务…...
【react】使用antd Table渲染数据遇到的报错问题
记录自己在开发过程中遇到的报错问题: 目录 原本写法:错误分析:解决方案: 原本写法: render: (text) > {console.log(text, "111111text");console.log(typeof text, "111111text");return t…...
55_OpenResty开发入门
Nginx编程需要用到Lua语言,因此我们必须先学习Lua的基本语法。Nginx本身也是C语言开发,因此也允许基于Lua做拓展。多级缓存的实现离不开Nginx编程,而Nginx编程又离不开OpenResty。 1.OpenResty概述 OpenResty是一款基于NGINX和LuaJIT的Web平台。通过Lua扩展NGINX实现的可伸…...
(即插即用模块-Attention部分) 四十四、(ICIP 2022) HWA 半小波注意力
文章目录 1、Half Wavelet Attention2、代码实现 paper:HALFWAVELET ATTENTION ON M-NET FOR LOW-LIGHT IMAGE ENHANCEMENT Code:https://github.com/FanChiMao/HWMNet 1、Half Wavelet Attention 传统的图像增强方法主要关注图像在空间域的特征信息&am…...
链家房价数据爬虫和机器学习数据可视化预测
完整源码项目包获取→点击文章末尾名片!...
全网首发:编译libssh,产生类似undefined reference to `EVP_aes_256_ctr@OPENSSL_1_1_0‘的大量错误
具体错误 前面和后面的: /opt/linux/x86-arm/aarch64-mix210-linux/host_bin/../lib/gcc/aarch64-linux-gnu/7.3.0/../../../../aarch64-linux-gnu/bin/ld: warning: libcrypto.so.1.1, needed by ../lib/libssh.so.4.10.1, not found (try using -rpath or -rpat…...
springboot 集成javaFx 两个面板之间如何进行跳转
1.创建两个面板 可参考博主的 java8 springboot 集成javaFx 实现一个客户端程序 文章来实现 2.完善代码 以下是博主创建的两个模板 博主在这里实现的是登录跳转功能,注意:这里登录按钮的触发实现方式做了以下小小的改动,也可根据自己的习惯来处理 相较第一篇文章,博主在Lo…...
vue-cli项目配置使用unocss
在了解使用了Unocss后,就完全被它迷住了。接手过的所有项目都配置使用了它,包括一些旧项目,也跟同事分享了使用Unocss的便捷性。 这里分享一下旧项目如何配置和使用Unocss的,项目是vue2vue-cli构建的,node<20平常开…...
ASP.NET Core - IStartupFilter 与 IHostingStartup
ASP.NET Core - IStartupFilter 与 IHostingStartup 1. IStartupFilter2 IHostingStartup2.5.1 创建外部程序集2.5.2 激活外部程序集 1. IStartupFilter 上面讲到的方式虽然能够根据不同环境将Startup中的启动逻辑进行分离,但是有些时候我们还会可以根据应用中的功能…...
学习ASP.NET Core的身份认证(基于JwtBearer的身份认证5)
用户在前端页面登录成功后会从服务端获取Token,后续调用服务器的服务接口时都得带着Token,否则就会验证失败。之前使用postman测试的时候,获取Token后再调用其它服务都是人工将Token添加到Header中,网页中没法这么做,只…...
【Vue】let、const、var的区别、适用场景
let、const、var,有哪些区别,适用场景 var 特点: var 是 JavaScript 中最传统的变量声明方式。具有函数作用域,即在函数内声明的 var 变量,在整个函数内都可以访问。变量提升:使用 var 声明的变量会被提升…...
【llama_factory】qwen2_vl训练与批量推理
训练llama factory配置文件 文件:examples/train_lora/qwen2vl_lora_sft.yaml ### model model_name_or_path: qwen2_vl/model_72b trust_remote_code: true### method stage: sft do_train: true finetuning_type: lora lora_target: all### dataset dataset: ca…...
计算机视觉与深度学习:使用深度学习训练基于视觉的车辆检测器(MATLAB源码-Faster R-CNN)
在人工智能领域,计算机视觉是一个重要且充满活力的研究方向。它使计算机能够理解和分析图像和视频数据,从而做出有意义的决策。其中,目标检测是计算机视觉中的一项关键技术,它旨在识别并定位图像中的多个目标对象。车辆检测作为目标检测的一个重要应用,在自动驾驶、智能交…...
Python 扫描枪读取发票数据导入Excel
财务需要一个扫描枪扫描发票文件,并将主要信息录入Excel 的功能。 文件中sheet表的列名称,依次为:发票编号、发票编码、日期、金额、工号、扫描日期。 扫描的时候,Excel 文件需要关闭,否则会报错。 import openpyxl …...
SpringMVC复习笔记
文章目录 SpringMVC 概念和基本使用SpringMVC 简介SpringMVC 核心组件和调用流程SpringMVC 基本使用第一步:导入依赖第二步:Controller 层开发第三步:SpringMVC 配置类配置核心组件第四步:SpringMVC 环境搭建第五步:部…...
arcgis提取不规则栅格数据的矢量边界
效果 1、准备数据 栅格数据:dem或者dsm 2、栅格重分类 分成两类即可 3、新建线面图层 在目录下选择预先准备好的文件夹,点击右键,选择“新建”→“Shapefile”,新建一个Shapefile文件。 在弹出的“新建Shapefile”对话框内“名称”命名为“折线”,“要素类型”选…...
【机器学习】零售行业的智慧升级:机器学习驱动的精准营销与库存管理
我的个人主页 我的领域:人工智能篇,希望能帮助到大家!!!👍点赞 收藏❤ 在当今数字化浪潮汹涌澎湃的时代,零售行业正站在转型升级的十字路口。市场竞争的白热化使得企业必须另辟蹊径࿰…...
链路追踪SkyWalking
链路追踪 链路追踪作用链路追踪的关键概念链路追踪的工作原理常用链路追踪工具链路追踪的实现步骤链路追踪的典型场景 SkyWalkingSkyWalking 的主要功能SkyWalking 的架构安装 SkyWalking从 SkyWalking 的官方 GitHub 仓库 下载最新版本。配置后端存储SkyWalking使用࿰…...
linux下的线程
一、pthread 线程 线程可以说是轻量级的进程,一般是一个进程中的多个任务。 进程:系统中的最小资源分配单元 线程:系统中最小执行单元 二、线程的特征 1、共享资源 2、效率高30% 3.使用第三方库(头文件加pthread.h 编译时添加 -lpthre…...
《研发管理 APQP 软件系统》——汽车电子行业的应用收益分析
全星研发管理 APQP 软件系统在汽车电子行业的应用收益分析 在汽车电子行业,技术革新迅猛,市场竞争激烈。《全星研发管理 APQP 软件系统》的应用,为企业带来了革命性的变化,诸多收益使其成为行业发展的关键驱动力。 《全星研发管理…...
mysql、oracle、sqlserver的区别
一、保存数据的持久性: MySQL:是在数据库更新或者重启,则会丢失数据。 Oracle:把提交的sql操作线写入了在线联机日志文件中,保持到了磁盘上,可以随时恢复。 SqlServer:2…...
CV(10)--目标检测
前言 仅记录学习过程,有问题欢迎讨论 目标检测 object detection,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别;输出的是分类类别label物体的外框(x, y, width, height)。 目标检测算法:…...
SQL LAST()
SQL中的LAST()函数是一个用于返回指定列中最后一个记录值的函数。然而,需要注意的是,这个函数并不是SQL标准的一部分,因此并不是所有数据库系统都支持它。具体来说,只有MS Access直接支持LAST()函数【0†source】。 在其他数据库…...
传统以太网问题与VLAN技术详解
传统以太网的问题 广播域:在网络中能接收同一广播信息的所有设备(计算机、交换机)等的集合 说明:在一个广播域内,当一个设备发送广播帧时,该域内的所有设备都能接收到这个广播帧。工作原理:在以…...
Java 面试题 - ArrayList 和 LinkedList 的区别,哪个集合是线程安全的?
Java 面试题 - ArrayList 和 LinkedList 的区别,哪个集合是线程安全的? 在 Java 开发中,ArrayList和LinkedList是两个常用的集合类,它们在数据结构和性能上有诸多不同,同时线程安全性也各有特点。深入理解这些差异&am…...
flutter 安卓端打包
在 Flutter 中打包 Android 应用程序是一个相对简单的过程。你可以使用 Flutter 的命令行工具来构建并打包你的 APK 或 AAB(Android App Bundle)。以下是打包 Flutter Android 应用的步骤: 1. 安装 Flutter 环境 确保你已经安装了 Flutter SDK,并且正确配置了 Android 开…...
前端开发:CSS背景属性
1.背景颜色 background-color: [ 指定颜色 ] background-color :blue; background-color : transparent //设置背景是透明的 2.背景图片 background-image : url ( ... ) 1. url 不要遗漏 . 2. url 可以是绝对路径 , 也可以是相对路径 3. url 上可以…...
【Python通过UDP协议传输视频数据】(界面识别)
提示:界面识别项目 前言 随着网络通信技术的发展,视频数据的实时传输在各种场景中得到了广泛应用。UDP(User Datagram Protocol)作为一种无连接的协议,凭借其低延迟、高效率的特性,在实时性要求较高的视频…...
centos 8 中安装Docker
注:本次样式安装使用的是centos8 操作系统。 1、镜像下载 具体的镜像下载地址各位可以去官网下载,选择适合你们的下载即可! 1、CentOS官方下载地址:https://vault.centos.org/ 2、阿里云开源镜像站下载:centos安装包…...
leetcode hot 100 -划分字母区间
给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。 注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s 。 返回一个表示每个字符串片段的长度的列表。 示例 1&am…...
CSS 元素的显示模式(块元素,行内元素,行内块元素)
一. 块元素(block) 又称:块级元素 特点: 1. 在页面中独占一行,不会与任何元素共用一行,是从上到下排列的。 2. 默认宽度:撑满父元素。 3. 默认高度:由内容撑开。 4. 可以通过 CSS 设…...
鸿蒙UI开发——键盘弹出避让模式设置
1、概 述 我们在鸿蒙开发时,不免会遇到用户输入场景,当用户准备输入时,会涉及到输入法的弹出,我们的界面针对输入法的弹出有两种避让模式:上抬模式、压缩模式。 下面针对输入法的两种避让模式的设置做简单介绍。 2、…...
Multi-Agent如何设计
文章小结 研究背景和目的 在单一大语言模型长期主导人工智能领域的背景下,多智能体系统在对话任务解决中逐渐崭露头角。 虽然先前的研究已经展示了多智能体系统在推理任务和创造性工作中的潜力,但对于其在对话范式方面的局限性以及单个智能体的影响&am…...