谷歌medgemma-27b-text-it医疗大模型论文速读:多语言大型语言模型医学问答基准测试MedExpQA
《MedExpQA: 多语言大型语言模型医学问答基准测试》论文解析
一、引言
论文开篇指出大型语言模型(LLMs)在医学领域的巨大潜力,尤其是在医学问答(QA)方面。尽管LLMs在医学执照考试等场景中取得了令人瞩目的成绩,但它们在医学应用中仍存在诸多不足。例如,LLMs可能会生成过时信息或幻觉内容(hallucinated content),即看似合理但事实错误的答案。此外,现有的医学问答基准测试缺乏医学专家提供的金标准解释(gold explanations),这使得评估LLMs的推理能力变得困难。更重要的是,目前对于非英语语言的LLMs医学问答能力评估几乎是一片空白。
二、研究方法
(一)数据集构建
研究者们提出了MedExpQA——首个基于医学考试的多语言LLMs医学问答基准测试。该基准测试首次纳入由医学专家撰写的正确和错误选项的金标准解释。这些解释不仅为正确答案提供理由,还解释了为什么其他选项是错误的。研究者们以Antidote CasiMedicos数据集为基础构建MedExpQA。CasiMedicos数据集包含西班牙医学住院医师考试(类似美国医学执照考试USMLE)的内容,包括临床案例、问题、选项以及医学专家撰写的解释。这些解释最初是西班牙语的,后来被翻译成英语、法语和意大利语。
(二)模型与方法
研究者们选用了四种最先进的LLMs进行实验:PMC-LLaMA、LLaMA-2、BioMistral和Mistral。这些模型在医学问答领域表现突出。研究者们还采用了检索增强生成(RAG)技术,特别是MedRAG方法,来自动检索医学知识,以弥补LLMs知识过时和幻觉内容的问题。
三、实验
(一)实验设置
实验分为零样本(zero-shot)和微调(fine-tuning)两种设置。在零样本设置中,模型直接用于回答问题,未进行额外训练。在微调设置中,模型在CasiMedicos数据集上进行进一步训练,以更好地适应医学问答任务。研究者们还比较了不同知识类型对LLMs性能的影响,包括完整金标准解释(E)、仅错误选项解释(EI)、隐藏明确引用的完整金标准解释(H)以及通过RAG方法自动检索的知识(RAG-7和RAG-32)。
(二)结果
实验结果显示,即使是性能最佳的LLMs,在英语环境下的准确率也只有约75%,而在其他语言环境下准确率下降了10个百分点。此外,微调显著提高了模型性能,但同时也使得RAG方法的作用变得冗余。具体来说,在零样本设置中,RAG方法对模型性能提升有限,且在不同模型和语言设置中的表现差异不大。而在微调设置中,使用金标准解释(E)的模型性能最佳,但其他知识类型(EI和H)的性能也有所提升。
四、讨论
论文讨论了实验结果所揭示的问题。首先,尽管使用了最先进的RAG方法,但其性能仍远不如基于金标准解释的知识。其次,非英语语言的LLMs性能明显低于英语,这凸显了开发多语言LLMs的紧迫性。此外,研究者们还分析了CasiMedicos数据集中医学专家解释的质量和数量,发现部分解释可能缺乏相关医学信息,这可能对LLMs性能产生负面影响。
五、结论与未来工作
论文总结了MedExpQA的贡献,包括提供首个包含金标准解释的多语言医学问答基准测试,揭示了现有LLMs在医学问答中的不足,特别是在非英语语言环境下的表现。未来的工作可能包括评估LLMs生成解释的质量,以及进一步探索多语言LLMs的开发和优化。
六、核心技术总结表
相关文章:
谷歌medgemma-27b-text-it医疗大模型论文速读:多语言大型语言模型医学问答基准测试MedExpQA
《MedExpQA: 多语言大型语言模型医学问答基准测试》论文解析 一、引言 论文开篇指出大型语言模型(LLMs)在医学领域的巨大潜力,尤其是在医学问答(QA)方面。尽管LLMs在医学执照考试等场景中取得了令人瞩目的成绩&#…...
# 深入解析BERT自然语言处理框架:原理、结构与应用
深入解析BERT自然语言处理框架:原理、结构与应用 在自然语言处理(NLP)领域,BERT(Bidirectional Encoder Representations from Transformers)框架的出现无疑是一个重要的里程碑。它凭借其强大的语言表示能…...
js中encodeURIComponent函数使用场景
encodeURIComponent 是 JavaScript 中的一个内置函数,它的作用是: 将字符串编码为可以安全放入 URL 的形式。 ✅ 为什么需要它? URL 中有一些字符是有特殊意义的,比如: ? 用来开始查询参数 & 分隔多个参数 连接…...
【NLP 77、Python环境管理工具之conda】
如果你第一万次否定自己,那我希望我可以一万零一次大声称赞你 —— 25.5.22 一、什么是conda conda是一个开源的包管理系统和环境管理系统,主要用于Python语言,但也可以用于其它语言的项目 二、为什么要使用conda ① 多环境共存,多…...
替代云数据库的本地方案:MySQL+phpMyAdmin的远程管理与跨网络访问技术
文章目录 前言1. 安装MySQL2. 安装phpMyAdmin3. 修改User表4. 本地测试连接MySQL5. 安装cpolar内网穿透6. 配置MySQL公网访问地址7. 配置MySQL固定公网地址8. 配置phpMyAdmin公网地址9. 配置phpmyadmin固定公网地址 前言 对于运维来说,平时还好,一旦出门…...
Dify大语言模型应用开发环境搭建:打造个性化本地LLM应用开发工作台
文章目录 前言1. Docker部署Dify2. 本地访问Dify3. Ubuntu安装Cpolar4. 配置公网地址5. 远程访问6. 固定Cpolar公网地址7. 固定地址访问 前言 各位小伙伴们,大家好!今天我们要来一场技术大冒险,手把手教你如何在Linux Ubuntu系统上使用Docke…...
MySQL索引事务
索引 通过索引可以对查询操作进行优化,通过减少全表扫描,快速定位数据,原本的查询操作是对表进行遍历,如果是大表效率较低 1)注意事项 占用了更多的空间,由于生成索引需要依赖于数据结构和额外数据&…...
Seay代码审计工具
Seay代码审计工具 介绍 Seay代码审计工具是一款由国内安全研究人员"Seay"开发的源代码安全审计工具,主要用于帮助安全人员快速发现PHP代码中的安全漏洞,快速定位代码中的安全风险点。 主要功能特点 自动化审计功能 支持自动扫描PHP代码中的…...
【人工智障生成日记1】从零开始训练本地小语言模型
🎯 从零开始训练本地小语言模型:MiniGPT TinyStories(4090Ti) 🧭 项目背景 本项目旨在以学习为目的,从头构建一个完整的本地语言模型训练管线。目标是: ✅ 不依赖外部云计算✅ 完全本地运行…...
技术分享:大数据挖掘平台架构设计与行业应用实践
在数字化转型浪潮下,企业数据规模呈指数级增长。如何构建高效的数据挖掘体系,实现数据价值变现,成为技术团队面临的重要课题。本文将深入探讨大数据挖掘平台的核心架构、关键技术及行业应用实践。 一、平台架构设计 1. 数据采集层 支持多源异…...
线性Wi-Fi FEM被卷死,非线性FEM是未来?
在跑了一圈路由器客户之后,我的内心反而平静下来,被卷死的不只是Wi-Fi FEM赛道,还有家用路由器市场。 尽管路由器市场比较惨淡,不过客户还是很愿意接见我,并做更广泛的交流和探讨。一方面之前推Wi-Fi FEM的众多厂商在渐…...
OpenCV CUDA模块图像过滤------用于创建一个最小值盒式滤波器(Minimum Box Filter)函数createBoxMinFilter()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 该函数创建的是一个 最小值滤波器(Minimum Filter),它对图像中每个像素邻域内的像素值取最小值。常用于&…...
【MySQL】06.MySQL表的增删查改
1. insert 我们先创建一个表结构,这部分操作我们使用这张表完成我们的操作: mysql> create table student(-> id int primary key auto_increment,-> name varchar(20) not null,-> qq varchar(20) unique-> ); Query OK, 0 rows affec…...
MySQL 索引失效及其解决办法
一、前言 在数据库优化中,索引(Index)是一项至关重要的技术手段,可以显著提升查询性能。然而,在实际开发过程中,MySQL 索引并不总是如预期生效。本文将从原理出发,系统地介绍索引失效的常见场景及其解决方案,帮助开发者有效规避性能陷阱。 二、索引基础回顾 MySQL 支…...
在线时间戳(Unix TimeStamp)转换器
做了一个在线时间戳转换器,简单、好用,提供多种日期格式。 移动端友好。 目标是做一套在线工具集,时间戳转换只是第一步。 欢迎试用...
flutter 项目调试、flutter run --debug调试模式 devtools界面说明
Flutter DevTools 网页界面说明 1. 顶部导航栏 Inspector:查看和调试 Widget 树,实时定位 UI 问题。Performance-- 性能分析面板,查看帧率、CPU 和 GPU 使用情况,识别卡顿和性能瓶颈。Memory-- 内存使用和对象分配分析ÿ…...
Qt C++实现马的遍历问题
在这个项目中,我们面对的是一个基于中国象棋的马的遍历问题,使用了C++编程语言,并结合了Qt5库来实现图形界面和棋盘的绘制。以下是这个项目涉及的关键知识点: 马的移动规则:马在象棋中具有独特的“日”字形移动方式,即每次可以向前、后、左或右移动一格,然后在同一行或同…...
web第六次课后作业--使用ApiFox实现请求响应操作
一、实体参数 1.1 简单实体参数 1.2 复杂实体对象 如果请求参数比较多,通过上述的方式一个参数一个参数的接收会比较繁琐。此时,我们可以考虑将请求参数封装到一个实体类对象中。 要想完成数据封装,需要遵守如下规则:请求参数名…...
第十周作业
一、CSRF 1、DVWA-High等级 2、使用Burp生成CSRF利用POC并实现攻击 二、SSRF:file_get_content实验,要求获取ssrf.php的源码 三、RCE 1、 ThinkPHP 2、 Weblogic 3、Shiro...
Excel合并单元格后,如何自动批量生成序号列
1.选择整列 2.组合键:CtrlG 3.定位条件,选择“空值” 4.在第一个框中输入“MAX(”,鼠标选中A1框,后加“:”,鼠标选中前方“A1”,按“F4”绝对引用,补全右括号,后输入“1…...
数据结构 -- B树和B+树
B树 B树 5叉查找树 最少1个关键字,2个分叉 最多4个关键字,5个分叉 如何保证查找效率 (1)eg.对于5叉排序树,规定除了根节点外,任意结点都至少有3个分叉,2个关键字 (若每个结点内关…...
el-table高度自适应、数据查询后高度展示错误问题
在很多场景中我们需要实现表格的高度自适应,即不同屏幕大小下需要使用不同的高度来设置表格,那么我们应该如何实现呢? 1.el-table实现高度自适应 通过以下代码可以实现表格根据屏幕进行自适应 设置表格的高度 <el-table ref"tableD…...
unittest
1.什么是unittest? unittest是Python自带的一个单元测试框架, 它可以做单元测试, 也能用于编写和运行重复的测试工作。它给自动化测试用例开发和执行提供了丰富的断言方法, 判断测试用例是否通过, 并最终生成测试结果. 2.unittest组成 2.1 TestCase TestCase即测试…...
【Linux学习笔记】ext2文件系统的深度剖析
【Linux学习笔记】ext2文件系统的深度剖析 🔥个人主页:大白的编程日记 🔥专栏:Linux学习笔记 文章目录 【Linux学习笔记】ext2文件系统的深度剖析前言一.ext2文件系统1.1宏观认识 二. Block Group三. 块组内部构成3.1 超级块&am…...
Vue 3 官方 Hooks 的用法与实现原理
Vue 3 引入了 Composition API,使得生命周期钩子(hooks)在函数式风格中更清晰地表达。本篇文章将从官方 hooks 的使用、实现原理以及自定义 hooks 的结构化思路出发,全面理解 Vue 3 的 hooks 系统。 📘 1. Vue 3 官方生…...
通过现代数学语言重构《道德经》核心概念体系,形成一个兼具形式化与启发性的理论框架
以下是对《道德经》的数学转述尝试,通过现代数学语言重构其核心概念,形成一个兼具形式化与启发性的理论框架: 0. 基础公理体系 定义: 《道德经》是一个动态宇宙模型 U(D,V,Φ),其中: D 为“道”的无限维…...
openai-whisper-asr-webservice接入dify
openai-whisper-asr-webservice提供的asr的api其实并不兼容openai的api,所以在dify中是不能直接添加到语音转文字的模型中,对比了下两个api的传参情况,其实只要改动一处,就能支持: openai兼容的asr调用中formdata中音频…...
曾经在知乎上看到一个回答:“入职做FPGA,后续是否还可以转数字IC设计?”
曾经在知乎上看到一个回答:“入职做FPGA,后续是否还可以转数字IC设计?” 对比FPGA的行业薪资水平,数字IC行业中的一些基础性岗位薪资比FPGA要高一些。 除了薪资之外,更多FPGA开发者考虑转向数字IC设计的原因如下&…...
第4周_作业题_逐步构建你的深度神经网络
文章目录 ***逐步构建你的深度神经网络***0. 背景0.1 要解决的问题0.2 作业大纲0.3 构建深层神经网络步骤 1. 导入包2. 初始化参数2.1 2层神经网络2.2 L层神经网络 3. 前项传播函数3.1 前项传播步骤3.2 线性前向3.3 线性激活部分3.4 L层前项传播模型3.5 计算成本 4. 反向传播模…...
Linux 搭建FTP服务器(vsftpd)
搭建FTP服务器(vsftpd): 文章目录 搭建FTP服务器(vsftpd):配置镜像安装vsftpd配置vsftpd关闭SELinux:配置防火墙启动vsfptd服务并设置开机自启创建FTP用户测试windows中测试Linux测试下载get/mget上传put/mput删除文件delete 搭建SCP服务器(基…...
AWS中国区中API Gateway中403的AccessDeniedException问题
问题 在互联网使用API Gateway的域名访问接口,出现403问题AccessDeniedException。具体如下: 前提 这里API Gateway相关配置都没有问题。而且,vpc内网都能访问被代理的服务。这里api gateway不需要使用自定义域名。 解决 向客服发个工单…...
计量单片机 RN8302:特性、使用与应用
在现代电力监测与能源管理领域,精确的电能计量至关重要。计量单片机 RN8302 作为一款高性能的电能计量芯片,凭借其卓越的特性与功能,在众多应用场景中发挥着关键作用。本文将全面深入地介绍 RN8302 的各项特性、使用方法、注意事项以及广泛的…...
Flutter生物识别认证之Flutter指纹认证Flutter人脸认证
Flutter介绍: Flutter是谷歌开发的开源UI软件开发工具包,用于高效构建跨平台的应用程序,支持iOS、Android、Web、Windows、macOS和Linux。它使用Dart语言编写,提供了丰富的组件和工具,使开发者能够创建高质量、高性能…...
了解Android studio 初学者零基础推荐(2)
在kotlin中编写条件语句 if条件语句 fun main() {val trafficLight "gray"if (trafficLight "red") {println("Stop!")} else if (trafficLight "green") {println("go!")} else if (trafficLight "yellow")…...
【Java Web】1.Maven
📘博客主页:程序员葵安 🫶感谢大家点赞👍🏻收藏⭐评论✍🏻 文章目录 一、初始Maven 1.1 什么是Maven 1.2 Maven的作用 二、Maven概述 2.1 Maven模型 2.2 Maven仓库 2.3 创建Maven项目 2.4 POM配置…...
【Spark集成HBase】Spark读写HBase表
Spark读写HBase表 摘要一、实验环境准备1. 技术版本2. Maven 依赖配置 二、实验步骤1. 数据准备2. HBase 表结构设计3. 代码实现3.1 数据写入 HBase(writeDataToHBase 方法)3.2 数据读取与分析(readHBaseData 方法3.3 Spark SQL 分析3.4 完整…...
【Linux】借助gcc源码修改,搜索头文件当前进展
从上图可以看出对于每次的搜索,都是从第一个目录开始搜索,图里也可以看到修改源代码所在的目录,函数,行,昨天的博客感觉对于找到的位置还是不太好。 在使用修改源代码编译的GCC,进行编译内核源代码时&#…...
jmeter登录接口生成一批token并写入csv文件
背景:大部分项目真实的业务接口都是需要token鉴权的,想对一批核心业务接口进行并发压测,必然要先生成一批token给这些接口并发循环调用。 基本的思路是这样的:一批手机号csv文件 -》登录接口循环读取csv文件并生成token -》每次…...
利用 Redis 设计高效分布式锁机制:保障操作原子性
利用 Redis 设计高效分布式锁机制:保障操作原子性 引言 在分布式系统中,多个节点可能会同时操作共享资源,导致数据不一致或竞争条件问题。因此,构建一个高效的 分布式锁机制 是保障数据完整性的重要策略。 Redis 作为一个高性能的内存数据库,因其 单线程特性 和 丰富的数…...
Redis 的速度为什么这么快
这里的速度快,Redis 的速度快是与 MySQL 等数据库相比较的,与直接操作内存数据相比,Redis 还是略有逊色。 Redis 是一个单线程模型,为什么比其他的多线程程序还要快,原因有以几点: 1、访问的对象不同 Re…...
Spring Cloud Gateway高并发限流——基于Redis实现方案解析
本文是一个基于 Spring Cloud Gateway 的分布式限流方案,使用Redis Lua实现高并发场景下的精准流量控制。该方案支持动态配置、多维度限流(API路径/IP/用户),并包含完整的代码实现和性能优化建议。 一、架构设计 #mermaid-svg-vg…...
【VScode】python初学者的有力工具
还记得23年11月,我还在欣喜Spyder像Rstudio一样方便。 但苦于打开软件打开太卡、太耗时(初始化-再加载一些东西),一度耗费了我学习的热情。 就在24年5月份,别人推荐下发现了一个更加轻量级、方便又快速的ID࿰…...
融合蛋白质语言模型和图像修复模型,麻省理工与哈佛联手提出PUPS ,实现单细胞级蛋白质定位
蛋白质亚细胞定位(subcellular localization of a protein)是指蛋白质在细胞结构中具体的定位情况, 这对蛋白质行使其生物学功能至关重要。举个简单例子,如果把细胞想象成一个庞大的企业,其中细胞核、线粒体、细胞膜等…...
火山引擎火山云带宽价格
首先,成本结构方面,火山云可能用的是高质量的带宽资源,比如BGP多线网络,这种网络能保证更好的连通性和稳定性,但成本更高。另外,如果火山云的数据中心节点分布在多个地区,尤其是海外,…...
可信计算是什么?可信逻辑:计算系统安全的形式化分析框架
参考书籍《人工智能安全 (陈左宁 主编;卢锡城 、方滨兴 副主编)》第二章内容; 相关博客:可信执行环境(TEE):保障数据安全的核心技术 文章目录 一、可信计算的逻辑学基础1.1 可信性的逻辑定义与范畴1.2 双体系架构的逻…...
大模型应用开发之Dify进阶版使用教程—react前端+django后端+dify-API制作聊天界面
Dify进阶使用教程 文章目录 Dify进阶使用教程前言一、dify-docker环境搭建及简单使用二、本篇使用API源码部署启动dify后端启动dify前端基于通义模型的智能客服机器人应用与自己项目联动实战1. 使用API进行项目与dify联动1.1 在控制台主页,点击创建访问API1.2 进入API页面,这…...
快速创建 Vue 3 项目
安装 Node.js 和 Vue CL 安装 Node.js:访问 https://nodejs.org/ 下载并安装 LTS 版本。 安装完后,在终端检查版本: node -v npm -v安装 Vue CLI(全局): npm install -g vue/cli创建 Vue 3 项目 vue cr…...
【VLNs篇】05:TGS-在无地图室外环境中使用视觉语言模型进行轨迹生成和选择
栏目内容论文标题TGS: Trajectory Generation and Selection using Vision Language Models in Mapless Outdoor Environments (TGS:在无地图室外环境中使用视觉语言模型进行轨迹生成和选择)研究问题在具有非结构化越野特征(如建筑物、草地、路缘&#x…...
【未来展望】云、AI与元宇宙的融合架构
未来展望:云、AI与元宇宙的融合架构 一、技术背景与发展:从独立演进到深度融合二、技术特点:异构协同与场景化适配三、技术细节:架构层解构与核心组件四、未来发展:技术趋势与产业机遇五、结语:硅基与碳基文明的共生演进一、技术背景与发展:从独立演进到深度融合 云计算…...
React+Taro 微信小程序做一个页面,背景图需贴手机屏幕最上边覆盖展示
话不多说 直接上图 第一步 import { getSystemInfoSync } from tarojs/taro;第二步 render() {const cardBanner getImageUrlByGlobal(member-merge-bg.png);const { safeArea, statusBarHeight } getSystemInfoSync();const NAV_BAR_HEIGHT 44;const navBarHeight NAV…...