当前位置: 首页 > news >正文

徒手从零搭建一套ELK日志平台

徒手从零搭建一套ELK日志平台

  • 日志分析的概述
  • 日志分析的作用
  • 主要收集工具
  • 集中式日志系统主要特点
  • 采集日志分类
  • ELK概述
    • 初级版ELK
    • 终极版ELK
    • 高级版ELK
    • ELK收集日志的两种形式
  • 搭建ELK平台
    • Logstash工作原理
    • Logstash核心概念
    • 环境准备
    • 安装部署docker
    • 添加镜像加速器
    • 安装部署Elasticsearch
    • 安装ElasticSearch-head(可选)
      • 拉取镜像
      • 运行容器
      • 页面无数据问题
      • 测试
    • 安装Kibana
      • 测试
    • Docker 安装 LogStash
    • 启动容器并挂载
    • 创建springboot应用
    • 查看 es-head
    • 查看Kibana

日志分析的概述

  • 日志分析是运维工程师解决系统故障,发现问题的主要手段
  • 日志主要包括系统日志、应用程序日志和安全日志
  • 系统运维和开发人员可以通过日志了解服务器软硬件信息、检查配置过程中的错误及错误发生的原因
  • 经常分析日志可以了解服务器的负荷,性能安全性,从而及时采取措施纠正错误

日志分析的作用

  • 分析日志时刻监控系统运行的状态
  • 分析日志来定位程序的bug
  • 分析日志监控网站的访问流量
  • 分析日志可以知道哪些sql语句需要优化

主要收集工具

  • 日志易: 国内一款监控、审计、权限管理,收费软件
  • splunk: 按流量收费,国外软件,主要三个部件组成(Indexer、Search Head、Forwarder)
    • Indexder提供数据的存储,索引,类似于elasticsearch的作用
    • Search Head负责搜索,客户接入,从功能上看,一部分是kibana的UI是运行,在Search Head上的,提供所有的客户端可视化功能,还有一部分,是提供分布式的搜索功能,具有Elasticsearch部分功能
    • Forwarder负责数据接入,类似Logstash或者filebeat
  • ELK: 海量日志分析平台(Elasticsearch、logstash、kibana),开源且在国内被广泛应用

集中式日志系统主要特点

动作功能
收集能够采集多种来源的日志数据
传输能够稳定的把日志传数据传输到中央系统
存储安全的存储日志数据
分析可以支持UI分析
警告能够提供错误报告

采集日志分类

维度举例
代理层Nginx、HAproxy…
web层Nginx、httpd、tomcat、Java…
数据库层MySQL、Redis、Elasticsearch、openGauss…
系统层message、secure

ELK概述

ELK是一个开源的数据分析平台,由三个开源项目Elasticsearch、Logstash和Kibana组成,因此被称为ELK
ELK主要用于处理和分析大量的日志数据,支持实时搜索、数据可视化和分析

  • Elasticsearch是一个 分布式搜索引擎 和分析引擎,能够实现实时搜索和分析大规模的数据集
  • Logstash是一个数据收集、处理和转换工具,能够从不同来源收集、处理和传输数据
  • Kibana是一个数据可视化工具,能够通过仪表盘、图形和地图等方式展示数据
  • ELK 三个组件相互配合,能够构建一个强大的、可扩展的日志分析平台,支持数据的快速检索、可视化和分析。

初级版ELK

在这里插入图片描述

终极版ELK

在这里插入图片描述

高级版ELK

在这里插入图片描述

ELK收集日志的两种形式

不修改源日志的格式 而是通过logstash的grok方式进行过滤清洗,将原始无规则的日志转换为规则的日志

  • 优点 不用修改原始日志输出格式,直接通过logstash的grok方式进行过滤分析,好处是对线上业务系统无任何影响
  • 缺点 logstash的grok方式在高压力情况下会成为性能瓶颈如果要分析的日志量超大时,日志过滤分析可能阻塞正常的日志输出;因此,在使用logstash时,能不用grok尽量不使用grok过滤功能。

修改源日志输出格式 按照需要的日志格式输出规则日志,logstash只负责日志的收集和传输,不对日志做任何的过滤清洗。

  • 优点 因为已经定义好了需要的日志输出格式, logstash只负责日志的收集和传输,这样就大大减轻了logstash的负担,可以更高效的收集和传输日志。
  • 缺点 需要事先定义好日志的输出格式,这可能有一定工作量,但目前常见的web服务器例如httpd、Nginx等都支持自定义日志输出格式。

搭建ELK平台

Elasticsearch 官网:
https://www.elastic.co/cn/elasticsearch

Elasticsearch是一个基于Lucene库的分布式搜索引擎和数据分析引擎,能够实现实时搜索和分析大规模的数据集,支持文本、数字、地理位置等多种类型的数据检索和分析。Elasticsearch是一个开源的、高度可扩展的平台,能够处理海量的数据,并支持分布式的数据存储和处理。Elasticsearch的主要特点包括:

  • 分布式搜索引擎 Elasticsearch能够对海量的数据进行快速的搜索和查询,并支持实时搜索。
  • 分布式数据存储 Elasticsearch能够将数据分散存储在多个节点上,以提高数据的可用性和可靠性。
  • 多数据类型支持 Elasticsearch支持多种数据类型,包括文本、数字、日期、地理位置等。
  • 实时数据分析 Elasticsearch能够对数据进行实时的聚合、过滤和分析,并支持数据可视化。
  • 可扩展性 Elasticsearch能够扩展到数百个节点,处理PB级别的数据。
  • 开源 Elasticsearch是一个开源的软件,源代码可以公开获取和修改。Elasticsearch广泛应用于企业搜索、日志分析、安全分析和商业智能等领域。它提供了丰富的API和工具,包括RESTful API、Java API和Python API等,方便开发人员集成和使用。

Logstash 文档地址:
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html

Logstash 是一个开源的数据收集、处理和转换工具,能够从不同来源收集、处理和传输数据。,主要用于处理和分析大量的日志数据,支持多种数据源和格式,包括文本文件、数据库、日志文件、消息队列等。Logstash能够实现以下功能:

  • 数据收集 Logstash能够从不同的数据源收集数据,并支持多种数据格式,包括JSON、CSV、XML等。
  • 数据处理 Logstash能够对收集到的数据进行处理和转换,例如过滤、分析、标准化等。
  • 数据传输 Logstash能够将处理后的数据传输到目标位置,例如Elasticsearch、Kafka、Redis等。
  • 插件扩展 Logstash提供了丰富的插件,方便用户扩展和定制功能。
  • 实时数据处理 Logstash能够实现实时数据处理,支持流式数据处理。Logstash是一个高度可扩展的工具,能够处理大量的数据,并支持分布式部署。它能够与Elasticsearch、Kibana、Beats等工具集成,构建一个强大的、可扩展的数据分析平台。Logstash提供了丰富的文档和社区支持,方便用户学习和使用。

Logstash工作原理

在这里插入图片描述
如上图,Logstash的数据处理过程主要包括:Inputs, Filters, Outputs 三部分, 另外在Inputs和Outputs中可以使用Codecs对数据格式进行处理。这四个部分均以插件形式存在,用户通过定义pipeline配置文件,设置需要使用的input,filter,output, codec插件,以实现特定的数据采集,数据处理,数据输出等功能

  • Inputs: 用于从数据源获取数据,常见的插件如file, syslog, redis, beats 等

  • Filters: 用于处理数据如格式转换,数据派生等,常见的插件如grok, mutate, drop, clone, geoip等

  • Outputs: 用于数据输出,常见的插件如elastcisearch,file, graphite, statsd等

  • Codecs: Codecs不是一个单独的流程,而是在输入和输出等插件中用于数据转换的模块,用于对数据进行编码处理,常见的插件如json,multiline

Logstash核心概念

  • Pipeline: 包含了input—filter-output三个阶段的处理流程、插件生命周期管理、队列管理
  • Logstash Event: 数据在内部流转时的具体表现形式
    • 数据在input 阶段被转换为Event,在 output被转化成目标格式数据
    • Event 其实是一个Java Object,在配置文件中,对Event 的属性进行增删改查
  • Codec (Code / Decode): 将原始数据decode成Event,将Event encode成目标数据

在这里插入图片描述

Kibana 文档地址:
https://www.elastic.co/guide/cn/kibana/current/install.html

Kibana是一个数据可视化工具,能够通过仪表盘、图形和地图等方式展示数据。主要用于展示和分析从Elasticsearch中获取的数据。Kibana能够实现以下功能:

  • 数据可视化: Kibana能够通过仪表盘、图形和地图等方式展示数据,支持多种数据类型和格式。
  • 数据查询: Kibana能够实现对Elasticsearch中存储的数据进行查询和搜索。
  • 仪表盘管理: Kibana能够创建、管理和共享仪表盘,方便用户展示和分享数据。
  • 可视化插件: Kibana提供了丰富的可视化插件,方便用户扩展和定制功能。
  • 数据分析: Kibana能够实现对数据进行聚合、过滤和分析,支持实时数据处理。Kibana的主要优点包括易用性、可- 扩展性和丰富的功能。它能够与Elasticsearch、Logstash、Beats等工具集成,构建一个强大的、可扩展的数据分析平台。Kibana提供了丰富的文档和社区支持,方便用户学习和使用。

环境准备

使用模板机克隆elk并配置如下参数

主机IP地址网关DNS配额
elk192.168.8.111/24192.168.8.254192.168.8.2541CPU2G内存
[root@template ~]# hostnamectl set-hostname elk      #配置主机名
[root@elk ~]# nmcli connection modify ens160 ipv4.method manual ipv4.addresses 192.168.8.111/24 ipv4.gateway 192.168.8.254 ipv4.dns 192.168.8.254 connection.autoconnect yes             #配置入网参数
[root@elk ~]# nmcli connection up ens160        #激活网卡

安装部署docker

开启路由转发,docker是通过虚拟交换机来进行通讯的,需要开启路由转发的功能

[root@elk ~]# echo "net.ipv4.ip_forward = 1" >> /etc/sysctl.conf 
[root@elk ~]# sysctl -p                #sysctl -p 让配置立刻生效(否则需要重启虚拟机)

docker上传至虚拟机elk的/root

[root@docker-0001 ~]# dnf remove podman     #卸载冲突的软件包
[root@docker-0001 ~]# dnf remove runc
[root@docker-0001 ~]# cd /root/docker
[root@docker-0001 docker]# dnf -y localinstall *.rpm #安装docker

添加镜像加速器

使用华为云的镜像加速器,每个人的都不一样

[root@elk ~]# vim /etc/docker/daemon.json
[root@elk ~]# vim /etc/docker/daemon.json
{"registry-mirrors": ["这里配置镜像仓库加速器地址"],"insecure-registries":[]
}
[root@elk ~]# systemctl restart docker 
[root@elk ~]# docker info

安装部署Elasticsearch

[root@elk ~]# docker network create -d bridge elk  #创建网络
[root@elk ~]# docker network ls       #查看网络
[root@elk ~]# docker search elasticsearch    #搜索镜像
[root@elk ~]# docker pull elasticsearch:7.12.1   #下载镜像elasticsearch:7.12.1
[root@elk ~]# docker images        #查看镜像
# 运行 elasticsearch
[root@elk ~]# docker run -d --name es --net elk -P -e "discovery.type=single-node" elasticsearch:7.12.1# 进入容器查看配置文件路径
[root@elk ~]# docker exec -it es /bin/bash
[root@f84bda6f8389 elasticsearch] cd config[root@f84bda6f8389 config]# ls
elasticsearch.keystore  jvm.options.d           role_mapping.yml  users_roles
elasticsearch.yml       log4j2.file.properties  roles.yml
jvm.options             log4j2.properties       users[root@f84bda6f8389 config]# pwd
/usr/share/elasticsearch/config
# 在 config 中可看到 elasticsearch.yml 配置文件,
# 再执行 pwd 可以看到当前目录为: /usr/share/elasticsearch/config,所以退出容器,执行文件的拷贝
[root@f84bda6f8389 config]# exit
# 将容器内的配置文件拷贝到 /usr/local/elk/elasticsearch/ 中
[root@elk ~]#  mkdir -p /usr/local/elk/elasticsearch
[root@elk ~]#  docker cp es:/usr/share/elasticsearch/config/elasticsearch.yml /usr/local/elk/elasticsearch[root@elk ~]# vim /usr/local/elk/elasticsearch/elasticsearch.yml
#此处省略1万字...在最后一行下方添加
http.cors.enabled: true
http.cors.allow-origin: "*"# 注意:这里要修改文件的权限为可写,否则进行挂载后,在外部修改配置文件,容器内部的配置文件不会更改
# 同时,创建 data 目录进行挂载。
# 修改文件权限
[root@elk ~]# chmod 666 /usr/local/elk/elasticsearch/elasticsearch.yml
[root@elk ~]# mkdir -p /usr/local/elk/elasticsearch/data
[root@elk ~]# chmod -R 777 /usr/local/elk/elasticsearch/data
#重新运行容器并挂载
[root@elk ~]# docker rm -f es      #删除测试容器es
# 运行新的容器
[root@elk ~]# docker run -d --name es \
--net elk \
-p 9200:9200 -p 9300:9300 \
-e "discovery.type=single-node" \
--privileged=true \
-v /usr/local/elk/elasticsearch/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v /usr/local/elk/elasticsearch/data:/usr/share/elasticsearch/data \
elasticsearch:7.12.1[root@elk ~]# docker ps

浏览器访问地址:http://192.168.8.111:9200/

在这里插入图片描述

安装ElasticSearch-head(可选)

说明:ElasticSearch-head是 ES的可视化界面,是为了方便后面调试时看日志有没成功输入到 ES 用的,非必须安装的项目,也可跳过此步。

拉取镜像

[root@elk ~]# docker pull mobz/elasticsearch-head:5

运行容器

[root@elk ~]# docker run -d --name es_admin --net elk -p 9100:9100 mobz/elasticsearch-head:5
[root@elk ~]# docker ps

页面无数据问题

如果打开页面之后节点、索引等显示完全,但是数据浏览中无数据显示,那么我们还需要改一个配置文件,这是因为 ES 6 之后增加了请求头严格校验的原因(我们装的是 7.12.1 版本)

[root@elk ~]#  docker cp es_admin:/usr/src/app/_site/vendor.js ./
[root@elk ~]#  vim vendor.js
#6886行:contentType: "application/json;charset=UTF-8"
#7573行: contentType === "application/json;charset=UTF-8"
# 改完后再将配置文件 copy 回容器,不需重启,直接刷新页面即可。[root@elk ~]# docker cp vendor.js es_admin:/usr/src/app/_site/

测试

浏览器访问地址:http://192.168.8.111:9100/
在这里插入图片描述

安装Kibana

root@localhost ~]# docker search kibana
[root@elk ~]# docker pull kibana:7.12.1# 注意: -e “ELASTICSEARCH_HOSTS=http://es:9200” 表示连接刚才启动的 elasticsearch 容器,
# 因为在同一网络(elk)中,地址可直接填 容器名+端口,即 es:9200, 也可以填 http://192.168.138.174:9200,即 http://ip:端口。
[root@elk ~]# docker run -d --name kibana --net elk -P -e "ELASTICSEARCH_HOSTS=http://es:9200" -e "I18N_LOCALE=zh-CN" kibana:7.12.1 #运行容器
#将容器内kibana的配置文件拷贝出来
[root@elk ~]# mkdir -p /usr/local/elk/kibana/
[root@elk ~]# docker cp kibana:/usr/share/kibana/config/kibana.yml /usr/local/elk/kibana/
[root@elk ~]# chmod 666 /usr/local/elk/kibana/kibana.yml# 拷贝完成后,修改该配置文件,主要修改 elastissearch.hosts 并新增 i18n.locale 配置:
# 1. es 地址改为刚才安装的 es 地址,因容器的隔离性,这里最好填写 http://ip:9200
# 2. kibana 界面默认是英文的,可以在配置文件中加上 i18n.locale: zh-CN(注意冒号后面有个空格)
# 这样有了配置文件,在启动容器时就不用通过 -e 指定环境变量了
# 注意:
# 如果使用挂载配置文件的方式启动的话,elasticsearch.hosts 这需填写 http://ip:9200,而不能使用容器名了,否则后面 kibana 连接 es 会失败。
[root@elk ~]# vim /usr/local/elk/kibana/kibana.yml
# 注意这个ip是docker容器内部的IP,不是虚拟机的,可以使用 docker inspect es来查看
elasticsearch.hosts: [ "http://172.18.0.2:9200" ]
i18n.locale: zh-CN
#删除原来未挂载的容器
[root@elk ~]# docker rm -f kibana#启动容器并挂载
[root@elk ~]# docker run -d --name kibana -p 5601:5601 -v /usr/local/elk/kibana/kibana.yml:/usr/share/kibana/config/kibana.yml --net elk kibana:7.12.1

浏览器访问地址:http://192.168.8.111:9100/
在这里插入图片描述

测试

开始使用 Kibana 前,需要告诉 Kibana 您想要探索的 Elasticsearch 索引。第一次访问 Kibana 时,会提示您定义一个 index pattern(索引模式) 匹配一个或多个索引。这就是初次使用 Kibana 时所有需要配置的。任何时候都可以在 Management 页面增加索引模式。

默认情况下,Kibana 会连接运行在 localhost 上的 Elasticsearch 实例。如果需要连接不同的 Elasticsearch实例,可以修改 kibana.yml 配置文件中的 Elasticsearch URL 配置项并重启 Kibana。如果在生产环境节点上使用 Kibana

设置您想通过 Kibana 访问的 Elasticsearch 索引:

浏览器中指定端口号5601来访问 Kibana UI 页面。例如, localhost:5601 或者 http://YOURDOMAIN.com:5601
在这里插入图片描述
指定一个索引模式来匹配一个或多个 Elasticsearch 索引名称。默认情况下,Kibana 会认为数据是通过 Logstash 解析送进 Elasticsearch 的。这种情况可以使用默认的 logstash-* 作为索引模式。星号 (*) 匹配0或多个索引名称中的字符。如果 Elasticsearch 索引遵循其他命名约定,请输入一个恰当的模式。该模式也可以直接用单个索引的名称。

如果您想做一些基于时间序列的数据比较,可以选择索引中包含时间戳的字段。Kibana 会读取索引映射,列出包含时间戳的所有字段。如果索引中没有基于时间序列的数据,则禁用 Index contains time-based events 选项。

点击 Create 增加索引模式。默认情况下,第一个模式被自动配置为默认的。当索引模式不止一个时,可以通过点击 Management > Index Patterns 索引模式题目上的星星图标来指定默认的索引模式。

全部设置完毕!Kibana 连接了 Elasticsearch 的数据。展示了一个匹配到的索引的字段只读列表。

浏览器访问地址:http://192.168.8.111:5601/
在这里插入图片描述

Docker 安装 LogStash

拉取镜像并拷贝配置

[root@elk ~]# docker pull logstash:7.12.1
[root@elk ~]# docker run -d -P --name logstash --net elk logstash:7.12.1# 拷贝数据
[root@elk ~]# mkdir -p /usr/local/elk/logstash/
[root@elk ~]# docker cp logstash:/usr/share/logstash/config /usr/local/elk/logstash/
[root@elk ~]# docker cp logstash:/usr/share/logstash/data /usr/local/elk/logstash/
[root@elk ~]# docker cp logstash:/usr/share/logstash/pipeline /usr/local/elk/logstash/#文件夹赋权
[root@elk ~]# chmod -R 777 /usr/local/elk/logstash/

修改相应配置文件
修改 logstash/config 下的 logstash.yml 文件,主要修改 es 的地址(可通过 docker inspect es查看地址):

[root@elk ~]# vim /usr/local/elk/logstash/config/logstash.yml
http.host: "0.0.0.0"
xpack.monitoring.elasticsearch.hosts: [ "http://172.18.0.2:9200" ]

修改 logstash/pipeline 下的logstash.conf文件:

[root@elk ~]# vim /usr/local/elk/logstash/pipeline/logstash.confinput {tcp {mode => "server"host => "0.0.0.0"  # 允许任意主机发送日志port => 5044codec => json_lines    # 数据格式}
}output {elasticsearch {hosts  => ["http://172.18.0.2:9200"]   # ElasticSearch 的地址和端口index  => "elk"         # 指定索引名codec  => "json"}stdout {codec => rubydebug}
}

启动容器并挂载

#注意先删除之前的容器
[root@elk ~]# docker rm -f logstash# 启动容器并挂载
[root@elk ~]# docker run -d --name logstash --net elk \
--privileged=true \
-p 5044:5044 -p 9600:9600 \
-v /usr/local/elk/logstash/data/:/usr/share/logstash/data \
-v /usr/local/elk/logstash/config/:/usr/share/logstash/config \
-v /usr/local/elk/logstash/pipeline/:/usr/share/logstash/pipeline \
logstash:7.12.1

项目地址:
https://gitee.com/houyworking/elk.git

注意:该项目已经搭建好,只需要把对应 resource 下的 log/logback-springxml文件中的 <destination></destination>标签中 logstash 的地址换成对应自己的即可

创建springboot应用

这个比较简单,主要就是几个配置文件:
pom文件如下:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.tedu</groupId><artifactId>elk</artifactId><version>0.0.1-SNAPSHOT</version><name>elk</name><description>elk</description><properties><java.version>1.8</java.version><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding><spring-boot.version>2.6.13</spring-boot.version></properties><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter</artifactId></dependency><dependency><groupId>net.logstash.logback</groupId><artifactId>logstash-logback-encoder</artifactId><version>6.6</version></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency></dependencies><dependencyManagement><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-dependencies</artifactId><version>${spring-boot.version}</version><type>pom</type><scope>import</scope></dependency></dependencies></dependencyManagement><build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-compiler-plugin</artifactId><version>3.8.1</version><configuration><source>1.8</source><target>1.8</target><encoding>UTF-8</encoding></configuration></plugin><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId><version>${spring-boot.version}</version><configuration><mainClass>com.tedu.elk.ElkApplication</mainClass><skip>true</skip></configuration><executions><execution><id>repackage</id><goals><goal>repackage</goal></goals></execution></executions></plugin></plugins></build></project>

创建一个TestController,每次调用接口,都会打印日志

package com.tedu.elk.controller;import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;import java.util.UUID;@RestController
public class TestController {private final static Logger logger = LoggerFactory.getLogger(TestController.class);@GetMapping("/index")public String index() {String uuid = UUID.randomUUID().toString();logger.info("TestController info " + uuid);return "hello elk " + uuid;}
}

在 resource 下创建log/logback-springxml文件,这里我们主要填写 ip:端口,关于标签则看个人使用情况修改。

<?xml version="1.0" encoding="UTF-8"?>
<configuration><include resource="org/springframework/boot/logging/logback/base.xml" /><appender name="LOGSTASH" class="net.logstash.logback.appender.LogstashTcpSocketAppender"><destination>192.168.8.111:5044</destination><!-- 日志输出编码 --><encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder"><providers><timestamp><timeZone>UTC</timeZone></timestamp><pattern><pattern>{<!--es索引名称 -->"index":"elk",<!--应用名称 -->"appname":"${spring.application.name}",<!--打印时间 -->"timestamp": "%d{yyyy-MM-dd HH:mm:ss.SSS}",<!--线程名称 -->"thread": "%thread",<!--日志级别 -->"level": "%level",<!--日志名称 -->"logger_name": "%logger",<!--日志信息 -->"message": "%msg",<!--日志堆栈 -->"stack_trace": "%exception"}</pattern></pattern></providers></encoder></appender><root level="INFO"><appender-ref ref="LOGSTASH" /><appender-ref ref="CONSOLE" /></root>
</configuration>

最后修改 application.yml 文件:

server:port: 8080logging:config: classpath:log/logback-spring.xml

查看 es-head

在这里插入图片描述
在这里插入图片描述

查看Kibana

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
测试:调用接口 http://localhost:8080/index
再次查看 Kibana ,已经显示了在代码中打印的日志:
在这里插入图片描述

相关文章:

徒手从零搭建一套ELK日志平台

徒手从零搭建一套ELK日志平台 日志分析的概述日志分析的作用主要收集工具集中式日志系统主要特点采集日志分类ELK概述初级版ELK终极版ELK高级版ELKELK收集日志的两种形式 搭建ELK平台Logstash工作原理Logstash核心概念环境准备安装部署docker添加镜像加速器安装部署Elasticsear…...

java八股-SpringCloud微服务-Eureka理论

文章目录 SpringCloud架构Eureka流程Nacos和Eureka的区别是&#xff1f;CAP定理Ribbon负载均衡策略自定义负载均衡策略如何实现&#xff1f;本章小结 SpringCloud架构 Eureka流程 服务提供者向Eureka注册服务信息服务消费者向注册中心拉取服务信息服务消费者使用负载均衡算法挑…...

Git 多仓库提交用户信息动态设置

Git 多仓库提交用户信息动态设置 原文地址&#xff1a;dddhl.cn 前言 在日常开发中&#xff0c;我们可能需要同时管理多个远程仓库&#xff08;如 GitHub、Gitee、GitLab&#xff09;&#xff0c;而每个仓库使用不同的邮箱和用户名。比如&#xff0c;GitHub 和 Gitee 使用相…...

CPU详细介绍

CPU&#xff08;中央处理器&#xff0c;Central Processing Unit&#xff09;是计算机系统的核心部件之一&#xff0c;被称为计算机的“大脑”。它负责执行计算机程序中的各种指令&#xff0c;并管理和协调计算机系统的各个硬件组件。以下是对 CPU 的详细介绍&#xff0c;包括其…...

kafka中的数据清理策略

Kafka 中的数据清理策略主要用于控制数据的保留时间和存储空间&#xff0c;确保系统不会因为数据积累过多而影响性能。Kafka 提供了两种主要的数据清理策略&#xff1a; 1、基于时间的清理策略&#xff1a; 配置参数&#xff1a;log.retention.hours 或 log.retention.ms工作…...

django基于Django的二手电子设备交易平台设计与开发

摘 要 科学技术日新月异&#xff0c;人们的生活都发生了翻天覆地的变化&#xff0c;二手电子设备交易平台管理当然也不例外。过去的信息管理都使用传统的方式实行&#xff0c;既花费了时间&#xff0c;又浪费了精力。在信息如此发达的今天&#xff0c;我们可以通过网络这个媒介…...

WPF如何全局应用黑白主题效果

灰白色很多时候用于纪念&#xff0c;哀悼等。那么使用 WPF如何来做到这种效果呢&#xff1f;要实现的这种效果&#xff0c;我们会发现&#xff0c;它其实不仅仅是要针对图片&#xff0c;而是要针对整个窗口来实现灰白色。 如果只是针对图片的话&#xff0c;我可以可以对图片进…...

软件测试之测试用例扩展

软件测试之测试用例扩展 1. 测试用例覆盖2. UI布局覆盖3. 兼容性覆盖4. 测试用例条数 1. 测试用例覆盖 规则覆盖UI布局兼容性 2. UI布局覆盖 2条用例即可 布局, 颜色与原型图一致图片和文字描述无误 3. 兼容性覆盖 测试5大浏览器 火狐谷歌ieEge苹果 4. 测试用例条数 使…...

【Apache Paimon】-- 2 -- 核心特性 (0.9.0)

目录 1、实时更新 1.1、实时大批量更新 1.2、支持定义合并引擎 1.3、支持定义更新日志生成器 2、海量数据追加处理 2.1、append table 2.2、快速查询 3、数据湖功能(类比:hudi、iceberg、delta) 3.1、支持 ACID 事务 3.2、支持 Time travel(时间旅行) 3.3、支持…...

Mybatis入门

在学习MyBatis之前先了解一下什么是Mybatis&#xff1f;它能解决什么问题&#xff1f; 什么是 MyBatis&#xff1f; MyBatis 是一款优秀的持久层框架&#xff0c;它支持自定义 SQL、存储过程以及高级映射。 Mybatis解决什么问题&#xff1f; MyBatis 免除了几乎所有的 JDBC…...

智能方法求解-圆环内传感器节点最大最小距离分布

本篇文章是博主在最优化、人工智能等领域学习时&#xff0c;用于个人学习、研究或者欣赏使用&#xff0c;并基于博主对人工智能等领域的一些理解而记录的学习摘录和笔记&#xff0c;若有不当和侵权之处&#xff0c;指出后将会立即改正&#xff0c;还望谅解。文章分类在最优化算…...

Python Matplotlib 安装指南:使用 Miniconda 实现跨 Linux、macOS 和 Windows 平台安装

Python Matplotlib 安装指南&#xff1a;使用 Miniconda 实现跨 Linux、macOS 和 Windows 平台安装 Matplotlib是Python最常用的数据可视化工具之一&#xff0c;结合Miniconda可以轻松管理安装和依赖项。在这篇文章中&#xff0c;我们将详细介绍如何使用Miniconda在Linux、mac…...

数学建模学习(137):使用Python进行频数分析

在数据科学的工作中,频数分析是一种用于描述变量值出现次数的重要统计方法。SPSS等工具提供了便捷的频数分析功能,而在Python中,我们同样可以通过灵活的库来实现相同的分析。在本文中,我们将介绍如何使用Python来完成频数分析,并演示如何用Pandas、Matplotlib等库来分析和…...

[Unity] 【游戏开发】Unity开发基础1-创建Unity项目:从Unity Hub选择合适的渲染管

创建一个新的Unity项目通常是开发过程中的第一步,而Unity为此提供了强大的工具和灵活的选项。本文将详细介绍如何使用Unity Hub创建项目、选择合适的Unity版本、模板和渲染管线,并阐述每种选项的优缺点和适用场景。 1. Unity Hub:统一管理项目和版本 Unity Hub是Unity提供…...

大型语言模型综述 A Survey of Large Language Models

文章源自 2303.18223 (arxiv.org) 如有侵权&#xff0c;请通知下线 这是一篇关于大语言模型&#xff08;LLMs&#xff09;的综述论文&#xff0c;主要介绍了 LLMs 的发展历程、技术架构、训练方法、应用领域以及面临的挑战等方面&#xff0c;具体内容如下&#xff1a; 摘要…...

基于MATLAB的混沌序列图像加密程序

设计目的 图像信息生动形象&#xff0c;它已成为人类表达信息的重要手段之一&#xff0c;网络上的图像数据很多是要求发送方和接受都要进行加密通信&#xff0c;信息的安全与保密显得尤为重要&#xff0c;因此我想运用异或运算将数据进行隐藏&#xff0c;连续使用同一数据对图…...

容器安全检测和渗透测试工具

《Java代码审计》http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247484219&idx1&sn73564e316a4c9794019f15dd6b3ba9f6&chksmc0e47a67f793f371e9f6a4fbc06e7929cb1480b7320fae34c32563307df3a28aca49d1a4addd&scene21#wechat_redirect Docker-bench-…...

视频修复技术和实时在线处理

什么是视频修复&#xff1f; 视频修复技术的目标是填补视频中的缺失部分&#xff0c;使视频内容连贯合理。这项技术在对象移除、视频修复和视频补全等领域有着广泛的应用。传统方法通常需要处理整个视频&#xff0c;导致处理速度慢&#xff0c;难以满足实时处理的需求。 技术发…...

MyBatis——#{} 和 ${} 的区别和动态 SQL

1. #{} 和 ${} 的区别 为了方便&#xff0c;接下来使用注解方式来演示&#xff1a; #{} 的 SQL 语句中的参数是用过 ? 来起到类似于占位符的作用&#xff0c;而 ${} 是直接进行参数替换&#xff0c;这种直接替换的即时 SQL 就可能会出现一个问题 当传入一个字符串时&#xff…...

学习日志014--用python实现顺序表

之前我们用c语言实现顺序表&#xff0c;今天就然我们用python来复习一遍 一、创建顺序表 python的类可以代替c中的结构体作为复合数据类型。 创建学生类&#xff0c;并用装饰器将方法属性化&#xff0c;便于之后的修改。属性装饰器&#xff0c;可以在保护私有属性&#xff0…...

Android ConstraintLayout 基础

Android ConstraintLayout 基础 屏障线 Barrier设置水平和垂直方向的约束关系长宽比链式结构组站位辅助线 参考地址 屏障线 Barrier 以下是使用 ConstraintLayout 在 Android 中实现简单屏障线&#xff08;Barrier&#xff09;使用的示例代码&#xff0c;主要步骤如下&#xf…...

Ubuntu22.04LTS 部署前后端分离项目

一、安装mysql8.0 1. 安装mysql8.0 # 更新安装包管理工具 sudo apt-get update # 安装 mysql数据库&#xff0c;过程中的选项选择 y sudo apt-get install mysql-server # 启动mysql命令如下 &#xff08;停止mysql的命令为&#xff1a;sudo service mysql stop&#xff0…...

【网站推荐】the top trending open-source startups, every quarter

每季度最热门的开源初创公司 我们根据 GitHub 存储库自 2020 年以来的明星增长情况发布热门开源项目&#xff0c;并将其称为 Runa 开源初创公司 (ROSS) 指数。 una Capital actively invests in open-source startups (like Nginx and MariaDB) and considers an active deve…...

Java通过calcite实时读取kafka中的数据

引入maven依赖 <dependency> <groupId>org.apache.calcite</groupId> <artifactId>calcite-kafka</artifactId> <version>1.28.0</version> </dependency> 测试代码 import java.sql.Connection; import java.sql.DriverMan…...

el-table 数据去重后合并表尾合计行,金额千分位分割并保留两位小数,表尾合计行表格合并

问题背景 最近在做后台管理项目el-table 时候需要进行表尾合计&#xff0c;修改合计后文字的样式&#xff0c;合并单元格。 想实现的效果 合并表尾单元格前三列为1格&#xff1b;对某些指定的单元格进行表尾合计&#xff1b;合计后的文本样式加粗&#xff1b;涉及到金额需要千…...

Flutter:RotationTransition旋转动画

配置vsync&#xff0c;需要实现一下with SingleTickerProviderStateMixinclass _MyHomePageState extends State<MyHomePage> with SingleTickerProviderStateMixin{// 定义 AnimationController late AnimationController _controller;overridevoid initState() {super…...

《Python浪漫的烟花表白特效》

一、背景介绍 烟花象征着浪漫与激情&#xff0c;将它与表白结合在一起&#xff0c;会创造出别具一格的惊喜效果。使用Python的turtle模块&#xff0c;我们可以轻松绘制出动态的烟花特效&#xff0c;再配合文字表白&#xff0c;打造一段专属的浪漫体验。 接下来&#xff0c;让…...

Java面试题分享

1、hashmap的底层设计原理以及扩容规则&#xff0c;是否线程安全&#xff0c;如何线程安全。 jdk1.7以前采用数组加链表结构通过键哈希确定数组下标存键值对。jdk1.8及以后采用数组加链表加红黑树&#xff0c;链表超阈值且数组满足条件会转红黑树&#xff0c;哈希函数先取键 h…...

定时器的小应用

第一个项目 第一步&#xff0c;RCC开启时钟&#xff0c;这个基本上每个代码都是第一步&#xff0c;不用多想&#xff0c;在这里打开时钟后&#xff0c;定时器的基准时钟和整个外设的工作时钟就都会同时打开了 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);第二步&…...

【计算机网络】UDP协议

一、UDP协议格式 1.报头的含义 ① 16位源端口号&#xff1a;自己的端口号 ② 16位目的端口号&#xff1a;对方的端口号 ③ 16位UDP长度&#xff1a;整个数据报(UDP报头UDP有效载荷)的长度&#xff0c;最大64KB 一个UDP最多传64KB的数据&#xff0c;如果要传的数据 > 64K…...

vulhub之log4j

Apache Log4j Server 反序列化命令执行漏洞(CVE-2017-5645) 漏洞简介 Apache Log4j是一个用于Java的日志记录库,其支持启动远程日志服务器。Apache Log4j 2.8.2之前的2.x版本中存在安全漏洞。攻击者可利用该漏洞执行任意代码。 Apache Log4j 在应用程序中添加日志记录最…...

[Unity] 关于引入Google SDK以及使用的方法

在Unity中接入谷歌SDK&#xff08;如Google Play Games SDK或Firebase SDK等&#xff09;通常涉及几个关键步骤&#xff0c;包括下载SDK、导入Unity项目、配置项目设置、编写必要的代码以及测试集成。以下是一个基于Firebase SDK接入Unity的示例&#xff0c;同时涵盖了Google P…...

集群聊天服务器(13)redis环境安装和发布订阅命令

目录 环境安装订阅redis发布-订阅的客户端编程环境配置客户端编程 功能测试 环境安装 sudo apt-get install redis-server 先启动redis服务 /etc/init.d/redis-server start默认在6379端口上 redis是存键值对的&#xff0c;还可以存链表、数组等等复杂数据结构 而且数据是在…...

第R4周:LSTM-火灾温度预测(pytorch版)

>- **&#x1f368; 本文为[&#x1f517;365天深度学习训练营]中的学习记录博客** >- **&#x1f356; 原作者&#xff1a;[K同学啊]** 往期文章可查阅&#xff1a; 深度学习总结 任务说明&#xff1a;数据集中提供了火灾温度&#xff08;Tem1&#xff09;、一氧化碳浓度…...

基于SpringBoot和uniapp开发的医护上门系统上门护理小程序

项目分析 一、市场需求分析 人口老龄化趋势&#xff1a;随着全球及中国人口老龄化的加剧&#xff0c;老年人口数量显著增加&#xff0c;对医疗护理服务的需求也随之增长。老年人由于身体机能下降&#xff0c;更需要便捷、高效的医护服务&#xff0c;而医护上门服务恰好满足了这…...

js批量输入地址获取经纬度

使用js调用高德地图的接口批量输入地址获取经纬度。 以下的请求接口的key请换成你的key。 创建key&#xff1a;我的应用 | 高德控制台 &#xff0c;服务平台选择《Web服务》。 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-…...

Python自动化测试实践中pytest用到的功能dependency和parametrize

Python自动化测试中pytest用到的功能 1、pytest之@pytest.mark.dependency装饰器设置测试用例之间的依赖关系 1.1说明: 1、这是一个pytest第三方插件,主要解决用例之间的依赖关系。如果依赖的上下文测试用例失败后续的用例会被标识为跳过执行,相当于执行了 pytest.mark.s…...

json-bigint处理前端精度丢失问题

问题描述&#xff1a;前后端调试过程中&#xff0c;有时候会遇到精度丢失的问题&#xff0c;比如后端给过来的id超过16位&#xff0c;就会出现精度丢失的情况&#xff0c;前端拿到的id与后端给过来的不一致。 解决方案&#xff1a; 1、安装 npm i json-bigint 2、在axios中配置…...

神经网络10-Temporal Fusion Transformer (TFT)

Temporal Fusion Transformer (TFT) 是一种专为时序数据建模而设计的深度学习模型&#xff0c;它结合了Transformer架构和其他技术&#xff0c;旨在有效地处理和预测时序数据中的复杂模式。TFT 于 2020 年由 Google Research 提出&#xff0c;旨在解决传统模型在时序预测中的一…...

django基于django的民族服饰数据分析系统的设计与实现

摘 要 随着网络科技的发展&#xff0c;利用大数据分析对民族服饰进行管理已势在必行&#xff1b;该平台将帮助企业更好地理解服饰市场的趋势&#xff0c;优化服装款式&#xff0c;提高服装的质量。 本文讲述了基于python语言开发&#xff0c;后台数据库选择MySQL进行数据的存储…...

html数据类型

数据类型是字面含义&#xff0c;表示各种数据的类型。在任何语言中都存在数据类型&#xff0c;因为数据是各式各样。 1.数值类型 number let a 1; let num 1.1; // 整数小数都是数字值 ​ // 数字肯定有个范围 正无穷大和负无穷大 // Infinity 正无穷大 // -Infinity 负…...

Springboot启动异常 错误: 找不到或无法加载主类 xxx.Application异常

Springboot启动异常 错误: 找不到或无法加载主类 xxx.Application异常 报错提示 Connected to the target VM, address: 127.0.0.1:57210, transport: socket 错误:找不到或无法加载主类 global.hh.manage.HHMicroCloudProviderApplication Disconnected from the target VM, …...

哋它亢SEO技术分析:如何提升网站在搜索引擎中的可见性

文章目录 哋它亢SEO技术分析&#xff1a;如何提升网站在搜索引擎中的可见性网站的基本情况SEO优化分析与建议1. 元数据优化2. 关键词优化3. URL结构4. 图像优化5. 移动端优化6. 网站速度7. 结构化数据&#xff08;Schema Markup&#xff09;8. 内链与外链9. 社交分享 哋它亢SEO…...

web——upload-labs——第十一关——黑名单验证,双写绕过

还是查看源码&#xff0c; $file_name str_ireplace($deny_ext,"", $file_name); 该语句的作用是&#xff1a;从 $file_name 中去除所有出现在 $deny_ext 数组中的元素&#xff0c;替换为空字符串&#xff08;即删除这些元素&#xff09;。str_ireplace() 在处理时…...

ElasticSearch7.x入门教程之中文分词器 IK(二)

文章目录 前言一、内置分词器二、中文IK分词器&#xff08;第三方&#xff09;三、本地自定义四、远程词库总结 前言 ElasticSearch 核心功能就是数据检索&#xff0c;首先通过索引将文档写入 es。 查询分析则主要分为两个步骤&#xff1a; 1、词条化&#xff1a;分词器将输入…...

体积全息及平面全息图的衍射效率

一、体积全息 当记录材料的厚度是条纹间距的若干倍时&#xff0c;则在记录材料体积内将记录下干涉全息图的三维空间分布&#xff0c;就形成了体积全息。 按物光和参考光入射方向和再现方式的不同体积全息可以分为两种。 一种是物光和参考光在记录介质的同一侧入射&#xff0c;得…...

【常用组件整理】

xgplayer 字节开发的前端视频播放器 xgplayer是一个由字节跳动开发的强大的前端视频播放器&#xff0c;具有稳定性高、文档清晰、支持弹幕和移动端优化 等特点。相较于VideoJs&#xff0c;xgplayer的文档更简洁&#xff0c;自定义插件更为便捷。xgplayer还提供了丰富的插件来扩…...

用指针函数寻找数组中的最大值与次大值

#include <stdio.h>// 函数用于找出数组中的最大值和次大值 void LargestTow(int a[], int n, int *pfirst, int *psecond) {*pfirst a[0];*psecond a[1];if (*psecond > *pfirst) {// 如果初始的次大值大于最大值&#xff0c;交换它们int temp *pfirst;*pfirst *…...

原生微信小程序在顶部胶囊左侧水平设置自定义导航兼容各种手机模型

无论是在什么手机机型下&#xff0c;自定义的导航都和右侧的胶囊水平一条线上。如图下 以上图iphone12&#xff0c;13PRo 以上图是没有带黑色扇帘的机型 以下是调试器看的wxml的代码展示 注意&#xff1a;红色阔里的是自定义导航&#xff08;或者其他的logo啊&#xff0c;返回之…...

Android Gradle自定义任务在打包任务执行完成后执行cmd命令

背景 在每次打包之后需要做某事&#xff0c;例如每次打包后我都会安装某个目录下的一个apk。这个apk是通过一堆shell命令过滤得到一个apk的地址&#xff0c;然后把执行的几个shell命令何必成一个alias指令&#xff0c;在打包后只需要执行alias指令实现功能。当然也可以直接写在…...