当前位置: 首页 > news >正文

负载均衡原理及算法

什么是负载均衡?

负载均衡 指的是将用户请求分摊到不同的服务器上处理,以提高系统整体的并发处理能力以及可靠性。负载均衡服务可以有由专门的软件或者硬件来完成,一般情况下,硬件的性能更好,软件的价格更便宜(后文会详细介绍到)

下负载均衡是一种比较常用且实施起来较为简单的提高系统并发能力和可靠性的手段,不论是单体架构的系统还是微服务架构的系统几乎都会用到

负载均衡分为哪几种?

负载均衡可以简单分为 服务端负载均衡 和 客户端负载均衡 这两种

服务端负载均衡涉及到的知识点更多,工作中遇到的也比较多,因此,我会花更多时间来介绍。

服务端负载均衡

服务端负载均衡 主要应用在 系统外部请求 和 网关层 之间,可以使用 软件 或者 硬件 实现

下图是我画的一个简单的基于 Nginx 的服务端负载均衡示意图:

硬件负载均衡 通过专门的硬件设备(比如 F5、A10、Array )实现负载均衡功能。

硬件负载均衡的优势是性能很强且稳定,缺点就是实在是太贵了。像基础款的 F5 最低也要 20 多万,绝大部分公司是根本负担不起的,业务量不大的话,真没必要非要去弄个硬件来做负载均衡,用软件负载均衡就足够了!

在我们日常开发中,一般很难接触到硬件负载均衡,接触的比较多的还是 软件负载均衡 。软件负载均衡通过软件(比如 LVS、Nginx、HAproxy )实现负载均衡功能,性能虽然差一些,但价格便宜啊!像基础款的 Linux 服务器也就几千,性能好一点的 2~3 万的就很不错了。

根据 OSI 模型,服务端负载均衡还可以分为:

  • 二层负载均衡
  • 三层负载均衡
  • 四层负载均衡
  • 七层负载均衡

最常见的是四层和七层负载均衡,因此,本文也是重点介绍这两种负载均衡。

Nginx 官网对四层负载和七层负载均衡均衡做了详细介绍,感兴趣的可以看看。

  • What Is Layer 4 Load Balancing?
  • What Is Layer 7 Load Balancing?

 

  • 四层负载均衡 工作在 OSI 模型第四层,也就是传输层,这一层的主要协议是 TCP/UDP,负载均衡器在这一层能够看到数据包里的源端口地址以及目的端口地址,会基于这些信息通过一定的负载均衡算法将数据包转发到后端真实服务器。也就是说,四层负载均衡的核心就是 IP+端口层面的负载均衡,不涉及具体的报文内容。
  • 七层负载均衡 工作在 OSI 模型第七层,也就是应用层,这一层的主要协议是 HTTP 。这一层的负载均衡比四层负载均衡路由网络请求的方式更加复杂,它会读取报文的数据部分(比如说我们的 HTTP 部分的报文),然后根据读取到的数据内容(如 URL、Cookie)做出负载均衡决策。也就是说,七层负载均衡器的核心是报文内容(如 URL、Cookie)层面的负载均衡,执行第七层负载均衡的设备通常被称为 反向代理服务器 。

七层负载均衡比四层负载均衡会消耗更多的性能,不过,也相对更加灵活,能够更加智能地路由网络请求,比如说你可以根据请求的内容进行优化如缓存、压缩、加密。

简单来说,四层负载均衡性能很强,七层负载均衡功能更强! 不过,对于绝大部分业务场景来说,四层负载均衡和七层负载均衡的性能差异基本可以忽略不计的。

下面这段话摘自 Nginx 官网的 What Is Layer 4 Load Balancing? 这篇文章。

Layer 4 load balancing was a popular architectural approach to traffic handling when commodity hardware was not as powerful as it is now, and the interaction between clients and application servers was much less complex. It requires less computation than more sophisticated load balancing methods (such as Layer 7), but CPU and memory are now sufficiently fast and cheap that the performance advantage for Layer 4 load balancing has become negligible or irrelevant in most situations.

第 4 层负载平衡是一种流行的流量处理体系结构方法,当时商用硬件没有现在这么强大,客户端和应用程序服务器之间的交互也不那么复杂。它比更复杂的负载平衡方法(如第 7 层)需要更少的计算量,但是 CPU 和内存现在足够快和便宜,在大多数情况下,第 4 层负载平衡的性能优势已经变得微不足道或无关紧要。

在工作中,我们通常会使用 Nginx 来做七层负载均衡,LVS(Linux Virtual Server 虚拟服务器, Linux 内核的 4 层负载均衡)来做四层负载均衡。

客户端负载均衡

客户端负载均衡 主要应用于系统内部的不同的服务之间,可以使用现成的负载均衡组件来实现。

在客户端负载均衡中,客户端会自己维护一份服务器的地址列表,发送请求之前,客户端会根据对应的负载均衡算法来选择具体某一台服务器处理请求。

客户端负载均衡器和服务运行在同一个进程或者说 Java 程序里,不存在额外的网络开销。不过,客户端负载均衡的实现会受到编程语言的限制,比如说 Spring Cloud Load Balancer 就只能用于 Java 语言。

Java 领域主流的微服务框架 Dubbo、Spring Cloud 等都内置了开箱即用的客户端负载均衡实现。Dubbo 属于是默认自带了负载均衡功能,Spring Cloud 是通过组件的形式实现的负载均衡,属于可选项,比较常用的是 Spring Cloud Load Balancer(官方,推荐) 和 Ribbon(Netflix,已被弃用)。

下图是我画的一个简单的基于 Spring Cloud Load Balancer(Ribbon 也类似) 的客户端负载均衡示意图:

负载均衡常见的算法有哪些?

随机法

随机法 是最简单粗暴的负载均衡算法。

如果没有配置权重的话,所有的服务器被访问到的概率都是相同的。如果配置权重的话,权重越高的服务器被访问的概率就越大。

未加权重的随机算法适合于服务器性能相近的集群,其中每个服务器承载相同的负载。加权随机算法适合于服务器性能不等的集群,权重的存在可以使请求分配更加合理化。

不过,随机算法有一个比较明显的缺陷:部分机器在一段时间之内无法被随机到,毕竟是概率算法,就算是大家权重一样, 也可能会出现这种情况。

于是,轮询法 来了!

轮询法

轮询法是挨个轮询服务器处理,也可以设置权重。

如果没有配置权重的话,每个请求按时间顺序逐一分配到不同的服务器处理。如果配置权重的话,权重越高的服务器被访问的次数就越多。

未加权重的轮询算法适合于服务器性能相近的集群,其中每个服务器承载相同的负载。加权轮询算法适合于服务器性能不等的集群,权重的存在可以使请求分配更加合理化。

在加权轮询的基础上,还有进一步改进得到的负载均衡算法,比如平滑的加权轮训算法。

平滑的加权轮训算法最早是在 Nginx 中被实现,可以参考这个 commit:https://github.com/phusion/nginx/commit/27e94984486058d73157038f7950a0a36ecc6e35。如果你认真学习过 Dubbo 负载均衡策略的话,就会发现 Dubbo 的加权轮询就借鉴了该算法实现并进一步做了优化。

两次随机法

两次随机法在随机法的基础上多增加了一次随机,多选出一个服务器。随后再根据两台服务器的负载等情况,从其中选择出一个最合适的服务器。

两次随机法的好处是可以动态地调节后端节点的负载,使其更加均衡。如果只使用一次随机法,可能会导致某些服务器过载,而某些服务器空闲。

哈希法

将请求的参数信息通过哈希函数转换成一个哈希值,然后根据哈希值来决定请求被哪一台服务器处理。

在服务器数量不变的情况下,相同参数的请求总是发到同一台服务器处理,比如同个 IP 的请求、同一个用户的请求。

一致性 Hash 法

和哈希法类似,一致性 Hash 法也可以让相同参数的请求总是发到同一台服务器处理。不过,它解决了哈希法存在的一些问题。

常规哈希法在服务器数量变化时,哈希值会重新落在不同的服务器上,这明显违背了使用哈希法的本意。而一致性哈希法的核心思想是将数据和节点都映射到一个哈希环上,然后根据哈希值的顺序来确定数据属于哪个节点。当服务器增加或删除时,只影响该服务器的哈希,而不会导致整个服务集群的哈希键值重新分布。

最小连接法

当有新的请求出现时,遍历服务器节点列表并选取其中连接数最小的一台服务器来响应当前请求。相同连接的情况下,可以进行加权随机。

最少连接数基于一个服务器连接数越多,负载就越高这一理想假设。然而, 实际情况是连接数并不能代表服务器的实际负载,有些连接耗费系统资源更多,有些连接不怎么耗费系统资源。

最少活跃法

最少活跃法和最小连接法类似,但要更科学一些。最少活跃法以活动连接数为标准,活动连接数可以理解为当前正在处理的请求数。活跃数越低,说明处理能力越强,这样就可以使处理能力强的服务器处理更多请求。相同活跃数的情况下,可以进行加权随机。

最快响应时间法

不同于最小连接法和最少活跃法,最快响应时间法以响应时间为标准来选择具体是哪一台服务器处理。客户端会维持每个服务器的响应时间,每次请求挑选响应时间最短的。相同响应时间的情况下,可以进行加权随机。

这种算法可以使得请求被更快处理,但可能会造成流量过于集中于高性能服务器的问题。

七层负载均衡可以怎么做?

简单介绍两种项目中常用的七层负载均衡解决方案:DNS 解析和反向代理。

除了我介绍的这两种解决方案之外,HTTP 重定向等手段也可以用来实现负载均衡,不过,相对来说,还是 DNS 解析和反向代理用的更多一些,也更推荐一些。

DNS 解析

DNS 解析是比较早期的七层负载均衡实现方式,非常简单。

DNS 解析实现负载均衡的原理是这样的:在 DNS 服务器中为同一个主机记录配置多个 IP 地址,这些 IP 地址对应不同的服务器。当用户请求域名的时候,DNS 服务器采用轮询算法返回 IP 地址,这样就实现了轮询版负载均衡。

现在的 DNS 解析几乎都支持 IP 地址的权重配置,这样的话,在服务器性能不等的集群中请求分配会更加合理化。像我自己目前正在用的阿里云 DNS 就支持权重配置。

反向代理

客户端将请求发送到反向代理服务器,由反向代理服务器去选择目标服务器,获取数据后再返回给客户端。对外暴露的是反向代理服务器地址,隐藏了真实服务器 IP 地址。反向代理“代理”的是目标服务器,这一个过程对于客户端而言是透明的。

Nginx 就是最常用的反向代理服务器,它可以将接收到的客户端请求以一定的规则(负载均衡策略)均匀地分配到这个服务器集群中所有的服务器上。

反向代理负载均衡同样属于七层负载均衡

客户端负载均衡通常是怎么做的?

我们上面也说了,客户端负载均衡可以使用现成的负载均衡组件来实现。

Netflix Ribbon 和 Spring Cloud Load Balancer 就是目前 Java 生态最流行的两个负载均衡组件。

Ribbon 是老牌负载均衡组件,由 Netflix 开发,功能比较全面,支持的负载均衡策略也比较多。 Spring Cloud Load Balancer 是 Spring 官方为了取代 Ribbon 而推出的,功能相对更简单一些,支持的负载均衡也少一些。

Ribbon 支持的 7 种负载均衡策略:

  • RandomRule:随机策略。
  • RoundRobinRule(默认):轮询策略
  • WeightedResponseTimeRule:权重(根据响应时间决定权重)策略
  • BestAvailableRule:最小连接数策略
  • RetryRule:重试策略(按照轮询策略来获取服务,如果获取的服务实例为 null 或已经失效,则在指定的时间之内不断地进行重试来获取服务,如果超过指定时间依然没获取到服务实例则返回 null)
  • AvailabilityFilteringRule:可用敏感性策略(先过滤掉非健康的服务实例,然后再选择连接数较小的服务实例)
  • ZoneAvoidanceRule:区域敏感性策略(根据服务所在区域的性能和服务的可用性来选择服务实例)

Spring Cloud Load Balancer 支持的 2 种负载均衡策略:

  • RandomLoadBalancer:随机策略
  • RoundRobinLoadBalancer(默认):轮询策略
public class CustomLoadBalancerConfiguration {@BeanReactorLoadBalancer<ServiceInstance> randomLoadBalancer(Environment environment,LoadBalancerClientFactory loadBalancerClientFactory) {String name = environment.getProperty(LoadBalancerClientFactory.PROPERTY_NAME);return new RandomLoadBalancer(loadBalancerClientFactory.getLazyProvider(name, ServiceInstanceListSupplier.class),name);}
}

不过,Spring Cloud Load Balancer 支持的负载均衡策略其实不止这两种,ServiceInstanceListSupplier 的实现类同样可以让其支持类似于 Ribbon 的负载均衡策略。这个应该是后续慢慢完善引入的,不看官方文档还真发现不了,所以说阅读官方文档真的很重要!

这里举两个官方的例子:

  • ZonePreferenceServiceInstanceListSupplier:实现基于区域的负载平衡
  • HintBasedServiceInstanceListSupplier:实现基于 hint 提示的负载均衡
public class CustomLoadBalancerConfiguration {// 使用基于区域的负载平衡方法@Beanpublic ServiceInstanceListSupplier discoveryClientServiceInstanceListSupplier(ConfigurableApplicationContext context) {return ServiceInstanceListSupplier.builder().withDiscoveryClient().withZonePreference().withCaching().build(context);}
}

关于 Spring Cloud Load Balancer 更详细更新的介绍,推荐大家看看官方文档:Cloud Native Applications ,一切以官方文档为主。

轮询策略基本可以满足绝大部分项目的需求,我们的实际项目中如果没有特殊需求的话,通常使用的就是默认的轮询策略。并且,Ribbon 和 Spring Cloud Load Balancer 都支持自定义负载均衡策略。

个人建议如非必需 Ribbon 某个特有的功能或者负载均衡策略的话,就优先选择 Spring 官方提供的 Spring Cloud Load Balancer。

最后再说说为什么我不太推荐使用 Ribbon 。

Spring Cloud 2020.0.0 版本移除了 Netflix 除 Eureka 外的所有组件。Spring Cloud Hoxton.M2 是第一个支持 Spring Cloud Load Balancer 来替代 Netfix Ribbon 的版本。

我们早期学习微服务,肯定接触过 Netflix 公司开源的 Feign、Ribbon、Zuul、Hystrix、Eureka 等知名的微服务系统构建所必须的组件,直到现在依然有非常非常多的公司在使用这些组件。不夸张地说,Netflix 公司引领了 Java 技术栈下的微服务发展。

那为什么 Spring Cloud 这么急着移除 Netflix 的组件呢? 主要是因为在 2018 年的时候,Netflix 宣布其开源的核心组件 Hystrix、Ribbon、Zuul、Eureka 等进入维护状态,不再进行新特性开发,只修 BUG。于是,Spring 官方不得不考虑移除 Netflix 的组件。

Spring Cloud Alibaba 是一个不错的选择,尤其是对于国内的公司和个人开发者来说。

相关文章:

负载均衡原理及算法

什么是负载均衡&#xff1f; 负载均衡 指的是将用户请求分摊到不同的服务器上处理&#xff0c;以提高系统整体的并发处理能力以及可靠性。负载均衡服务可以有由专门的软件或者硬件来完成&#xff0c;一般情况下&#xff0c;硬件的性能更好&#xff0c;软件的价格更便宜&#x…...

STM32第5章、IWDG

一、简介 IWDG&#xff1a;全称是Independent watchdog&#xff0c;即独立看门狗。本质上是一个能产生系统复位信号的计数器。 特性&#xff1a; 是一个递减计数器。 时钟信号由独立的RC振荡器提供&#xff0c;可在待机和停止模式下运行。 看门狗被激活后&#xff0c;当递减计…...

[python3]Uvicorn库

Uvicorn 是一个用于运行 ASGI&#xff08;Asynchronous Server Gateway Interface&#xff09;应用程序的轻量级服务器。ASGI 是 Python Web 应用程序接口的一种扩展&#xff0c;它不仅支持传统的同步 Web 请求处理&#xff0c;还支持异步请求处理、WebSockets 以及 HTTP/2。 h…...

openEuler 22.04使用yum源最快速度部署k8s 1.20集群

本文目的 openEuler的官方源里有kubernetes 1.20&#xff0c;使用yum源安装是最快部署一个k8s集群的办法 硬件环境 主机名系统架构ipmasteropenEuler release 22.03 (LTS-SP2)arm192.168.3.11edgeopenEuler release 22.03 (LTS-SP2)arm192.168.3.12deviceopenEuler release 22.…...

【深度学习】数据预处理

为了能用深度学习来解决现实世界的问题&#xff0c;我们经常从预处理原始数据开始&#xff0c; 而不是从那些准备好的张量格式数据开始。 在Python中常用的数据分析工具中&#xff0c;我们通常使用pandas软件包。 像庞大的Python生态系统中的许多其他扩展包一样&#xff0c;pan…...

Oracle:ORA-00904: “10“: 标识符无效报错详解

1.报错Oracle语句如下 SELECT YK_CKGY.ID,YK_CKGY.DJH,YK_CKGY.BLRQ,YK_CKGY.ZBRQ,YK_CKGY.SHRQ,YK_CKGY.YT,YK_CKGY.ZDR,YK_CKGY.SHR,YK_CKGY.BZ,YK_CKGY.JZRQ,YK_CKGY.ZT,YK_CKGY.CKLX,(case YK_CKGY.CKLXwhen 09 then药房调借when 02 then科室退药when 03 then损耗出库when…...

CentOS 7 下 Nginx 的详细安装与配置

1、安装方式 1.1、通过编译方式安装 下载Nginx1.16.1的安装包 https://nginx.org/download/nginx-1.16.1.tar.gz 下载后上传至/home目录下。 1.2、通过yum方式安装 这种方式安装更简单。 2、通过编译源码包安装Nginx 2.1、安装必要依赖 sudo yum -y install gcc gcc-c sudo…...

Vue.js:现代前端开发的灵活框架

大家好&#xff01;我是 [数擎 AI]&#xff0c;一位热爱探索新技术的前端开发者&#xff0c;在这里分享前端和 Web3D、AI 技术的干货与实战经验。如果你对技术有热情&#xff0c;欢迎关注我的文章&#xff0c;我们一起成长、进步&#xff01; 开发领域&#xff1a;前端开发 | A…...

VideoPlayer插件的功能和用法

文章目录 1. 概念介绍2. 使用方法2.1 实现步骤2.2 具体细节3. 示例代码4. 内容总结我们在上一章回中介绍了"如何获取文件类型"相关的内容,本章回中将介绍如何播放视频.闲话休提,让我们一起Talk Flutter吧。 1. 概念介绍 播放视频是我们常用的功能,不过Flutter官方…...

GPT-SoVITS学习01

1.什么是TTS TTS&#xff08;Text-To-Speech&#xff09;这是一种文字转语音的语音合成。类似的还有SVC&#xff08;歌声转换&#xff09;、SVS&#xff08;歌声合成&#xff09;等。 2.配置要求 GPT-SoVITS对电脑配置有较高的要求。 训练&#xff1a;对于Windows电脑&#…...

C语言程序环境和预处理详解

本章重点&#xff1a; 程序的翻译环境 程序的执行环境 详解&#xff1a;C语言程序的编译链接 预定义符号介绍 预处理指令 #define 宏和函数的对比 预处理操作符#和##的介绍 命令定义 预处理指令 #include 预处理指令 #undef 条件编译 程序的翻译环境和执行环…...

DBeaver执行本地的sql语句文件避免直接在客户端运行卡顿

直接在客户端运行 SQL 语句和通过加载本地文件执行 SQL 语句可能会出现不同的性能表现&#xff0c;原因可能包括以下几点&#xff1a; 客户端资源使用&#xff1a; 当你在客户端界面直接输入和执行 SQL 语句时&#xff0c;客户端可能会消耗资源来维护用户界面、语法高亮、自动完…...

【Linux】5.Linux常见指令以及权限理解(3)

文章目录 3. Linux指令如何把自己的公网IP配置到XShell里面日志3.9 时间相关的指令3.10 Cal指令3.11 find指令&#xff1a;&#xff08;灰常重要&#xff09;3.12 grep指令3.13 zip/unzip指令&#xff1a;3.14 tar指令&#xff08;重要&#xff09;&#xff1a;打包/解包&#…...

QT鼠标、键盘事件

一、鼠标 鼠标点击 mousePressEvent 鼠标释放 mouseReleaseEvent 鼠标移动 mouseMoveEvent 鼠标双击 mouseDoubleClickEvent 鼠标滚轮 QWheelEvent 二、键盘 键盘按下 keyPressEvent 键盘松开keyReleaseEvent 一、鼠标 #include <QMouseEvent> 鼠标点击 mouse…...

LabVIEW启动时Access Violation 0xC0000005错误

问题描述 在启动LabVIEW时&#xff0c;可能出现程序崩溃并提示以下错误&#xff1a;Error 0xC0000005 (Access Violation) ​ Access Violation错误通常是由于权限不足、文件冲突或驱动问题引起的。以下是解决此问题的全面优化方案&#xff1a; 解决步骤 1. 以管理员身份运行…...

WPF中组件之间传递参数的方法研究

在 WPF (Windows Presentation Foundation) 中&#xff0c;组件&#xff08;或称为控件&#xff09;之间传递参数的方法有很多种。不同的传递方式适用于不同的应用场景&#xff0c;具体选择取决于应用需求、性能、可维护性等因素。以下是几种常见的传递参数的方法&#xff0c;并…...

本地大模型工具哪家强?对比Ollama、LocalLLM、LM Studio

前言 对于AIGC的初学者&#xff0c; 你一定想尝试在本地搭建一个私有的开源大模型&#xff0c;比如常见的chatglm、llama或者qwen。在实践过程你会发现&#xff0c;每个模型单独配置环境&#xff0c;下载模型文件&#xff0c;还要确保它们互不干扰。这不仅耗时耗力&#xff0c…...

dify 常见问题总结 2025 持续更新

任何 Dify 问题评论区留言。 问题总结 Q&#xff1a;模型在回答时出现异常情况该如何处理&#xff1f; A&#xff1a; 可以通过记录异常情况并分析其原因来进行处理。通常可以调整提示词、重新训练模型或增加异常处理机制来改进模型的表现。 关键词&#xff1a;提示词、模型、…...

贪心算法笔记

贪心算法笔记 大概内容 贪心就是对于一个问题有很多个步骤,我们在每一个步骤中都选取最优的那一个,最后得出答案。就是在一些函数中可行,但是有些比如二次函数,因为它的转折点不一定最优,就是不可行的。那么如何判断贪心呢?有这么几种 看时间复杂度,一般的就是 O ( n…...

切比雪夫插值

切比雪夫插值是一种基于切比雪夫节点的多项式插值方法&#xff0c;其优势是减少插值误差(特别是龙格现象&#xff1a;表现为高维插值时在边缘处插值误差骤增)。本文对其基本操作进行说明。 1. 切比雪夫节点 切比雪夫插值的核心是使用切比雪夫节点作为插值点。切比雪夫节点是切…...

西电-神经网络基础与应用-复习笔记

此为24年秋研究生课程复习笔记 导论 神经网络的研究方法分为 连接主义&#xff0c;生理学派&#xff0c;模拟神经计算。高度的并行、分布性&#xff0c;很强的鲁棒和容错性。便于实现人脑的感知功能(音频图像的识别和处理)。符号主义&#xff0c;心理学派&#xff0c;基于符号…...

【面试题】简单聊一下什么是云原生、什么是k8s、容器,容器与虚机相比优势

云原生&#xff08;Cloud Native&#xff09; 定义&#xff1a;云原生是一种构建和运行应用程序的方法&#xff0c;旨在充分利用云计算的优势。它涵盖了一系列技术和理念&#xff0c;包括容器化、微服务架构、自动化部署与管理等。特点&#xff1a;云原生应用程序被设计为可弹性…...

Vue 3 Diff 算法过程及基本实现方式

Vue 3 的 Diff 算法 Vue 3 使用的是一种高效的 DOM Diff 算法&#xff0c;主要用于在虚拟 DOM 树发生变化时&#xff0c;计算最小的操作以更新真实 DOM。相比 Vue 2&#xff0c;Vue 3 的 Diff 算法做了很多优化。 Diff 算法的背景与目的 虚拟 DOM 树的对比&#xff1a;在 Vue…...

EasyCVR视频汇聚平台如何配置webrtc播放地址?

EasyCVR安防监控视频系统采用先进的网络传输技术&#xff0c;支持高清视频的接入和传输&#xff0c;能够满足大规模、高并发的远程监控需求。平台支持多协议接入&#xff0c;能将接入到视频流转码为多格式进行分发&#xff0c;包括RTMP、RTSP、HTTP-FLV、WebSocket-FLV、HLS、W…...

PowerApps助力PowerBI实现数据写回

原文发布日期: 2019-08-01 06:03:50 0000 注&#xff1a;本文旨在介绍Power BI如何利用PowerApps实现用户在前端对数据源进行增删查改&#xff0c;关于此&#xff0c;你也可以在Google上找到更详细但较零散的资料 正文 在SSAS多维数据集中&#xff0c;开发者可以给数据开启&q…...

数据结构:DisjointSet

Disjoint Sets意思是一系列没有重复元素的集合。一种常见的实现叫做&#xff0c;Disjoint-set Forest可以以接近常数的时间复杂度查询元素所属集合&#xff0c;用来确定两个元素是否同属一个集合等&#xff0c;是效率最高的常见数据结构之一。 Wiki链接&#xff1a;https://en…...

React 元素渲染

React 元素渲染 React 是一个用于构建用户界面的 JavaScript 库&#xff0c;它允许开发人员创建大型应用程序&#xff0c;这些应用程序可以随着时间的推移而高效地更新和渲染。React 的核心概念之一是元素渲染&#xff0c;它描述了如何将 JavaScript 对象转换为 DOM&#xff0…...

【Leetcode 每日一题】3270. 求出数字答案

问题背景 给你三个 正 整数 n u m 1 num_1 num1​&#xff0c; n u m 2 num_2 num2​ 和 n u m 3 num_3 num3​。 数字 n u m 1 num_1 num1​&#xff0c; n u m 2 num_2 num2​ 和 n u m 3 num_3 num3​ 的数字答案 k e y key key 是一个四位数&#xff0c;定义如下&…...

eNSP之家----ACL实验入门实例详解(Access Control List访问控制列表)(重要重要重要的事说三遍)

ACL实验&#xff08;Access Control List访问控制列表&#xff09;是一种基于包过滤的访问控制技术&#xff0c;它可以根据设定的条件对接口上的数据包进行过滤&#xff0c;允许其通过或丢弃。访问控制列表被广泛地应用于路由器和三层交换机。 准备工作 在eNSP里面部署设备&a…...

【git】-2 分支管理

目录 一、分支的概念 二、查看、创建、切换分支 1、查看分支-git branch 2、创建分支- git branch 分支名 3、切换分支- git checkout 分支名 三、git指针 -实现分支和版本间的切换 四、普通合并分支 git merge 文件名 五、冲突分支合并 ​​​​​​【git】-初始gi…...

硬件设计-齐纳管

目录 摘要 详情 齐纳管的工作电流、 摘要 齐纳管&#xff08;Zener Diode&#xff09;是一种特殊的二极管&#xff0c;它能够在特定的反向电压下保持电流稳定。正常情况下&#xff0c;二极管只允许正向电流通过&#xff0c;而阻止反向电流流过。而齐纳管在一定的反向电压下可…...

Github出现复杂问题 无法合并 分支冲突太多 如何复原

目录 问题再现 解决思路 当然我所指的是在 main 分支开一个新的分支 删除本地文件夹 重新克隆 开一个新分支 切换分支 下载远程分支 文件覆盖 合并到主分支 ​​​​​​​问题再现 太复杂了 无法更改 编译器现状 全部崩溃了 无法更改 即使创建一个新的分支也无济于…...

《分布式光纤传感:架设于桥梁监测领域的 “智慧光网” 》

桥梁作为交通基础设施的重要组成部分&#xff0c;其结构健康状况直接关系到交通运输的安全和畅通。随着桥梁建设规模的不断扩大和服役年限的增长&#xff0c;桥梁结构的安全隐患日益凸显&#xff0c;传统的监测方法已难以满足对桥梁结构健康实时、全面、准确监测的需求。分布式…...

java_抽象类最佳实践-模板设计模式

基本介绍 模板设计模式可解决的问题 最佳实践 Template类 package com.hspedu.abstract_; abstract public class Template { //抽象类-模板设计模式public abstract void job();//抽象方法public void calculateTime() {//实现方法&#xff0c;调用 job 方法//得到开始的时间…...

linux网络 | http结尾、理解长连接短链接与cookie

前言&#xff1a;本节是http章节的最后一部分&#xff0c;主要解释一些小概念。讲解到了HTTP的方法&#xff0c;表单&#xff0c; 重定向等等。 现在废话不多说&#xff0c; 开始我们的学习吧。 ps&#xff1a;本节内容都是概念&#xff0c; 知道就行&#xff0c; 友友们放心观…...

dtdug汇编指令练习

r 通用寄存器 m 代表内存 imm 代表立即数 r8 代表8位通用寄存器 m8 代表8位内存 imm8 代表8位立即数 mov指令练习 MOV 的语法: mov 目标操作数&#xff0c;源操作数 作用:拷贝源操作数到目标操作数 1、源操作数可以是立即数、通用寄存器、段寄存器、或者内存单元. 2、目标操作数…...

Windows自动化Python pyautogui RPA操作

依赖包 import time import pyautogui import pyperclip import os import psutil from pywinauto.application import Application睡眠&#xff1a; pyautogui.sleep(1)鼠标事件&#xff1a; pyautogui.moveTo(100, 100, duration0.25) pyautogui.click(100, 100, duration0.…...

Ollama私有化部署大语言模型LLM

目录 一、Ollama介绍 二、安装Ollama 1、标准安装 2、国内加速 三、升级Ollama版本 四、使用Ollama 1、启动ollama服务 systemctl start ollama.service ollama serve 2、使用ollama命令 ollama run 运行模型 ollama ps 查看正在运行的模型 ollama list 查看(本地)…...

ubuntu/kali安装c-jwt-cracker

1.下载安装包 可以去GitHub下载解压&#xff0c;我这直接在kali克隆下来了。&#xff08;网络不好可能克隆不下来&#xff09; git clone https://github.com/brendan-rius/c-jwt-cracker.git 2.如果下载的压缩包就需要进行解压&#xff0c;克隆的直接进入目录就好了。 unzi…...

MySql按年月日自动创建分区存储过程

-- 创建存储过程【通过数据库和表名】建立【partition_number】get分区&#xff0c;分区间隔为【gaps】 -- datasource 数据库名称 -- table_name 数据库表名 -- partition_number 新建分区的数量 -- partition_type 分区类型&#xff08;0-按天分区&#xff0c;1-按月分区&…...

Spring配置文件中:密码明文改为密文处理方式(通用方法)

目录 一、背景 二、思路 A) 普通方式 B) 适合bootstrap.properties方式 三、示例 A) 普通方式&#xff08;连接Redis集群&#xff09; A) 普通方式&#xff08;连接RocketMQ&#xff09; B) 适合bootstrap.properties方式 四、总结 一、背景 SpringBoot和Sprin…...

树的模拟实现

一.链式前向星 所谓链式前向星&#xff0c;就是用链表的方式实现树。其中的链表是用数组模拟实现的链表。 首先我们需要创建一个足够大的数组h&#xff0c;作为所有结点的哨兵位。创建两个足够大的数组e和ne&#xff0c;一个作为数据域&#xff0c;一个作为指针域。创建一个变…...

计算机图形学【直线和圆的生成算法】

在计算机图形学中&#xff0c;光栅化是将几何图元转换成一个光栅图像&#xff08;像素或点&#xff09;在屏幕上输出的过程。光栅化可实现图形变为二维图像&#xff0c;其目的是将连续的几何图形转换为离散的像素点。光栅化算法的基本原理包括两个主要步骤&#xff1a;首先&…...

OpenAI 故障复盘 - 阿里云容器服务与可观测产品如何保障大规模 K8s 集群稳定性

本文作者&#xff1a; 容器服务团队&#xff1a;刘佳旭、冯诗淳 可观测团队&#xff1a;竺夏栋、麻嘉豪、隋吉智 一、前言 Kubernetes(K8s)架构已经是当今 IT 架构的主流与事实标准&#xff08;CNCF Survey[1]&#xff09;。随着承接的业务规模越来越大&#xff0c;用户也在使…...

【深度学习】Pytorch:加载自定义数据集

本教程将使用 flower_photos 数据集演示如何在 PyTorch 中加载和导入自定义数据集。该数据集包含不同花种的图像&#xff0c;每种花的图像存储在以花名命名的子文件夹中。我们将深入讲解每个函数和对象的使用方法&#xff0c;使读者能够推广应用到其他数据集任务中。 flower_ph…...

vue js实现时钟以及刻度效果

2025.01.08今天我学习如何用js实现时钟样式&#xff0c;效果如下&#xff1a; 一、html代码如下&#xff1a; <template><!--圆圈--><div class"notice_border"><div class"notice_position notice_name_class" v-for"item in …...

js基础---注释与结束符

JavaScript 基础&#xff1a;注释与结束符 注释 注释是代码中用于解释说明的部分&#xff0c;不会被执行&#xff0c;主要有两种类型&#xff1a; 单行注释 符号&#xff1a;//作用&#xff1a;从符号开始到该行末尾的所有内容都会被忽略&#xff0c;不会被执行。示例代码&…...

from pytorch3d import _C问题

离线安装pytorch3d后&#xff0c;先测试&#xff1a; import pytorch3d 没问题后&#xff0c;再测试&#xff1a; from pytorch3d import _C 单独测试会出现&#xff1a; ImportError: libc10.so: cannot open shared object file: No such file or directory 或者类似不…...

PHP进阶-在Ubuntu上搭建LAMP环境教程

本文将为您提供一个在Ubuntu服务器上搭建LAMP&#xff08;Linux, Apache, MySQL, PHP&#xff09;环境的完整指南。通过本文&#xff0c;您将学习如何安装和配置Apache、MySQL、PHP&#xff0c;并将您的PHP项目部署到服务器上。本文适用于Ubuntu 20.04及更高版本。 一、系统更新…...

SQLite 命令

关于《SQLite 命令》的文章&#xff0c;我可以为您提供一个概要。SQLite是一个轻量级的嵌入式关系数据库管理系统&#xff0c;它以单个文件的形式存储数据&#xff0c;非常适合用于不需要传统数据库服务器的场景。SQLite3的命令行工具&#xff08;sqlite3.exe&#xff09;是一个…...