当前位置: 首页 > news >正文

单片机-STM32部分:12、I2C

飞书文档https://x509p6c8to.feishu.cn/wiki/MsB7wLebki07eUkAZ1ec12W3nsh

一、简介

IIC协议,又称I2C协议,是由PHILP公司在80年代开发的两线式串行总线,用于连接微控制器及其外围设备,IIC属于半双工同步通信方式。

IIC是一种同步的串行通信总线协议它可以在多个设备之间传输数据。IIC总线由两根线组成:数据线(SDA)和时钟线(SCL)。它使用主从模式,其中一个设备作为主设备控制总线并向其他设备发出命令。IIC协议可以支持高速数据传输和多设备通信,但它的距离限制较短。
UART是一种异步的串行通信协议,它用于在两个设备之间传输数据。UART协议使用两根线:TX(发送)和RX(接收)。UART没有时钟线,数据传输的时序是通过发送和接收设备之间的协议约定实现的。UART协议通常用于短距离通信,例如在计算机和串口设备之间进行通信。
因此,IIC和UART协议在通信的方式、数据传输速度和距离限制等方面存在差异,根据具体的应用场景和需求选择合适的协议更为重要。

多主控(multimastering)

其中任何能够进行发送和接收的设备都可以成为主总线,一个主控能够控制信号的传输和时钟频率。当然,在任何时间点上只能有一个主控。

特征:简单性和有效性

两根线,在标准模式下,I2C总线的最大长度为5米,最大速率为100 kbit/s。在快速模式下,I2C总线的最大长度为1米,最大速率为400 kbit/s。在高速模式下,I2C总线的最大长度为0.4米,最大速率为3.4 Mbit/s。需要注意的是,总线长度的实际限制还取决于总线上的电容负载和电缆质量等因素。

IIC完成的通讯过程如下:

IIC完整的通讯过程

  1. 1、总线是空闲状态,SCL=1,SDA =1;
  2. 2、要开始传输数据了,此时SCL还是高电平,SCL=1,主机将SDA从1变成0;
  3. 3、跟哪个从机通讯,把从机的地址发出去。一般地址是8个bit(也有16个bit的),这8个bit其实真实的地址是7个bit,最后1个bit是用来表示读或者写的。1表示读,0表示写;这个过程相当于主机往SDA上发了8个bit的数据(地址也是数据啊);
  4. 4、主机发地址的过程,相当于在找从机,从机是要给应答信号的,就是ACK,你老板喊你,你也得先回答声A吧;
  5. 5、应答之后,就是要传输数据了,如果第3步中发的地址是写操作,那就由主机来控制SDA的电平变化,如果第3步中发的地址是读操作,那就由从机来控制SDA的电平变化;
  6. 6、每次8bit的数据传输完成,都要有个应答信号,谁接收数据,谁来应答
  7. 7、完事之后,在SCL高电平时,主机把SDA从低电平拉高,表示结束。

STM32中的I2C

STM32 芯片有多个 I2C 外设,它们的 I2C 通讯信号引出到不同的 GPIO 引脚上,使用时必须配置到这些指定的引脚。

SMBus(系统管理总线—System Management Bus)

SMBus总线和I2C是比较类似的,所以STM32兼容了这两种设计,一般场景比较少用SMBus,I2C则是非常多外设使用的接口,我们本节课以I2C为主,看看如何使用STM32的I2C功能。

选择为I2C功能后,会自动选择对应的IO作为I2C的IO,这里I2C是支持重映射的,我们可以根据需要手动修改。

然后,我们可以设置I2C的主从模式,这里我们设置主机模式,模式为Standard Mode,速率为100000Hz。

Master features 主模式特性

Master 为主机模式相关参数,如果是驱动触摸屏、传感器、EEPROM等外设,只需配置这里的参数。

Slave 为从机模式相关参数,如果是开发触摸屏,传感器本身,则需要配置从机参数。


 

Standard Mode:标准模式

Fast Mode:高速模式

这两种模式支持的通讯速率不同,在标准模式中,最大只能设置100KHz,作为主机时,速率大小要看从机支持的最大速率,一般来说100KHz可以满足上述的触摸屏、传感器、EEPROM的驱动。

Slave features 从模式特性

作为主机使用时,这里无需修改

Clock No Stretch Mode: 时钟没有扩展模式
IIC时钟拉伸(Clock stretching):clock stretching通过将SCL线拉低来暂停一个传输.直到释放SCL线为高电平,传输才继续进行.clock stretching是可选的,实际上大多数从设备不包括SCL驱动,所以它们不能stretch时钟.
Primary Address Length selection: 从设备地址长度 设置从设备的地址是7bit还是10bit 大部分为7bit
Dual Address Acknowledged: 双地址确认
Primary slave address:  从设备初始地址

然后就可以生成MDK工程,这里主要用的函数有四个:

 HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress,
                         uint8_t *pData, uint16_t Size, uint32_t Timeout);
功能:IIC写数据
参数:
    *hi2c 设置使用的是那个IIC 例:&hi2c1
    DevAddress 写入的地址 设置写入数据的地址 例 0xA0
    *pData 需要写入的数据
    Size 要发送的字节数
    Timeout 最大传输时间,超过传输时间将自动退出传输函数

HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress,
                        uint8_t *pData, uint16_t Size, uint32_t Timeout);
功能:IIC读一个字节
参数:
    *hi2c: 设置使用的是那个IIC 例:&hi2c1
    DevAddress: 写入的地址 设置写入数据的地址 例 0xA0
    *pDat:a 存储读取到的数据
    Size: 发送的字节数
    Timeout: 最大读取时间,超过时间将自动退出读取函数


HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress,
                  uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout);
- 功能:IIC写多个数据,该函数适用于IIC外设里面还有子地址寄存器的地址,比如E2PROM,除了
       设备地址,每个存储字节都有其对应的地址。
- 参数:
  *hi2c      设置使用的是那个IIC 例:&hi2c1
  DevAddress 写入的地址 设置写入数据的地址 例:0xA0
  MemAddress 从机寄存器地址,每写入一个字节数据,地址就会自动+1
  MemAddSize 从机寄存器地址字节长度 8位/16位
             写入数据的字节类型 8位/16位
             I2C_MEMADD_SIZE_8BIT
             I2C_MEMADD_SIZE_16BIT
  *pData     需要写入的数据的起始地址
  Size       传输数据的大小,需要发送的字节数
  Timeout    最大传输时间,超过传输时间将自动退出传输函数
- 例如:HAL_I2C_Mem_Write(&hi2c1,ADDR,i,I2C_MEMADD_SIZE_8BIT,&(I2C_Buffer_Write[i]),8,1000);

HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress,
                 uint16_t MemAddress, uint16_t MemAddSize,
                 uint8_t *pData, uint16_t Size, uint32_t Timeout)
- 功能:IIC读多个数据,该函数适用于IIC外设里面还有子地址寄存器的地址,比如E2PROM,除了
       设备地址,每个存储字节都有其对应的地址。
- 参数:
  *hi2c      设置使用的是那个IIC 例:&hi2c1
  DevAddress 读设备的地址 设置读数据的地址 例:0xA0
  MemAddress 从机寄存器地址,每读出一个字节数据,地址就会自动+1
  MemAddSize 从机寄存器地址字节长度 8位/16位
             读出数据的字节类型 8位/16位
             I2C_MEMADD_SIZE_8BIT
             I2C_MEMADD_SIZE_16BIT
  *pData     需要读出的数据的起始地址
  Size       传输数据的大小,需要读出的字节数
  Timeout    最大传输时间,超过传输时间将自动退出传输函数


如果只往某个外设中写数据,则用Master_Transmit。 
如果是外设里面还有子地址,例如我们的E2PROM,有设备地址,还有每个数据的寄存器存储地址。则用Mem_Write。
Mem_Write是2个地址,Master_Transmit只有从机地址。
HAL_I2C_Mem_Write(&hi2c1,
0xA0, 0, I2C_MEMADD_SIZE_8BIT,WriteBuffer,BufferSize, 0xff);
HAL_I2C_Mem_Read(&hi2c1,
0xA1, 0, I2C_MEMADD_SIZE_8BIT,ReadBuffer,BufferSize, 0xff);
 

EEPROM

EEPROM (Electrically Erasable Programmable read only memory)是指带电可擦可编程存储器。是一种掉电后数据不丢失的存储芯片。

https://item.szlcsc.com/320744.html

BL24C02是一个2Kbit的EEPROM, 内部含有256个字节可以存储数据,总共有32页,每页8Byte。

设备读写地址说明

其中设备地址如下,A2 A1 A0对应芯片硬件接的电平


 

如果我们把A2 A1 A0都接到GND,这时候,

写数据时,设备地址字节应该是0b1010 0000=0xA0

读数据时,设备地址字节应该是0b1010 0001=0xA1

参考飞书文档

字节写

每次写入一个Byte数据

  • 先发送起始信号
  • 发送从设备地址+写入标志数据(Wbit=0),等待应答
  • 发送写入地址,等待应答
  • 发送数据,等待应答
  • 发送结束信号。

页写

每次可以写入一页(8Byte)的数据

读字节

连续读

连续读操作可通过立即读或选择性读操作启动。在 24C02 发送完一个 8 位字节数据后,主器件产生一个应答信号来响应,告知 24C02  主器件要求更多的数据,对应每个主机产生的应答信号 24C02 将发送一个 8 位数据字节。当主器件不发送应答信号而发送停止位时结束此操作。

STM32CUBEMX开启I2C1,对应PB6 PB7

然后打开USART1用于打印日志,方便查看

注意,要勾选MicroLIB哦,否则printf打印不了数据

然后添加代码如下:

main.c/* USER CODE BEGIN Includes */
#include <stdio.h>
/* USER CODE END Includes *//* USER CODE BEGIN 0 */
#define ADDR_24LCxx_Write 0xA0
#define ADDR_24LCxx_Read 0xA1
#define BufferSize 8
uint8_t WriteBuffer[BufferSize] = {1,2,3,4,5,6,7,8};
uint8_t ReadBuffer[BufferSize] = {0};
/* USER CODE END 0 */while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */printf("start to test i2c eeprom\n");if(HAL_I2C_Mem_Write(&hi2c1, ADDR_24LCxx_Write, 0, I2C_MEMADD_SIZE_8BIT, WriteBuffer, sizeof(WriteBuffer), 0xff) == HAL_OK){printf("EEPROM 24C02 Write Test OK \r\n");}HAL_Delay(10);          /* read date from EEPROM */HAL_I2C_Mem_Read(&hi2c1, ADDR_24LCxx_Read, 0, I2C_MEMADD_SIZE_8BIT, ReadBuffer, sizeof(ReadBuffer), 0xff);for(int i = 0; i < sizeof(ReadBuffer); i++){printf("0x%02X  ",ReadBuffer[i]);}HAL_Delay(1000);}/* USER CODE END 3 *//* USER CODE BEGIN 4 */
int fputc(int ch, FILE *f)
{HAL_UART_Transmit(&huart1 , (uint8_t *)&ch, 1, 0xFFFF);return ch;
}

打印如下

温湿度传感器

温湿度传感器:CJ-GXHT3L

GXHT3L-DIS 是中科银河芯开发的新一代单芯片集成温湿度一 体传感器。

★ I2C 接口,通信速度高达 1MHz

★ 两个用户可选择的地址

★ GXHT3L 典型精度为±4%RH 和±0.5°C

★ GXHT30 典型精度为±3%RH 和±0.3°C

★ GXHT31 典型精度为±2%RH 和±0.3°C

★ 单芯片集成温湿传感器

★ 高可靠性和长期稳定性

★ 测量 0-100%范围相对湿度

★ 测量-45-130℃范围内温度

https://item.szlcsc.com/3199174.html

关于设备地址与ADDR管脚说明:

这里要注意的是,0x44指的是I2C地址的高7位,第八位为读写标志位。


 

0x44 = 0b0100 0100,把最高位去掉 = 0b100 0100

写数据时,设备地址字节应该是0b1000 1000=0x88

读数据时,设备地址字节应该是0b1000 1001=0x89

高重复率和周期转换频率,例如0x2130中,21代表每秒转换一次,30代表高重复率。

设置进入连续转换模式的命令

* USER CODE BEGIN Includes */
#include <stdio.h>
#define    GXHT3L_ADDR_WRITE    0x44<<1         //10001000
#define    GXHT3L_ADDR_READ     (0x44<<1)+1     //10001001typedef enum
{/* 软件复位命令 */SOFT_RESET_CMD = 0x30A2,   /* 加热使能/禁能命令 */PREHEAT_ENABLE_CMD = 0x306D,PREHEAT_DISENABLE_CMD = 0x3066,/* 芯片状态命令 */DEVICE_STATUS_CMD = 0xF32D,/*单次测量模式命名格式:Repeatability_CS_CMDCS:Clock stretching*/HIGH_ENABLED_CMD    = 0x2C06,MEDIUM_ENABLED_CMD  = 0x2C0D,LOW_ENABLED_CMD     = 0x2C10,HIGH_DISABLED_CMD   = 0x2400,MEDIUM_DISABLED_CMD = 0x240B,LOW_DISABLED_CMD    = 0x2416,/*周期测量模式命名格式:Repeatability_MPS_CMDMPS:measurement per second*/HIGH_0_5_CMD   = 0x2032,MEDIUM_0_5_CMD = 0x2024,LOW_0_5_CMD    = 0x202F,HIGH_1_CMD     = 0x2130,MEDIUM_1_CMD   = 0x2126,LOW_1_CMD      = 0x212D,HIGH_2_CMD     = 0x2236,MEDIUM_2_CMD   = 0x2220,LOW_2_CMD      = 0x222B,HIGH_4_CMD     = 0x2334,MEDIUM_4_CMD   = 0x2322,LOW_4_CMD      = 0x2329,HIGH_10_CMD    = 0x2737,MEDIUM_10_CMD  = 0x2721,LOW_10_CMD     = 0x272A,/* 周期测量模式读取数据命令 */READOUT_FOR_PERIODIC_MODE = 0xE000,
} GXHT3L_CMD;
/* USER CODE END Includes *//* USER CODE BEGIN 0 */
/*** @brief    向GXHT3L发送一条指令(16bit)* @param    cmd —— GXHT3L指令(在GXHT3L_MODE中枚举定义)* @retval    成功返回HAL_OK
*/
static uint8_t GXHT3L_Send_Cmd(GXHT3L_CMD cmd)
{uint8_t cmd_buffer[2];cmd_buffer[0] = cmd >> 8;cmd_buffer[1] = cmd;return HAL_I2C_Master_Transmit(&hi2c2, GXHT3L_ADDR_WRITE, (uint8_t*) cmd_buffer, 2, 0xFFFF);
}/*** @brief    复位GXHT3L* @param    none* @retval    none
*/
static void GXHT3L_Reset(void)
{GXHT3L_Send_Cmd(SOFT_RESET_CMD);HAL_Delay(20);
}void GXHT3L_Preheat_Disable(void)
{GXHT3L_Send_Cmd(PREHEAT_DISENABLE_CMD);HAL_Delay(20);
}uint8_t GXHT3L_Read_Status(uint8_t* dat)
{GXHT3L_Send_Cmd(DEVICE_STATUS_CMD);return HAL_I2C_Master_Receive(&hi2c2, GXHT3L_ADDR_READ, dat, 3, 0xFFFF);
}/*** @brief    初始化GXHT3L* @param    none* @retval    成功返回HAL_OK* @note    周期测量模式
*/
uint8_t GXHT3L_Init(void)
{return GXHT3L_Send_Cmd(MEDIUM_2_CMD);
}/*** @brief    从GXHT3L读取一次数据* @param    dat —— 存储读取数据的地址(6个字节数组)* @retval    成功 —— 返回HAL_OK
*/
uint8_t GXHT3L_Read_Dat(uint8_t* dat)
{GXHT3L_Send_Cmd(READOUT_FOR_PERIODIC_MODE);return HAL_I2C_Master_Receive(&hi2c2, GXHT3L_ADDR_READ, dat, 6, 0xFFFF);
}#define CRC8_POLYNOMIAL 0x31uint8_t CheckCrc8(uint8_t* const message, uint8_t initial_value)
{uint8_t  remainder;        //余数uint8_t  i = 0, j = 0;  //循环变量/* 初始化 */remainder = initial_value;for(j = 0; j < 2;j++){remainder ^= message[j];/* 从最高位开始依次计算  */for (i = 0; i < 8; i++){if (remainder & 0x80){remainder = (remainder << 1)^CRC8_POLYNOMIAL;}else{remainder = (remainder << 1);}}}/* 返回计算的CRC码 */return remainder;
}/*** @brief    将GXHT3L接收的6个字节数据进行CRC校验,并转换为温度值和湿度值* @param    dat  —— 存储接收数据的地址(6个字节数组)* @retval    校验成功  —— 返回0*             校验失败  —— 返回1,并设置温度值和湿度值为0
*/
uint8_t GXHT3L_Dat_To_Float(uint8_t* const dat, float* temperature, float* humidity)
{uint16_t recv_temperature = 0;uint16_t recv_humidity = 0;/* 校验温度数据和湿度数据是否接收正确 */if(CheckCrc8(dat, 0xFF) != dat[2] || CheckCrc8(&dat[3], 0xFF) != dat[5])return 1;/* 转换温度数据 */recv_temperature = ((uint16_t)dat[0]<<8)|dat[1];*temperature = -45 + 175*((float)recv_temperature/65535);/* 转换湿度数据 */recv_humidity = ((uint16_t)dat[3]<<8)|dat[4];*humidity = 100 * ((float)recv_humidity / 65535);return 0;
}/* USER CODE BEGIN 1 */uint8_t recv_dat[6] = {0};uint8_t recv_status[3] = {0};float temperature = 0.0;float humidity = 0.0;/* USER CODE END 1 *//* USER CODE BEGIN 2 */GXHT3L_Reset();if(GXHT3L_Init() == HAL_OK)printf("GXHT3L init ok.\n");elseprintf("GXHT3L init fail.\n");if(GXHT3L_Read_Status(recv_status) == HAL_OK){printf("GXHT3L Read Status ok. Status = 0x%x%x\n",recv_status[0],recv_status[1]);}elseprintf("GXHT3L Read Status fail.\n");/* USER CODE END 2 */while (1){/* USER CODE BEGIN 3 */HAL_Delay(1000);if(GXHT3L_Read_Dat(recv_dat) == HAL_OK){if(GXHT3L_Dat_To_Float(recv_dat, &temperature, &humidity)==0){printf("temperature = %f, humidity = %f\n", temperature, humidity);}else{printf("crc check fail.\n");}}else{printf("read data from GXHT3L fail.\n");}}/* USER CODE END 3 *//* USER CODE BEGIN 4 */
int fputc(int ch, FILE *f)
{HAL_UART_Transmit(&huart1 , (uint8_t *)&ch, 1, 0xFFFF);return ch;
}
/* USER CODE END 4 */

最终工程,可以参考淘宝旺旺发送的源码部分哦

相关文章:

单片机-STM32部分:12、I2C

飞书文档https://x509p6c8to.feishu.cn/wiki/MsB7wLebki07eUkAZ1ec12W3nsh 一、简介 IIC协议&#xff0c;又称I2C协议&#xff0c;是由PHILP公司在80年代开发的两线式串行总线&#xff0c;用于连接微控制器及其外围设备&#xff0c;IIC属于半双工同步通信方式。 IIC是一种同步…...

【英语笔记(四)】诠释所有16种英语时态,介绍每种时态下的动词变形!!含有所有时态的的动词变形汇总表格

1 时态的单词构成 1.1 现在 1.1.1 一般现在时态 动词原形动词原形s&#xff08;第三人称单数&#xff09; 1.1.1.1 表达事实 I eat carrots. 我吃胡萝卜&#xff1a;我是吃胡萝卜这种食物的.&#xff08;这个是事实陈述&#xff09; The rabbit eats carrots. 兔子吃胡萝卜…...

【质量管理】什么是过程?

在文章【质量管理】谁是顾客&#xff1f;什么是质量链&#xff1f;-CSDN博客 中我们了解了什么是顾客&#xff0c;顾客不仅仅是企业以外的人&#xff0c;在企业的内部我们也有大大小小的顾客。并且我们了解了什么是质量链&#xff0c;企业内部的各种供给方和客户形成了质量链。…...

效率办公新工具:PDF Reader Pro V5.0功能解析与使用体验

在日常文档处理与数字办公的场景中&#xff0c;PDF 文件依然是主流格式之一。从合同审批、项目文档、财务报表&#xff0c;到技术方案和用户手册&#xff0c;PDF 的编辑、转换、标注、归档需求始终存在。 面对这些需求&#xff0c;越来越多用户希望有一款功能完整、跨平台、智…...

Java对象内存布局和对象头

1、面试题 1&#xff09;说下JUC&#xff0c;AQS的大致流程 CAS自旋锁&#xff0c;是获取不到锁就一直自旋吗&#xff1f; 2&#xff09;CAS和synchronized区别在哪里&#xff0c;为什么CAS好&#xff0c;具体优势在哪里&#xff1f; 3&#xff09;sychro…...

Vue 跨域解决方案及其原理剖析

在现代 Web 开发中&#xff0c;跨域问题是前端开发者经常面临的挑战之一。当使用 Vue.js 构建应用时&#xff0c;跨域请求的处理尤为重要。本文将深入探讨 Vue 解决跨域的多种方法及其背后的原理&#xff0c;帮助开发者更好地理解和应对这一常见问题。 一、跨域问题概述 1. 同…...

TikTok 互动运营干货:AI 助力提升粘性

在 TikTok 运营的众多环节中&#xff0c;与用户的互动是建立紧密联系、提升账号粘性的关键所在。及时且真诚地回复评论和私信&#xff0c;能让用户切实感受到你的关注与尊重&#xff0c;从而极大地增强他们对你的好感与粘性。对于用户提出的问题&#xff0c;要以耐心、专业的态…...

Kids A-Z安卓版:儿童英语启蒙的优质选择

Kids A-Z安卓版 是一款由北美知名分级读物厂商 Learning A-Z 官方推出的英语分级学习应用&#xff0c;也被称为 Raz-Kids app。它专为 K-5 年级的学生设计&#xff0c;提供丰富的英语学习资源和互动学习体验&#xff0c;帮助孩子们在轻松愉快的环境中提升英语能力。通过动画、互…...

接口继承与扩展的使用技巧

在 TypeScript 中&#xff0c;接口继承和扩展是非常强大且灵活的功能&#xff0c;可以帮助我们更高效地管理类型和提高代码的可重用性。接口继承使得一个接口可以从另一个接口继承属性和方法&#xff0c;而接口扩展允许我们通过组合多个接口来构建更复杂的结构。这些特性使得 T…...

【React】Craco 简介

Craco 简介 Craco (Create React App Configuration Override) 是一个用于自定义 Create React App (CRA) 配置的工具&#xff0c;无需 eject&#xff08;弹出&#xff09;项目。 为什么需要 Craco Create React App 虽然提供了零配置的 React 开发体验&#xff0c;但其配置…...

HTML5中的Microdata与历史记录管理详解

Microdata 简介 Microdata 是 HTML5 引入的一种标记方式&#xff0c;用于在网页中嵌入机器可读的语义信息。通过使用 Microdata&#xff0c;开发者可以在 HTML 元素中添加特定的属性&#xff0c;以便搜索引擎和其他工具更好地理解网页内容。 Microdata 的核心属性包括 itemsc…...

UNet网络 图像分割模型学习

UNet 由Ronneberger等人于2015年提出&#xff0c;专门针对医学图像分割任务&#xff0c;解决了早期卷积网络在小样本数据下的效率问题和细节丢失难题。 一 核心创新 1.1对称编码器-解码器结构 实现上下文信息与高分辨率细节的双向融合 如图所示&#xff1a;编码器进行了4步&…...

Babel 深度解析:现代 JavaScript 开发的桥梁

1. 什么是 Babel&#xff1f; Babel 是一个 JavaScript 编译器&#xff08;又称转译器&#xff09;&#xff0c;核心使命是解决 JavaScript 的环境兼容性问题。它允许开发者使用最新的语言特性&#xff08;如 ES6、JSX、TypeScript&#xff09;&#xff0c;同时将代码转换为旧…...

MyBatis源码解读2(2.1、核心对象)

二、MyBatis的核心对象 2.1、核心对象 2.1、MappedStatement MyBatis其实是对JDBC的进一步封装&#xff0c;我们都知道JDBC有几个重要的对象&#xff1a; StatementPrepared StatementCallable StatementResultSet Statement、Prepared Statement、Callable Statement分别…...

03.three官方示例+编辑器+AI快速学习webgl_animation_multiple

本实例主要讲解内容 这个示例展示了Three.js中骨骼动画的高级应用技巧&#xff0c;重点演示了如何使用SkeletonUtils.clone()方法复制模型&#xff0c;并展示了两种不同的骨骼动画管理方式&#xff1a; 独立骨骼模式&#xff1a;每个模型拥有独立的骨骼结构&#xff0c;可播放…...

无锁秒杀系统设计:基于Java的高效实现

引言 在电商促销活动中&#xff0c;秒杀场景是非常常见的。为了确保高并发下的数据一致性、性能以及用户体验&#xff0c;本文将介绍几种不依赖 Redis 实现的无锁秒杀方案&#xff0c;并提供简化后的 Java 代码示例和架构图。 一、基于数据库乐观锁机制 ✅ 实现思路&#xf…...

MyBatis快速入门——实操

默认&#xff1a;电脑搭建好了Maven环境 本次入门实验使用的idea版本&#xff1a;ideaU2022.1 目录 一&#xff1a;前期准备工作 1. 创建一个springboot工程 2. Maven环境配置 3. 在mysql数据库中创建一个user表 4. 编写实体类User 二&#xff1a; 引入MyBatis的相关依赖…...

假如你的项目是springboot+vue怎么解决跨域问题

1. 前端代理&#xff08;开发环境推荐&#xff09; 适用场景&#xff1a;Vue 开发环境调试时&#xff0c;避免直接请求后端接口的跨域问题。 实现步骤&#xff1a; 在 Vue 项目的 vue.config.js 中配置代理&#xff1a; module.exports {devServer: {proxy: {/api: { // 代理…...

OpenResty反向代理

通过在 OpenResty 的配置文件中定义不同的 location 块&#xff0c;将匹配特定 URL 路径的请求转发到不同的后端 FastAPI 应用&#xff08;即使它们运行在不同的端口或甚至是不同的服务器/容器上&#xff09;。 核心思路&#xff1a; 多个 FastAPI 应用实例&#xff1a; 你的每…...

《Effective Python》第1章 Pythonic 思维详解——深入理解 Python 条件表达式(Conditional Expressions)

《Effective Python》第1章 Pythonic 思维详解——深入理解 Python 条件表达式&#xff08;Conditional Expressions&#xff09; 在 Python 中&#xff0c;条件表达式&#xff08;conditional expressions&#xff09;提供了一种简洁的方式来在一行中实现 if/else 的逻辑。它…...

【Typenum】 3 类型位运算(bit.rs)

一、源码 代码定义了一个类型级别的位&#xff08;bit&#xff09;系统&#xff0c;主要用于编译时的类型运算。 //! 类型级比特位实现 //! //! 这些是基础的比特位类型&#xff0c;作为本库中其他数值类型的构建基础 //! //! 已实现的**类型运算符**&#xff1a; //! //! - …...

python:trimesh 用于 STL 文件解析和 3D 操作

python&#xff1a;trimesh 是一个用于处理三维模型的库&#xff0c;支持多种格式的导入导出&#xff0c;比如STL、OBJ等&#xff0c;还包含网格操作、几何计算等功能。 Python Trimesh 库使用指南 安装依赖库 pip install trimesh Downloading trimesh-4.6.8-py3-none-any.w…...

stm32week15

stm32学习 十一.中断 2.NVIC Nested vectored interrupt controller&#xff0c;嵌套向量中断控制器&#xff0c;属于内核(M3/4/7) 中断向量表&#xff1a;定义一块固定的内存&#xff0c;以4字节对齐&#xff0c;存放各个中断服务函数程序的首地址&#xff0c;中断向量表定…...

数据库分库分表实战指南:从原理到落地

1. 为什么要分库分表&#xff1f; 1.1 单库瓶颈表现 存储瓶颈&#xff1a;单表数据超过5000万行&#xff0c;查询性能急剧下降性能瓶颈&#xff1a;单库QPS超过5000后响应延迟显著增加可用性风险&#xff1a;单点故障导致全系统不可用 1.2 突破性优势 --------------------…...

雷达工程师面试题目

雷达工程师面试题目 一、基础知识类 简述雷达的工作原理 请从电磁波的发射、传播、反射以及回波接收处理等环节,详细阐述雷达如何实现对目标的探测、定位与跟踪。 常见雷达体制及其特点 列举至少三种常见的雷达体制(如脉冲雷达、连续波雷达、相控阵雷达等),并分别说明…...

JVM-类加载子系统

最近在学习JVM&#xff0c;分模块整理一下JVM的笔记 目录 类加载子系统 一、加载 二、链接 1.验证 2.准备 3.解析 三、初始化 类加载子系统 类加载子系统负责将字节码文件加载到虚拟机中&#xff0c;我们正常编写完一个Java类并在前端编译器编译后会生成一个对应的字节码…...

从0开始学习大模型--Day06--大模型的相关网络架构

云服务器 在平时&#xff0c;我们总能听到诸如用服务器跑数据、模型&#xff0c;或者是搭建服务器之类的话&#xff0c;实际上&#xff0c;它相当于一台算力、内存、运行内存等各个方面都很强大的电脑&#xff0c;只需要我们用自己的电脑通过互联网链接他就能使用它&#xff0…...

控制LED灯设备

本章分别使用C库和系统调用的文件操作方式控制开发板的LED灯&#xff0c;展示如何在应用层通过系统提供的设备文件控制相关硬件。 本章的示例代码目录为&#xff1a;base_code/linux_app/led/sys_class_leds。 9.1. LED子系统 在Linux系统中&#xff0c;绝大多数硬件设备都有…...

Three.js + React 实战系列 - 联系方式提交表单区域 Contact 组件✨(表单绑定 + 表单验证)

对个人主页设计和实现感兴趣的朋友可以订阅我的专栏哦&#xff01;&#xff01;谢谢大家&#xff01;&#xff01;&#xff01; 在现代网页中&#xff0c;一个精致的 Contact 区域不仅仅是表单的堆砌&#xff0c;更是用户与我们建立联系的第一印象。 在本节课中&#xff0c;我…...

Python-MCPAgent开发-DeepSeek版本

Python-MCPAgent开发-DeepSeek版本 尝试Windows使用Python完成【McpServer】【McpAgent】开发&#xff0c;当前使用OpenAI-Agents框架进行开发 1-核心知识点 先完成【LLM】配置再完成【McpServer】开发再完成【Agent】开发完成【LLM】【McpServer】【Agent】请求互通 2-思路整…...

Linux:43线程封装与互斥lesson31

mmap文件映射视屏&#xff1a;待看... 目录 线程栈 代码证明&#xff1a;一个线程的数据&#xff0c;其他线程也可以访问 线程封装 简单封装,2.thread Thread.hpp Main.cc Makefile 结果&#xff1a; ​编辑 问题1&#xff1a; 问题2&#xff1a; lamba表达式 模版封…...

stm32测频率占空比最好的方案

频率检测, 方案方法很多种, 其中最快最节省资源的方法. 分享给大家. 其它的方案都试过, 问题多多. 适合单片机在工业应用中, 1MHZ以下的频率检测. 1MHZ估计也行. 但是偏差估计是变大了. 我试过很多种方案, 可以看我前面的文章. 最后发现目前这种方案最为优秀. 主要特点为不占用…...

Redis--常见数据类型List列表

目录 一、概念 二、命令 2.1 LPUSH 2.2 LPUSHX 2.3 RPUSH 2.4 RPUSHX 2.5 LRANGE 2.6 LPOP 2.7 RPOP 2.8 LINDEX 2.9 LINSERT 2.10 LLEN 2.11 阻塞版本命令 三、内部编码 一、概念 列表类型是用来存储多个有序的字符串&#xff0c;列表中的每个字符串称为元素&…...

Linux : 多线程【线程概念】

Linux &#xff1a; 多线程【线程概念】 &#xff08;一&#xff09;线程概念线程是什么用户层的线程linux中PID与LWP的关系 (二) 进程地址空间页表(三) 线程总结线程的优点线程的缺点线程异常线程用途 &#xff08;一&#xff09;线程概念 线程是什么 在一个程序里的一个执行…...

React+Springboot项目部署ESC服务器

记录一下我个人部署Linux服务器的心得 环境介绍 ESC服务器创建时默认安装LNMP&#xff0c;即Linux&#xff0c;Nginx&#xff0c;Mysql&#xff0c;Php 所以这里不讲怎么安装Nignx和Mysql 笔者使用的Linux版本为22.0.4LTS版 前端打包 运行React打包命令进行前端项目的打包…...

python-Pandas库详细教程

python-Pandas库详细教程1 定义使用方法&#xff1a; 一、导入Pandas库代码 二、DataFrame用法Pandas索引 groupby()数值计算 定义 python中特定用于数据分析、处理的模板库。 优点&#xff1a; 处理数据便捷、简单。 使用方法&#xff1a; 处理“.csv”数据&#xff1a;rea…...

力扣刷题Day 46:搜索二维矩阵 II(240)

1.题目描述 2.思路 方法1&#xff1a;分别找到搜索矩阵的右、下边界&#xff0c;然后从[0][0]位置开始遍历这部分矩阵搜索目标值。 方法2&#xff1a;学习Krahets佬的思路&#xff0c;从搜索矩阵的左下角开始遍历&#xff0c;matrix[i][j] > target时消去第i行&#xff0c…...

C++:类和对象4

一&#xff0c;日期类实现 学习建议&#xff1a; 对于计算机学习来说&#xff0c;调试十分重要&#xff0c;所以在日常学习中一定要加大代码练习&#xff0c;刷代码题和课后自己敲出课上代码例题&#xff0c;注意不要去对比正确代码或者网上找正确代码直接使用&#xff0c;一…...

【软件工程】基于机器学习的多缺陷定位

基于机器学习的多缺陷定位&#xff08;Multi-Dault Localization, MDL&#xff09;是软件工程和自动化测试领域的重要研究方向&#xff0c;旨在通过机器学习技术高效识别代码中多个潜在缺陷的位置。以下从方法、挑战、应用场景及未来方向展开分析&#xff1a; 一、核心方法 监督…...

互联网大厂Java求职面试实战:Spring Boot到微服务的技术问答解析

&#x1f4aa;&#x1f3fb; 1. Python基础专栏&#xff0c;基础知识一网打尽&#xff0c;9.9元买不了吃亏&#xff0c;买不了上当。 Python从入门到精通 &#x1f601; 2. 毕业设计专栏&#xff0c;毕业季咱们不慌忙&#xff0c;几百款毕业设计等你选。 ❤️ 3. Python爬虫专栏…...

LLMs之MCP:2025年5月2日,Anthropic 宣布 Claude 重大更新:集成功能上线,研究能力大幅提升

LLMs之MCP&#xff1a;2025年5月2日&#xff0c;Anthropic 宣布 Claude 重大更新&#xff1a;集成功能上线&#xff0c;研究能力大幅提升 导读&#xff1a;2025年5月2日&#xff0c;Anthropic 宣布 Claude 推出 Integrations 集成功能和增强型高级研究功能。Integrations 基于 …...

飞蛾扑火算法matlab实现

注意&#xff1a;此代码实现的是求目标函数最大值&#xff0c;求最小值可将适应度函数乘以-1&#xff08;框架代码已实现&#xff09;。 注意&#xff1a;此代码实现的是求目标函数最大值&#xff0c;求最小值可将适应度函数乘以-1&#xff08;框架代码已实现&#xff09;。 注…...

vector--OJ1

链接: link class Solution { public:int singleNumber(vector<int>& nums) {int ret0;for(auto a : nums){ret^a;}return ret;} };链接: link class Solution { public:vector<vector<int>> generate(int numRows) {vector<vector<int>>…...

多模态大语言模型arxiv论文略读(六十八)

Image-of-Thought Prompting for Visual Reasoning Refinement in Multimodal Large Language Models ➡️ 论文标题&#xff1a;Image-of-Thought Prompting for Visual Reasoning Refinement in Multimodal Large Language Models ➡️ 论文作者&#xff1a;Qiji Zhou, Ruoc…...

【数据库知识】Mysql进阶-高可用MHA(Master High Availability)方案

mysql高可用MHA&#xff08;Master High Availability&#xff09;方案 集群部署模式下的高可用方案一、高可用架构原理1. 核心组件2. 故障切换流程 二、详细部署步骤 (3节点集群)1. 环境准备2. 节点配置&#xff08;以 node1 为例&#xff09;3. 初始化集群4. 部署MySQL Route…...

类型别名与接口的对比与选择

在 TypeScript 中&#xff0c;类型系统是非常强大且灵活的。两种最常用的类型定义方式就是 类型别名&#xff08;type&#xff09; 和 接口&#xff08;interface&#xff09;。它们看似相似&#xff0c;实际上在用法和功能上有所不同。在本文中&#xff0c;我们将深入探讨类型…...

《Effective Python》第1章 Pythonic 思维详解——始终用括号包裹单元素元组

《Effective Python》第1章 Pythonic 思维详解——始终用括号包裹单元素元组 在 Python 编程语言中&#xff0c;元组&#xff08;tuple&#xff09;是一种不可变的数据结构&#xff0c;常用于表示一组固定的值。尽管元组的语法看似简单&#xff0c;但其中却隐藏着一些微妙的陷…...

【计算机视觉】OpenCV实战项目:ETcTI_smart_parking智能停车系统深度解析

ETcTI_smart_parking智能停车系统深度解析 1. 项目概述2. 技术原理与系统架构2.1 核心算法1) 车牌识别算法2) ETC交易验证 2.2 系统架构 3. 实战部署指南3.1 环境配置3.2 硬件部署规范3.3 系统初始化 4. 常见问题与解决方案4.1 ETC交易失败4.2 车牌识别异常4.3 系统性能瓶颈 5.…...

LintCode第807题-回文数II

描述 判断一个非负整数 n 的二进制表示是否为回文数 我们保证 0 < n < 2^32 - 1 样例1 输入: n 0 输出: True 解释: 0 的二进制表示为&#xff1a;0。 样例2 输入: n 3 输出: True 解释: 3 的二进制表示为&#xff1a;11。 样例3 输入: n 4 输出: False 解释:…...

快速傅里叶变换暴力涨点!基于时频特征融合的高创新时间序列分类模型

往期精彩内容&#xff1a; 单步预测-风速预测模型代码全家桶-CSDN博客 半天入门&#xff01;锂电池剩余寿命预测&#xff08;Python&#xff09;-CSDN博客 超强预测模型&#xff1a;二次分解-组合预测-CSDN博客 VMD CEEMDAN 二次分解&#xff0c;BiLSTM-Attention预测模型…...