多光谱图像的处理和分析方法有哪些?
一、预处理方法
1、辐射校正:
目的:消除或减少传感器本身、大气条件以及太阳光照等因素对多光谱图像辐射亮度值的影响,使得图像的辐射值能够真实反映地物的反射或发射特性。
方法:包括传感器校正和大气校正。传感器校正主要是根据传感器的辐射定标参数,将图像的数字量化值(DN 值)转换为辐射亮度值。大气校正则是去除大气散射和吸收对辐射传输的影响。例如,基于物理模型的大气校正方法,如 MODTRAN(Moderate - resolution atmospheric transmission)模型,通过输入大气参数(如气溶胶类型、水汽含量等)来计算大气透过率和大气程辐射,从而校正图像的辐射值。
2、几何校正:
目的:纠正多光谱图像由于传感器姿态、地形起伏等因素导致的几何变形,使图像能够与地理空间坐标系统准确匹配。
方法:一般通过选取地面控制点(GCPs)来实现。这些控制点是在图像和实际地理空间中都能准确识别的特征点,如道路交叉点、建筑物角点等。利用这些控制点建立图像坐标与地理坐标之间的变换关系,通常采用多项式变换模型(如二次多项式)来校正图像的几何变形。
3、噪声去除:
目的:多光谱图像在获取和传输过程中会受到各种噪声的干扰,如热噪声、椒盐噪声等,需要通过噪声去除方法来提高图像质量。
方法:空间域滤波是常用的方法之一,包括均值滤波、中值滤波等。均值滤波是用邻域内像素的平均值来代替中心像素的值,对于去除高斯噪声等比较有效;中值滤波则是将邻域内像素值排序后取中间值作为中心像素的值,对椒盐噪声有较好的抑制作用。此外,还可以采用频率域滤波,如傅里叶变换将图像转换到频率域,通过设置滤波器去除高频噪声成分后再反变换回空间域。
二、图像增强方法
1、对比度增强:
目的:提高多光谱图像的对比度,使图像中的地物特征更加明显,便于目视解译和后续的计算机自动识别。
方法:线性拉伸是一种简单有效的方法,它通过重新定义图像的灰度范围来增强对比度。例如,将原始图像中较窄的灰度范围线性拉伸到整个可用的灰度范围(0 - 255)。直方图均衡化也是常用的方法,它通过调整图像的直方图分布,使图像的灰度分布更加均匀,从而增加图像的对比度。
2、色彩增强:
目的:对于多光谱合成的假彩色图像,通过色彩增强可以突出不同地物之间的色彩差异,提高地物的可区分性。
方法:假彩色合成是一种重要的色彩增强方法。根据不同地物在各个光谱波段的反射特性,选择合适的波段组合进行合成,赋予每个波段以红、绿、蓝(RGB)颜色通道,从而生成具有不同色彩的图像。例如,在植被遥感中,通常采用近红外、红、绿波段进行合成,植被在这种假彩色图像中呈现红色,能够很好地与其他地物区分开来。还可以进行色彩变换,如 HSI(色调、饱和度、亮度)变换,通过调整色调、饱和度等参数来增强图像的色彩效果。
三、特征提取方法
1、光谱特征提取:
目的:从多光谱图像中提取能够反映地物光谱特性的特征参数,用于地物分类和识别。
方法:包括计算光谱反射率、光谱斜率、光谱吸收深度等。例如,植被的 “红边” 特征是指植被在红光波段到近红外波段之间反射率急剧上升的区域,通过提取红边位置、红边斜率等特征可以有效识别植被的种类、生长状况等。还可以计算各种光谱指数,如归一化植被指数(NDVI)=,其中 NIR 为近红外波段反射率,R 为红光波段反射率,NDVI 是衡量植被覆盖度和生长活力的重要指标。
2、纹理特征提取:
目的:获取多光谱图像中地物的纹理信息,纹理特征能够反映地物的空间分布规律和表面粗糙度等性质,对于地物分类有重要的辅助作用。
方法:灰度共生矩阵(GLCM)是常用的纹理分析工具。通过计算图像中不同方向、不同距离的像素对之间的灰度联合概率分布来构建 GLCM,然后从 GLCM 中提取纹理特征参数,如对比度、相关性、能量、熵等。例如,在遥感图像中,森林植被的纹理比农田植被的纹理要复杂,通过提取纹理特征可以区分这两种地物类型。
3、形状特征提取:
目的:对于一些具有明显形状特征的地物,如建筑物、湖泊等,提取其形状特征可以辅助地物识别和分类。
方法:可以提取的形状特征包括面积、周长、长宽比、圆形度等。例如,通过边缘检测算法(如 Canny 边缘检测)获取地物的边界,然后计算边界所包围的面积和周长等参数,根据这些形状参数来识别地物的类型。
四、分类方法
1、监督分类:
目的:根据已知类别的训练样本数据来建立分类模型,然后将该模型应用于整个多光谱图像,对未知类别的像素进行分类。
方法:包括最大似然分类法、决策树分类法等。最大似然分类法是基于贝叶斯决策理论,假设每个类别中的像素数据服从正态分布,通过计算每个像素属于各个类别的概率,将像素归为概率最大的类别。决策树分类法是通过构建一棵决策树,根据训练样本的特征属性(如光谱特征、纹理特征等)进行层层划分,直到将像素分类到具体的类别。例如,在土地利用分类中,利用已知土地类型(如耕地、林地、建设用地等)的训练样本,采用最大似然分类法对多光谱遥感图像进行分类,确定每个像素所属的土地利用类型。
2、非监督分类:
目的:在没有先验知识的情况下,根据多光谱图像中像素的光谱特征相似性将像素自动聚类成不同的类别。
方法:常用的方法有 K - 均值聚类法和 ISODATA(迭代自组织数据分析技术)聚类法。K - 均值聚类法首先随机选择 K 个聚类中心,然后将每个像素分配到距离最近的聚类中心所在的类别,接着重新计算每个类别的聚类中心,重复这个过程直到聚类中心不再变化。ISODATA 聚类法是在 K - 均值聚类法的基础上,能够自动调整聚类的类别数 K,根据聚类的结果来判断是否需要合并或分裂某些类别。例如,在海洋遥感中,对海洋浮游生物的多光谱图像进行非监督分类,将浮游生物的光谱特征相似的像素聚类成不同的群落类型。
相关文章:
多光谱图像的处理和分析方法有哪些?
一、预处理方法 1、辐射校正: 目的:消除或减少传感器本身、大气条件以及太阳光照等因素对多光谱图像辐射亮度值的影响,使得图像的辐射值能够真实反映地物的反射或发射特性。 方法:包括传感器校正和大气校正。传感器校正主要是根…...
电脑主机后置音频插孔无声?还得Realtek高清晰音频管理器调教
0 缘起 一台联想电脑,使用Windows 10 专业版32位,电脑主机后置音频插孔一直没有声音,所以音箱是接在机箱前面版的前置音频插孔上的。 一天不小心捱到了音箱的音频线,音频线头断在音频插孔里面了,前置音频插孔因此用不…...
2412C++,自动注册
原文 注册器实现 示例代码 #pragma once #include <type_traits> #include <iostream> template<typename _Type> struct odr{inline static auto use []{ //[1]std::cout << __PRETTY_FUNCTION__ << std::endl;//在这里利用宏,注册(类名,T)…...
C#对线程同步的应用
什么是线程同步?线程同步的应用场景有哪些?在C#中有哪些线程同步方式?下面对这些问题做一个总结,让大家在面试的时候遇到这些问题能够游刃有余。 线程同步是指在多线程环境下,多个线程同时访问共享资源时,确…...
需求上线,为什么要刷缓存?
在需求上线的过程中,刷缓存主要有以下几个重要原因: 一、保证数据的准确性 旧数据残留问题 缓存是为了加快数据访问速度而存储的数据副本。在需求更新后,之前缓存中的数据可能已经不符合新的业务逻辑。例如,一个电商网站修改了商…...
Docker学习相关笔记,持续更新
如何推送到Docker Hub仓库 在Docker Hub新建一个仓库,我的用户名是 leilifengxingmw,我建的仓库名是 hello_world。 在本地的仓库构建镜像,注意要加上用户名 docker build -t leilifengxingmw/hello_world:v1 .构建好以后,本地会…...
手持PDA终端,提升零售门店管理效率
随着科技的不断进步和零售行业的持续发展,手持PDA终端的应用将会越来越广泛。它将不断融合更多先进的技术和功能,为零售门店管理带来更加便捷、高效、智能的解决方案。 手持PDA终端是集成了数据处理、条码扫描、无线通信等多种功能于一体的便携式设备…...
Spring实现Logback日志模板设置动态参数
版权说明: 本文由博主keep丶原创,转载请保留此块内容在文首。 原文地址: https://blog.csdn.net/qq_38688267/article/details/144842327 文章目录 背景设计日志格式实现配置动态取值logback-spring.xml 相关博客 背景 多个单体服务间存在少量…...
AI Infra
文章目录 关于 InfraAI Infra的核心思想 组成部分硬件软件网络云服务监控与优化安全与合规 关键里程碑未来展望 关于 Infra 在大模型中,“infra” 是 “infrastructure” 的缩写,指的是支持大模型训练和部署的技术基础设施。以下是其主要组成部分&#…...
【每日学点鸿蒙知识】RelativeContainer组件、List回弹、Flutter方法调用、Profiler工具等
1、RelativeContainer组件auto对齐规则? 当height设置为auto,这时候为什么子组件设置 top:{anchor: "__container__",align: VerticalAlign.Top}后auto就不生效了呢,anchor锚点不是默认top对齐的吗? 这是为了避免二次…...
springboot集成qq邮箱服务
springboot集成qq邮箱服务 1.获取QQ邮箱授权码 1.1 登录QQ邮箱 1.2 开启SMTP服务 找到下图中的SMTP服务区域,如果当前账号未开启的话自己手动开启。 1.3 获取授权码 进入上图中的【管理服务】后:在【安全设置中生成授权码】,也可以直接点击【继续生成…...
【重庆】《政务数字化应用费用测算规范》(T/CDCIDA 001—2023)-省市费用标准解读系列36
《政务数字化应用费用测算规范(报批稿)》于2023年11月18日实施,本文件按照GB/T 1.1-2020给出的规则起草,主要适用于重庆政务数字化应用项目的费用测算。我司基于专业第三方信息化项目造价机构角度,从标准创新点、定制软…...
linux-centos8-安装make
参考: CentOS 8中 更新或下载时报错:为仓库 ‘appstream‘ 下载元数据失败 : Cannot prepare internal mirrorlist_errors during downloading metadata for repository -CSDN博客 https://blog.csdn.net/lxcw_sir/article/details/140185068 Linux报错…...
springboot3 ThreadPoolTaskExecutor 和 Executors 线程池优化
在 Spring Boot 3 中,可以通过 ThreadPoolTaskExecutor 和 Executors 等方式创建和管理线程池。以下是基于 Spring Boot 的线程池创建工具的详细说明与实现: 一、使用 ThreadPoolTaskExecutor 创建线程池 Spring 提供了 ThreadPoolTaskExecutor,用于管理线程池。它支持灵活…...
Elasticsearch:当混合搜索真正发挥作用时
作者:来自 Elastic Gustavo Llermaly 展示混合搜索何时优于单独的词汇或语义搜索。 在本文中,我们将通过示例探讨混合搜索,并展示它与单独使用词汇或语义搜索技术相比的真正优势。 什么是混合搜索? 混合搜索是一种结合了不同搜索…...
NeurIPS 2024 | 像素级LLM实现图像视频理解、生成、分割和编辑大统一(昆仑万维等)
Accepted by NeurIPS 2024 文章链接:https://arxiv.org/pdf/2412.19806 项目链接:https://vitron-llm.github.io/ Github链接:https://github.com/SkyworkAI/Vitron 亮点直击 首次提出了一种通用的视觉多模态大语言模型(MLLM&…...
基于 GPUTasker 的 GPU 使用情况钉钉推送机器人实现
引言 https://github.com/cnstark/gputasker 随着 AI 模型的广泛应用,GPU 成为团队中最重要的资源之一。然而,如何实时监控 GPU 的使用情况并及时通知团队是一个值得关注的问题。为了更好地管理显卡资源,本文基于 GPUTasker,实现了…...
Linux-Ubuntu之RTC实时时钟显示
Linux-Ubuntu之RTC实时时钟显示 一,原理二,代码实现三,小结1.为什么这个显示不出来? 一,原理 这个RTC的和计数器差不多,往对应寄存器中放入初始化的时间,然后在时钟的作用下,进行累…...
rouyi(前后端分离版本)配置
从gitee上下载,复制下载地址,到 点击Clone,下载完成, 先运行后端,在运行前端 运行后端: 1.配置数据库,在Navicat软件中,连接->mysql->名字自己起(rouyi-vue-blog),用户名roo…...
【2025优质学术推荐】征稿控制科学、仪器、智能系统、通信、计算机、电子信息、人工智能、大数据、机器学习、软件工程、网络安全方向
【2025优质学术推荐】征稿控制科学、仪器、智能系统、通信、计算机、电子信息、人工智能、大数据、机器学习、软件工程、网络安全方向 【2025优质学术推荐】征稿控制科学、仪器、智能系统、通信、计算机、电子信息、人工智能、大数据、机器学习、软件工程、网络安全方向 文章目…...
C# 设计模式(结构型模式):适配器模式
C# 设计模式(结构型模式):适配器模式 在软件开发中,我们经常会遇到需要将不同接口的组件结合在一起的情况。此时,适配器模式(Adapter Pattern)就派上了用场。它属于结构型设计模式,…...
贪心算法概述
贪心算法总是作出当前看来最好的选择,是局部最优 可以使用贪心算法的问题一般具有两个重要的性质 贪心选择性质最优子结构性质 贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择来达到 其与动态规划的问题区别在于,动态规划算法通…...
自从学会Git,感觉打开了一扇新大门
“同事让我用 Git 提交代码,我居然直接把项目文件压缩发过去了……”相信很多初学者都经历过类似的窘境。而当你真正掌握 Git 时,才会发现它就像一本魔法书,轻松解决代码管理的种种难题。 为什么 Git 能成为程序员的标配工具?它究…...
jrc水体分类对水体二值掩码修正
使用deepwatermap生成的水体二值掩码中有部分区域由于被云挡住无法识别,造成水体不连续是使用jrc离线数据进行修正,jrc数据下载连接如下:https://global-surface-water.appspot.com/download 选择指定区域的数据集合下载如图: 使…...
Scala Collection(集合)
Scala的集合框架非常丰富和灵活,主要包括三大类:序列(Seq)、集(Set)和映射(Map)。这些集合类都扩展自Iterable特质,并且Scala为几乎所有集合类提供了可变和不可变的版本。…...
121.【C语言】数据结构之快速排序(未优化的Hoare排序存在的问题)以及时间复杂度的分析
目录 1.未优化的Hoare排序存在的问题 测试代码 "量身定制"的测试代码1 运行结果 "量身定制"的测试代码2 运行结果 "量身定制"的测试代码3 运行结果 分析代码1、2和3栈溢出的原因 排有序数组的分析 分析测试代码1:给一个升序数组,要求排…...
js 文档注释
在 JavaScript 中,文档注释(也叫 JSDoc 注释)是一种用于为代码提供结构化说明的注释方式。JSDoc 注释通常用于生成 API 文档、提高代码可读性,并为 IDE 提供智能提示。下面是如何在 JavaScript 中编写文档注释的基本指南。 基本语…...
chatgpt model spec 2024
概述 这是模型规范的初稿,该文档规定了我们在OpenAI API和ChatGPT中的模型的期望行为。它包括一组核心目标,以及关于如何处理冲突目标或指令的指导。 我们打算将模型规范作为研究人员和数据标注者创建数据的指南,这是一种称为从人类反馈中进…...
路由技术在网络中的作用及特点
作用:路径选择:在复杂的网络拓扑结构中,路由技术能够根据网络的当前状态和目标地址,为数据报文选择一条最佳的传输路径,确保数据能够快速、准确地到达目的地。例如,在互联网中,当用户访问一个网…...
No.1十六届蓝桥杯备战|第一个C++程序|cin和cout|命名空间
第一个C程序 基础程序 使用DevC5.4.0 写一个C程序 在屏幕上打印hello world #include <iostream> using namespace std;int main() {cout << "hello world" << endl;return 0; } 运行这个C程序 F9->编译 F10->运行 F11->编译运行 mai…...
vim 按下esc后取消高亮
配置 ideavimrc文件 " 按下 Esc 键时自动取消高亮 " 在普通模式下按下 Esc 键取消高亮 nnoremap <Esc> :nohlsearch<CR> " 在插入模式下按下 Esc 键取消高亮 inoremap <Esc> <Esc>:nohlsearch<CR>" 额外:当退出…...
JS-判断字段值是否为空
1.js方法 /*** Description: 判断给定值是否为空* param {any} value 需要检查的值* return {boolean} 如果值为空,返回 true;否则返回 false */ export function isEmpty(value) {// 检查是否为 null 或 undefinedif (value null || value undefined…...
STM32-笔记22-sg90舵机
一、接线 二、实验实现 动手让 SG90 每秒转动一下,0 -> 20 -> 40 -> 100 -> 180 如此循环。 舵机接A6 复制18-呼吸灯,重命名24-sg90舵机 把PWM重命名sg90 打开项目文件 在魔术棒和品上把PWM都去掉,加载sg90文件夹 加载之后…...
智能工厂的设计软件 应用场景的一个例子:为AI聊天工具添加一个知识系统 之10 方案再探之1:特定于领域的模板 之1 随想交流
前面的项目再次不能继续。不得已再一次重新建了这个项目,并以当前修改版本的项目文件为附件开始了今天的沟通。所以 标明是“方案再探” 在新建这个项目的同时,就将项目文件作为附件添加进去,然后开始。 文件链接:智能工厂的设计…...
国内Ubuntu环境Docker部署Stable Diffusion入坑记录
国内Ubuntu环境Docker部署Stable Diffusion入坑记录 本文旨在记录使用dockerpython进行部署 stable-diffusion-webui 项目时遇到的一些问题,以及解决方案,原项目地址: https://github.com/AUTOMATIC1111/stable-diffusion-webui 问题一览: …...
速盾:服务器CDN加速解析的好处有哪些呢?
随着互联网应用的普及,越来越多的企业开始关注如何提升网站的访问速度和用户体验。为了实现这一目标,许多企业选择使用CDN(内容分发网络)来加速网站的内容分发。CDN通过在全球范围内分布多个节点,将内容缓存到离用户最…...
【sql】CAST(GROUP_CONCAT())实现一对多对象json输出
数据库:mysql 5.7版本以上 问题:一对多数据,实现输出一条数据,并将多条数据转换成json对象输出,可以实现一对多个字段。 项目中关系较为复杂,以下简化数据关系如下: t1是数据表,t…...
[创业之路-221]:企业的责任中心:收入中心、利润中心、成本中心、费用中心、投资中心
目录 一、大部分企业责任中心定义 投资中心:战略决策部 利润中心:事业部 收入中心:进账 成本中心:成本 费用中心:消耗 二、华为对责任中心定义 投资中心 利润中心(事业部:BU࿰…...
人工智能之基于阿里云图像人脸融合部署
人工智能之基于阿里云图像人脸融合部署 需求描述 基于阿里云搭建图像人脸融合模型,模型名称:iic/cv_unet-image-face-fusion_damo使用上述模型输出人脸融合照片 模型路径:人脸融合 业务实现 阿里云配置 阿里云配置如下: SD…...
GXUOJ-算法-补题:22级《算法设计与分析》第一次课堂练习
2.最大子数组和 问题描述 代码解答 #include<bits/stdc.h> using namespace std; const int N1005; int sum,n,a[N]; int res-1;int result(){for(int i0;i<n;i){if(sum<0) suma[i];else{suma[i];resmax(res,sum);}}return res; } int main(){cin>>n;for(i…...
Redisson 分布式锁获取tryLock和lock的区别
问题 boolean isLock lock.tryLock(10, 30, TimeUnit.SECONDS); boolean isLock lock.lock(30, TimeUnit.SECONDS); boolean isLock lock.lock(); 三者的区别?? 这三个方法都是用于获取 Redisson 分布式锁的,但它们在获取锁的方式和行为…...
mysql及其兼容语法数据库对于注释的特殊要求
我司大部分数据库使用MS-SQL,其中使用大量–开头的行注释,由于业务需要,切换到了Starrocks数据库(兼容mysql语法)后发现使用with开头子查询的时候,大量报错,单独执行内部的子查询又正常…...
开源模型应用落地-工具使用篇-Spring AI(七)
一、前言 在AI大模型百花齐放的时代,很多人都对新兴技术充满了热情,都想尝试一下。但是,实际上要入门AI技术的门槛非常高。除了需要高端设备,还需要面临复杂的部署和安装过程,这让很多人望而却步。不过,随…...
多输入多输出 | Matlab实现WOA-CNN鲸鱼算法优化卷积神经网络多输入多输出预测
多输入多输出 | Matlab实现WOA-CNN鲸鱼算法优化卷积神经网络多输入多输出预测 目录 多输入多输出 | Matlab实现WOA-CNN鲸鱼算法优化卷积神经网络多输入多输出预测预测效果基本介绍模型背景程序设计参考资料 预测效果 基本介绍 Matlab实现WOA-CNN鲸鱼算法优化卷积神经网络多输入…...
【golang学习之旅】使用VScode安装配置Go开发环境
1. 下载并安装Go 1.1 下载地址1.2 选择版本并下载1.3 安装目录1.4 验证是否安装成功 2. 配置环境变量 2.1 配置步骤2.2 GO部分环境变量说明 3. 下载或更新 Vscode 3.1 下载地址3.2 安装步骤 4. 为Go开发配置VScode 1. 下载并安装Go 1.1 下载地址 https://studygolang.com/dl…...
HarmonyOS Next“说书人”项目 单机版 实践案例
前段时间开发了一个软件,取名为“说书人”,后由于备案暂时没有通过,于是删除了联网功能,重新做了一个单机版,这里对于单机版的开发实践案例进行一个发出,希望能帮助到大家 文章最后给出了AtomGit仓库地址 p…...
Vue3 + ElementPlus动态合并数据相同的单元格(超级详细版)
最近的新项目有个需求需要合并单元列表。ElementPlus 的 Table 提供了合并行或列的方法,可以参考一下https://element-plus.org/zh-CN/component/table.html 但项目中,后台数据返回格式和指定合并是动态且没有规律的,Element 的示例过于简单&…...
前端开发中依赖包有问题怎么办
在前端开发中,如果你发现某个依赖包存在问题,可以考虑以下步骤来解决: 一、简单方案 1. 检查问题来源: 确认问题是否由依赖包引起,而不是你的代码或其他配置问题。查看错误信息、文档和相关的 GitHub issue…...
Oracle exp和imp命令导出导入dmp文件
目录 一. 安装 instantclient-tools 工具包二. exp 命令导出数据三. imp 命令导入数据四. expdp 和 impdp 命令 一. 安装 instantclient-tools 工具包 ⏹官方网站 https://www.oracle.com/cn/database/technologies/instant-client/linux-x86-64-downloads.html ⏹因为我们在…...
阿里云人工智能工程师ACA认证免费课程学习笔记
阿里云人工智能工程师ACA认证免费课程学习笔记 0. 引言第1章:人工智能基础课时1:人工智能概述课时2:人工智能产业结构课时3:人工智能项目开发的基本流程 第2章:机器学习PAI平台基础第3章:数据处理基础课时8…...