当前位置: 首页 > news >正文

使用分割 Mask 和 K-means 聚类获取天空的颜色

引言

在计算机视觉领域,获取天空的颜色是一个常见任务,广泛应用于天气分析、环境感知和图像增强等场景。本篇博客将介绍如何通过已知的天空区域 Mask 提取天空像素,并使用 K-means 聚类分析天空颜色,最终根据颜色占比查表得到主导颜色。

一、流程概述

本文的流程分为以下几个步骤:

1. 使用分割 Mask 提取天空区域像素。
2. 通过 K-means 聚类对天空像素进行颜色聚类。
3. 统计每个聚类的面积占比,筛选面积占比超过 30% 的颜色。
4. 根据筛选结果查表获取对应的颜色名称。
接下来我们将详细讲解每个步骤。

二、提取天空区域像素

分割 Mask 是一个二值化的图像,其中 1 表示天空区域,0 表示非天空区域。通过 Mask,可以从原图中提取出天空区域的像素。

from typing import Tuple
import numpy as np
from PIL import Imagedef extract_sky_pixels(image_path: str, sky_mask: np.ndarray) -> np.ndarray:"""根据天空区域的 Mask 提取像素。:param image_path: 输入图像的路径。:param sky_mask: 天空区域的二值化 Mask,1 表示天空,0 表示非天空。:return: 天空区域的像素数组,形状为 (N, 3),每行表示一个像素的 [R, G, B] 值。"""image = Image.open(image_path).convert("RGB")image_np = np.array(image)  # 转为 NumPy 数组return image_np[sky_mask == 1]  # 仅保留天空区域的像素

三、K-means 聚类分析天空颜色

提取天空像素后,我们使用 K-means 聚类将颜色分为若干类(默认设定为 k=3),并统计每类颜色的面积占比。
以下是 K-means 聚类的代码实现:

from sklearn.cluster import KMeans
from typing import Tupledef kmeans_clustering(sky_pixels: np.ndarray, k: int = 3) -> Tuple[np.ndarray, np.ndarray]:"""使用 K-means 对天空像素聚类。:param sky_pixels: 天空区域的像素数组,形状为 (N, 3),每行表示 [R, G, B] 值。:param k: 聚类的数量,默认值为 3。:return: - cluster_centers: 每个聚类的中心颜色,形状为 (k, 3)。- area_ratios: 每个聚类的面积占比,形状为 (k,)。"""# 归一化像素值(0-1 范围)sky_pixels_normalized = sky_pixels / 255.0# 使用 K-means 聚类kmeans = KMeans(n_clusters=k, random_state=0).fit(sky_pixels_normalized)# 获取每个像素的聚类标签labels = kmeans.labels_# 每个聚类的中心颜色cluster_centers = kmeans.cluster_centers_ * 255.0# 统计每个聚类的像素数量label_counts = np.bincount(labels)# 计算每个聚类的面积占比area_ratios = label_counts / len(sky_pixels)return cluster_centers, area_ratios

四、筛选主导颜色并查表

我们关心面积占比超过 30% 的颜色,并通过查表将 RGB 值转换为对应的颜色名称。
以下是颜色查表和筛选的代码:

from typing import List, Tupledef rgb_to_color_name(rgb: np.ndarray) -> str:"""根据 RGB 值查表获取颜色名称。:param rgb: RGB 颜色值,形状为 (3,)。:return: 颜色名称。"""# 定义常见颜色的 RGB 值和名称color_table = {"Sky Blue": (135, 206, 235),"Deep Sky Blue": (0, 191, 255),"Light Blue": (173, 216, 230),"Azure": (240, 255, 255),"Navy": (0, 0, 128)}# 计算每个颜色的欧几里得距离min_dist = float('inf')color_name = "Unknown"for name, value in color_table.items():dist = np.linalg.norm(np.array(rgb) - np.array(value))if dist < min_dist:min_dist = distcolor_name = namereturn color_namedef filter_and_get_color_names(cluster_centers: np.ndarray, area_ratios: np.ndarray, threshold: float = 0.3
) -> List[Tuple[str, float]]:"""筛选面积占比超过阈值的颜色,并查表获取颜色名称。:param cluster_centers: 每个聚类的中心颜色,形状为 (k, 3)。:param area_ratios: 每个聚类的面积占比,形状为 (k,)。:param threshold: 面积占比的筛选阈值,默认为 0.3。:return: 主导颜色及其面积占比的列表,每个元素为 (颜色名称, 面积占比)。"""colors = []for center, ratio in zip(cluster_centers, area_ratios):if ratio > threshold:color_name = rgb_to_color_name(center)colors.append((color_name, ratio))return colors

五、完整代码示例

以下是完整的流程代码,实现从分割 Mask 提取天空颜色的过程:

from typing import List, Tuple
import numpy as npdef get_sky_colors(image_path: str, sky_mask: np.ndarray, k: int = 3, threshold: float = 0.3) -> List[Tuple[str, float]]:"""获取天空区域的主导颜色。:param image_path: 输入图像的路径。:param sky_mask: 天空区域的二值化 Mask,1 表示天空,0 表示非天空。:param k: 聚类的数量,默认值为 3。:param threshold: 面积占比的筛选阈值,默认为 0.3。:return: 主导颜色及其面积占比的列表,每个元素为 (颜色名称, 面积占比)。"""# Step 1: 提取天空像素sky_pixels = extract_sky_pixels(image_path, sky_mask)# Step 2: K-means 聚类cluster_centers, area_ratios = kmeans_clustering(sky_pixels, k)# Step 3: 筛选并查表获取颜色名称dominant_colors = filter_and_get_color_names(cluster_centers, area_ratios, threshold)return dominant_colors# 测试
if __name__ == "__main__":# 假设已知分割 Masksample_mask = np.load("sky_mask.npy")  # 载入二值化 Maskimage_path = "example.jpg"  # 输入图像路径sky_colors = get_sky_colors(image_path, sample_mask)print("天空颜色:", sky_colors)

六、总结

通过分割 Mask 和 K-means 聚类,我们可以高效提取天空区域的颜色特征,并获取主导颜色。这种方法简单易用,适合多种场景需求。
希望这篇博客能帮助你快速上手天空颜色提取的实现!如有疑问,欢迎在评论区交流!

相关文章:

使用分割 Mask 和 K-means 聚类获取天空的颜色

引言 在计算机视觉领域&#xff0c;获取天空的颜色是一个常见任务&#xff0c;广泛应用于天气分析、环境感知和图像增强等场景。本篇博客将介绍如何通过已知的天空区域 Mask 提取天空像素&#xff0c;并使用 K-means 聚类分析天空颜色&#xff0c;最终根据颜色占比查表得到主导…...

UML系列之Rational Rose笔记四:时序图(顺序图_序列图)

时序图有很多画法&#xff0c;这基本上能算rose里面要求最乱的一种图了&#xff1b;有些人的需求是BCE模式&#xff0c;这是正常规范点的&#xff0c;有些人就不需要&#xff0c;有些需要用数据库交互&#xff0c;有些不需要&#xff1b;没有一个较为统一的需求&#xff1b;在此…...

nginx反向代理http 和 https(案例)

说明&#xff1a;在香港开了一台虚拟机&#xff0c;主要用于将来自国外访问的80和443代理到大陆IDC机房 (1) 定义80和443的upstream 211.155.82.174 是keepalive中VIP对应的公网IP&#xff08;在国内访问www.playyx.com解析到211.155.82.174&#xff09; upstream new_server…...

Dify应用-工作流

目录 DIFY 工作流参考 DIFY 工作流 2025-1-15 老规矩感谢参考文章的作者,避免走弯路。 2025-1-15 方便容易上手 在dify的一个桌面上,添加多个节点来完成一个任务。 每个工作流必须有一个开始和结束节点。 节点之间用线连接即可。 每个节点可以有输入和输出 输出类型有,字符串,…...

装备制造业:建立项目“四算”管理:以合同为源头,以项目为手段实现合同的测算、预算、核算与决算的管控体系

尊敬的各位管理层&#xff1a; 大家好&#xff01;作为装备制造业的 CFO&#xff0c;我今天要向大家汇报的是如何建立项目“四算”管理&#xff0c;即以合同为源头&#xff0c;以项目为手段实现合同的测算、预算、核算与决算的管控体系。在当前市场竞争激烈、成本压力不断增大…...

Centos7将/dev/mapper/centos-home磁盘空间转移到/dev/mapper/centos-root

1、查看存储 df -h文件系统 容量 已用 可用 已用% 挂载点 devtmpfs 126G 0 126G 0% /dev tmpfs 126G 0 126G 0% /dev/shm tmpfs 126G 19M 126G 1% /run tmpfs …...

docker 部署 MantisBT

1. docker 安装MantisBT docker pull vimagick/mantisbt:latest 2.先运行实例&#xff0c;复制配置文件 docker run -p 8084:80 --name mantisbt -d vimagick/mantisbt:latest 3. 复制所需要配置文件到本地路径 docker cp mantisbt:/var/www/html/config/config_inc.php.…...

【Vue - Element 】实现表单输入框的远程搜索功能

需求 表单是一个常见的元素&#xff0c;而在表单中&#xff0c;常常需要用户从大量的数据中选择一个或多个选项。 为了提高用户体验&#xff0c;提供远程搜索功能可以帮助用户快速找到所需的选项&#xff0c;而不是从冗长的下拉列表中手动查找。 以该需求为例&#xff0c;我…...

学习华为熵减:激发组织活力(系列之三)

目录 为什么学习华为&#xff1f; 学习华为什么&#xff1f; 一、势&#xff1a;顺势而为&#xff0c;在风口上猪都会飞起来。 二、道&#xff1a;就是认识和利用规律层面&#xff0c;文化和制度创新就是企业经营之道。 三、法&#xff1a;就是一套价值管理的变革方法论。…...

多种vue前端框架介绍

学如逆水行舟&#xff0c;不进则退。 在现今的软件开发领域&#xff0c;Vue.js凭借其高效、灵活和易于上手的特性&#xff0c;成为了前端开发的热门选择。对于需要快速搭建企业级后台管理系统的开发者而言&#xff0c;使用现成的Vue后台管理系统模板无疑是一个明智之举。 本文…...

C语言重点回顾(持续更新中~)

个人见解&#xff0c;有异议可以留言~ 第一讲&#xff1a;初识C语言 目录 1.编译和链接 2.main函数 3.库函数 4.关键字 5.字符和字符串 6.转义字符 1.编译和链接 初始的C语言源代码是一个文本文件&#xff0c;要想将一个文本文件变成一个执行文件&#xff0c;需要经过编…...

Navicat Premium 原生支持阿里云 PolarDB 数据库

近日&#xff0c;我司旗下的 Navicat Premium 软件通过了阿里云 PolarDB 数据库产品生态集成认证&#xff0c;这标志着 Navicat 通过原生技术全面实现了对秒级弹性、高性价比、稳定可靠的PolarDB 数据库三大引擎&#xff08;PolarDB MySQL版、PolarDB PostgreSQL版和 PolarDB f…...

青少年编程与数学 02-006 前端开发框架VUE 25课题、UI数据

青少年编程与数学 02-006 前端开发框架VUE 25课题、UI数据 一、UI数据二、Element Plus处理响应式数据三、Vuetify处理响应式数据 课题摘要:本文探讨了UI数据在用户界面中的重要性和处理方法。UI数据包括展示数据、用户输入、状态数据等&#xff0c;对用户体验和应用交互性有直…...

用css和html制作太极图

目录 css相关参数介绍 边距 边框 伪元素选择器 太极图案例实现、 代码 效果 css相关参数介绍 边距 <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title><style>*{margin: 0;padding: 0;}div{width: …...

软件测试入门—功能需求分析:以一个旅游管理系统为例

在软件测试的旅程中&#xff0c;功能需求分析是测试人员构建高质量测试用例的基础&#xff0c;它确保软件的各项功能都能按照预期正常运行。接下来&#xff0c;我们将以一个旅游管理系统为例&#xff0c;详细阐述如何进行功能需求分析&#xff0c;帮助大家更清晰地掌握这一重要…...

深度解析Linux中关于操作系统的知识点

操作系统概述与核心概念 任何计算机系统都包含一个基本的程序集合&#xff0c;成为操作系统OS 操作系统是一款进行软硬件管理的软件 操作系统包括&#xff1a; 内核&#xff08;进程管理&#xff0c;内存管理&#xff0c;驱动管理&#xff09; 其他程序&#xff08;例如数据…...

【深度学习】关键技术-激活函数(Activation Functions)

激活函数&#xff08;Activation Functions&#xff09; 激活函数是神经网络的重要组成部分&#xff0c;它的作用是将神经元的输入信号映射到输出信号&#xff0c;同时引入非线性特性&#xff0c;使神经网络能够处理复杂问题。以下是常见激活函数的种类、公式、图形特点及其应…...

分布式ID的实现方案

1. 什么是分布式ID ​ 对于低访问量的系统来说&#xff0c;无需对数据库进行分库分表&#xff0c;单库单表完全可以应对&#xff0c;但是随着系统访问量的上升&#xff0c;单表单库的访问压力逐渐增大&#xff0c;这时候就需要采用分库分表的方案&#xff0c;来缓解压力。 ​…...

电脑有两张网卡,如何实现同时访问外网和内网?

要是想让一台电脑用两张网卡&#xff0c;既能访问外网又能访问内网&#xff0c;那可以通过设置网络路由还有网卡的 IP 地址来达成。 检查一下网卡的连接 得保证电脑的两张网卡分别连到外网和内网的网络设备上&#xff0c;像路由器或者交换机啥的。 给网卡配上不一样的 IP 地…...

Linux 查看内存命令

目录 1. free 2. vmstat 3. top 4. htop 5. /proc/meminfo 1. free free命令是最常用的查看内存使用情况的命令。它显示系统的总内存、已使用内存、空闲内存和交换内存的总量。 free -h -h 选项&#xff1a;以易读的格式&#xff08;如GB、MB&#xff09;显示内存大小。…...

无法联网怎么在docker中安装Ribbitmq

如果无法连接互联网&#xff0c;无法在Docker中安装RabbitMQ。但是&#xff0c;您可以使用本地镜像或者手动下载RabbitMQ的Docker镜像并进行安装。 以下是使用本地镜像的步骤&#xff1a; 从可以上网的计算机上拉取RabbitMQ的官方Docker镜像&#xff1a; docker pull rabbitmq:…...

Spring Boot 定时任务搭建及Quartz对比详解

前言&#xff1a; 之前在帮别人搭建定时任务时 被问到为什么不用 Quartz 反而使用 SpringBoot 定时任务 以下是 SpringBoot 定时任务 的使用情况 大家可参考具体情况选择使用 1. 概述&#xff1a; Spring Boot 定时器是基于 Spring Framework 的 Task Scheduling 模块实现的…...

集中式架构vs分布式架构

一、集中式架构 如何准确理解集中式架构 1. 集中式架构的定义 集中式架构是一种将系统的所有计算、存储、数据处理和控制逻辑集中在一个或少数几个节点上运行的架构模式。这些中央节点&#xff08;服务器或主机&#xff09;作为系统的核心&#xff0c;负责处理所有用户请求和…...

中国数字安全产业年度报告(2024)

数字安全是指&#xff0c;在全球数字化背景下&#xff0c;合理控制个人、组织、国家在各种活动中面临的数字风险&#xff0c;保障数字社会可持续发展的政策法规、管理措施、技术方法等安全手段的总和。 数字安全领域可从三个方面对应新质生产力的三大内涵:一是基于大型语言模型…...

Python Wi-Fi密码测试工具

Python Wi-Fi测试工具 相关资源文件已经打包成EXE文件&#xff0c;可双击直接运行程序&#xff0c;且文章末尾已附上相关源码&#xff0c;以供大家学习交流&#xff0c;博主主页还有更多Python相关程序案例&#xff0c;秉着开源精神的想法&#xff0c;望大家喜欢&#xff0c;点…...

深入探讨DICOM医学影像中的MPPS服务及其具体实现

深入探讨DICOM医学影像中的MPPS服务及其具体实现 1. 引言 在医疗影像的管理和传输过程中&#xff0c;DICOM&#xff08;数字影像和通信医学&#xff09;标准发挥着至关重要的作用。除了DICOM影像的存储和传输&#xff08;如影像存储SCP和影像传输SCP&#xff09;&#xff0c;…...

【Rust自学】12.3. 重构 Pt.1:改善模块化

12.3.0. 写在正文之前 第12章要做一个实例的项目——一个命令行程序。这个程序是一个grep(Global Regular Expression Print)&#xff0c;是一个全局正则搜索和输出的工具。它的功能是在指定的文件中搜索出指定的文字。 这个项目分为这么几步&#xff1a; 接收命令行参数读取…...

Cosmos:英伟达发布世界基础模型,为机器人及自动驾驶开发加速!

1. 简介 在2025年消费电子展&#xff08;CES&#xff09;上&#xff0c;NVIDIA发布了全新的Cosmos平台&#xff0c;旨在加速物理人工智能&#xff08;AI&#xff09;系统的开发&#xff0c;尤其是自主驾驶车辆和机器人。该平台集成了生成式世界基础模型&#xff08;WFM&#x…...

【Docker】保姆级 docker 容器部署 MySQL 及 Navicat 远程连接

&#x1f970;&#x1f970;&#x1f970;来都来了&#xff0c;不妨点个关注叭&#xff01; &#x1f449;博客主页&#xff1a;欢迎各位大佬!&#x1f448; 文章目录 1. docker 容器部署 MySQL1.1 拉取mysql镜像1.2 启动容器1.3 进入容器1.4 使用 root 用户登录 2. Navicat 连…...

Java IDEA中Gutter Icons图标的含义

前些天发现了一个蛮有意思的人工智能学习网站,8个字形容一下"通俗易懂&#xff0c;风趣幽默"&#xff0c;感觉非常有意思,忍不住分享一下给大家。 &#x1f449;点击跳转到教程 前言&#xff1a; 很多人刚开始用IDEA来学习编程&#xff0c;会发现下面这些图标。 但是…...

Broker收到消息之后如何存储

1.前言 此文章是在儒猿课程中的学习笔记&#xff0c;感兴趣的想看原来的课程可以去咨询儒猿课堂《从0开始带你成为RocketMQ高手》&#xff0c;我本人觉得这个作者还是不错&#xff0c;都是从场景来进行分析&#xff0c;感觉还是挺适合我这种小白的。这块主要都是我自己的学习笔…...

RuoYi框架上传图片或文件到阿里云OSS详细教程

为了提供一个更加详细的教程&#xff0c;我们将深入探讨每个步骤&#xff0c;并添加一些额外的细节和最佳实践建议。以下是关于如何在Ruoyi框架中集成阿里云OSS实现文件上传功能的详尽指南。 详细教程 环境准备 注册阿里云账号&#xff1a;访问阿里云官网并创建一个账户。创…...

【论文笔记】SmileSplat:稀疏视角+pose-free+泛化

还是一篇基于dust3r的稀疏视角重建工作&#xff0c;作者联合优化了相机内外参与GS模型&#xff0c;实验结果表明优于noposplat。 abstract 在本文中&#xff0c;提出了一种新颖的可泛化高斯方法 SmileSplat&#xff0c;可以对无约束&#xff08;未标定相机的&#xff09;稀疏多…...

python实现收到一封邮件时自动触发执行读取邮件内容及后续操作

要实现收到一封邮件时自动触发执行 getEmailData()&#xff0c;可以结合定时任务或实时事件监控机制来实现。以下是两种常用的方法&#xff1a; 方法 1&#xff1a;轮询方式&#xff08;定时检测&#xff09; 使用 schedule 或 time.sleep 循环定期检测收件箱&#xff1a; i…...

【Vim Masterclass 笔记12】S06L26 + L27:Vim 文本的搜索、查找及替换同步练习(含点评课)

文章目录 S06L26 Exercise 07 - Search, Find, and Replace1 训练目标2 操作指令2.1. 打开 search-practice.txt 文件2.2. 同一行内的搜索练习2.3. 当前文件内的搜索练习2.4. 单词搜索练习2.5. 全局替换练习 3 退出 Vim S06L27 同步练习点评课 写在前面 Vim 的文本检索、查找与…...

YOLOv11 OBB 任务介绍与数据集构建要求及训练脚本使用指南

YOLO&#xff08;You Only Look Once&#xff09;是一个高效且广泛应用于目标检测任务的深度学习框架。在目标检测任务中&#xff0c;传统的边界框&#xff08;AABB&#xff09;通过四个参数来定义目标的位置信息&#xff1a;中心坐标、宽度、高度以及目标的旋转角度。然而&…...

Leecode刷题C语言之超过阈值的最小操作数②

执行结果:通过 执行用时和内存消耗如下&#xff1a; // 最小堆的节点结构体 typedef struct {long long* heap;int size;int capacity; } MinHeap;// 初始化最小堆 MinHeap* createMinHeap(int capacity) {MinHeap* minHeap (MinHeap*)malloc(sizeof(MinHeap));minHeap->s…...

【Linux】11.Linux基础开发工具使用(4)

文章目录 3. Linux调试器-gdb使用3.1 背景3.2 下载安装3.3 使用gdb查询3.4 开始使用 3. Linux调试器-gdb使用 3.1 背景 程序的发布方式有两种&#xff0c;debug模式和release模式 Linux gcc/g出来的二进制程序&#xff0c;默认是release模式 要使用gdb调试&#xff0c;必须…...

Cesium中的CustomDataSource 详解

Cesium CustomDataSource 详解 在 Cesium 中&#xff0c;CustomDataSource 是一个强大的类&#xff0c;用于处理自定义的地理数据。它提供了一种方法&#xff0c;可以通过程序方式添加、管理和更新动态的地理实体&#xff0c;而无需依赖外部数据格式&#xff08;如 GeoJSON 或…...

win32汇编环境,窗口程序中组合框的应用举例

;运行效果 ;win32汇编环境,窗口程序中组合框的应用举例 ;比如在窗口程序中生成组合框&#xff0c;增加子项&#xff0c;删除某项&#xff0c;取得指定项内容等 ;直接抄进RadAsm可编译运行。重点部分加备注。 ;以下是ASM文件 ;>>>>>>>>>>>>…...

Wireshark 使用教程:网络分析从入门到精通

一、引言 在网络技术的广阔领域中&#xff0c;网络协议分析是一项至关重要的技能。Wireshark 作为一款开源且功能强大的网络协议分析工具&#xff0c;被广泛应用于网络故障排查、网络安全检测以及网络协议研究等诸多方面。本文将深入且详细地介绍 Wireshark 的使用方法&#x…...

菜品管理(day03)

公共字段自动填充 问题分析 业务表中的公共字段&#xff1a; 而针对于这些字段&#xff0c;我们的赋值方式为&#xff1a; 在新增数据时, 将createTime、updateTime 设置为当前时间, createUser、updateUser设置为当前登录用户ID。 在更新数据时, 将updateTime 设置为当前时间…...

Scira - 一个极简的开源 AI 搜索引擎

支持实时搜索 、学术论文分析 、社交媒体洞察 、YouTube 搜索 、航班追踪 、电影搜索&#xff0c;功能倒是挺多。 但是目前只支持 xAI 的 Grok 还不能换模型&#xff0c;不过用的 Vercel SDK 支持下 DeepSeek 应该很容易 https://index.html.zone/ai/scira...

利用源码安装httpd

方法一&#xff1a; 1&#xff0c;下载源码 [rootopenEuler-1 ~]# wget https://archive.apache.org/dist/httpd/httpd-2.4.46.tar.gz [rootopenEuler-1 ~]# ls anaconda-ks.cfg httpd-2.4.46.tar.gz mysql-8.0.36-linux-glibc2.12-x86_64.tar.xz 2&#xff0c;进行压缩 […...

软件测试 —— Selenium(等待)

软件测试 —— Selenium&#xff08;等待&#xff09; 一个例子强制等待使用示例&#xff1a;为什么不推荐使用强制等待&#xff1f;更好的选择 隐式等待 implicitly_wait&#xff08;&#xff09;隐式等待和强制等待的区别隐式等待&#xff08;Implicit Wait&#xff09;强制等…...

图像模糊度(清晰度)检测 EsFFT 算法详细分析

图像模糊度检测算法 基于频域的算法 傅里叶变换法:先将图像进行傅里叶变换得到频谱图,频谱图中心为低频,向外扩展为高频。通过屏蔽频谱图中心区域实现高通滤波,保留图像边缘等高频信息,再求频谱图的均值即平均高频幅值,该值越小,图像越模糊。但传统FFT方法存在不足,如…...

快速上手 HarmonyOS 应用开发

一、DevEco Studio 安装与配置 1. DevEco Studio 简介 DevEco Studio 是 HarmonyOS 的一站式集成开发环境&#xff08;IDE&#xff09;&#xff0c;提供了丰富的工具和功能&#xff0c;支持 HarmonyOS 应用开发的全流程。 2. DevEco Studio 下载与安装 下载地址&#xff1a…...

金融项目实战 06|Python实现接口自动化——日志、实名认证和开户接口

目录 一、日志封装及应用&#xff08;理解&#xff09; 二、认证开户接口脚本编写 1、代码编写 1️⃣api目录 2️⃣script目录 2、BeautifulSoup库 1️⃣简介及例子 2️⃣提取html数据工具封装 3、认证开户参数化 一、日志封装及应用&#xff08;理解&#xff09; &…...

Lianwei 安全周报|2025.1.13

新的一周又开始了&#xff0c;以下是本周「Lianwei周报」&#xff0c;我们总结推荐了本周的政策/标准/指南最新动态、热点资讯和安全事件&#xff0c;保证大家不错过本周的每一个重点&#xff01; 政策/标准/指南最新动态 01 美国国土安全部发布《公共部门生成式人工智能部署手…...

【C#深度学习之路】如何使用C#实现Yolo8/11 Segment 全尺寸模型的训练和推理

【C#深度学习之路】如何使用C#实现Yolo8/11 Segment 全尺寸模型的训练和推理 项目背景项目实现推理过程训练过程 项目展望写在最后项目下载链接 本文为原创文章&#xff0c;若需要转载&#xff0c;请注明出处。 原文地址&#xff1a;https://blog.csdn.net/qq_30270773/article…...