快速傅里叶变换暴力涨点!基于时频特征融合的高创新时间序列分类模型
往期精彩内容:
单步预测-风速预测模型代码全家桶-CSDN博客
半天入门!锂电池剩余寿命预测(Python)-CSDN博客
超强预测模型:二次分解-组合预测-CSDN博客
VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型-CSDN博客
超强预测算法:XGBoost预测模型-CSDN博客
基于麻雀优化算法SSA的预测模型——代码全家桶-CSDN博客
VMD + CEEMDAN 二次分解,CNN-Transformer预测模型-CSDN博客
独家原创 | SCI 1区 高创新预测模型!-CSDN博客
风速预测(八)VMD-CNN-Transformer预测模型-CSDN博客
高创新 | CEEMDAN + SSA-TCN-BiLSTM-Attention预测模型-CSDN博客
VMD + CEEMDAN 二次分解,Transformer-BiGRU预测模型-CSDN博客
独家原创 | 基于TCN-SENet +BiGRU-GlobalAttention并行预测模型-CSDN博客
VMD + CEEMDAN 二次分解——创新预测模型合集-CSDN博客
独家原创 | BiTCN-BiGRU-CrossAttention融合时空特征的高创新预测模型-CSDN博客
CEEMDAN +组合预测模型(CNN-Transfromer + XGBoost)-CSDN博客
时空特征融合的BiTCN-Transformer并行预测模型-CSDN博客
独家首发 | 基于多级注意力机制的并行预测模型-CSDN博客
独家原创 | CEEMDAN-CNN-GRU-GlobalAttention + XGBoost组合预测-CSDN博客
多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合-CSDN博客
独家原创 | CEEMDAN-Transformer-BiLSTM并行 + XGBoost组合预测-CSDN博客
涨点创新 | 基于 Informer-LSTM的并行预测模型-CSDN博客
独家原创 | 基于 Informer + TCN-SENet的并行预测模型-CSDN博客
即插即用 | 时间编码+LSTM+全局注意力-CSDN博客
粉丝福利 | 再添 Seq2Seq 多步预测模型-CSDN博客
暴力涨点! | 基于 Informer+BiGRU-GlobalAttention的并行预测模型-CSDN博客
热点创新 | 基于 KANConv-GRU并行的多步预测模型-CSDN博客
重大更新!锂电池剩余寿命预测新增 CALCE 数据集_calce数据集-CSDN博客
基于 VMD滚动分解+Transformer-GRU并行的锂电池剩余寿命预测模型
Informer 预测模型合集:新增特征重要性分析!_informer模型 最小二乘 气体 浓度 监测-CSDN博客
前言
本文基于某时间序列分类任务数据集,介绍一种融合快速傅里叶变换FFT,基于时频特征融合的FFT-CNN-BiGRU-Attention创新分类模型。
注意:本模型继续加入基于 Python 的时间序列分类任务模型合集中,之前购买的同学请及时更新
1 模型简介与创新点介绍
1.1 模型简介
● 数据集:时间序列分类任务数据集
● 环境框架:python 3.9 pytorch 2.1 及其以上版本均可运行
● 使用对象:入门学习,论文需求者
● 代码保证:代码注释详细、即拿即可跑通。
● 配套文件:详细的环境配置安装教程,模型、参数讲解文档
包括完整流程数据代码处理:
数据集制作、数据加载、模型定义、参数设置、模型训练、模型测试、预测可视化、模型评估
全网最低价,入门时间序列分类最佳教程,高性价比、高质量代码,大家可以了解一下:(所有全家桶模型会不断加入新的模型进行更新!后续会逐渐提高价格,越早购买性价比越高!!!)一次购买,享受永久免费更新福利!
1.2 创新点介绍
(1)快速傅里叶变换(FFT):
FFT是一种快速计算离散傅里叶变换(DFT)的算法,用于将时间域信号转换到频域。这在时间序列分析中非常有用,因为频域特征可以揭示时间域中不明显的模式。在创新模型中,FFT用于提取时间序列的频域特征,这些特征与原始时间域特征结合使用,可以提高模型的分类性能。
(2)卷积神经网络(CNN):
在创新模型中,CNN用于提取经过FFT处理后的频域特征以及原始时间序列数据中的局部模式和特征。这些特征可以是短期的变化或某种局部一致性。
(3)双向门控循环单元(BiGRU):
GRU是一种循环神经网络(RNN)的变体,能够有效捕获序列数据中的长期依赖关系。双向GRU则通过从前向和后向两个方向处理数据,提高了对上下文的理解能力。BiGRU在这个模型中用于处理序列数据的时间依赖性,结合CNN提取的特征,能够更好地理解时间序列的动态行为。
(4)注意力机制:
注意力机制用于识别输入序列中最相关的部分,从而使模型更专注于有用的特征。这种机制在处理长序列数据时特别有用,可以帮助模型在大量信息中提取关键特征。在这个模型中,注意力机制帮助BiGRU聚焦于那些对分类任务最有影响的时间步或特征,从而提升模型的整体性能和解释能力。
FFT-CNN-BiGRU-Attention模型能够有效提取和利用时间序列数据的时域和频域特征,并通过深度学习的方法进行高效的分类任务。这种组合方法利用了每个模块的优势,使得模型在处理复杂时间序列数据时更加健壮和准确。
2 数据预处理
数据集格式为CSV文件,每一行代表一个时间序列样本,最后一列对应标签值,可以灵活替换数据集!
按照7:2:1划分训练集、验证集、测试集:
3 基于FFT-CNN-BiGRU-Attention的分类模型
3.1 定义FFT-CNN-BiGRU-Attention网络模型
3.2 设置参数,训练模型
50个epoch,准确率100%,FFT-CNN-BiGRU-Attention网络分类效果显著,模型能够充分提取时间序列数据的多尺度特征,收敛速度快,性能特别优越,效果明显。
4 模型评估与可视化
4.1 模型评估
4.2 分类可视化
(1)混淆矩阵
(2)分类标签可视化
(3)原始数据 t-SNE特征可视化
(4)模型训练后的 t-SNE特征可视化:
5 代码、数据整理如下:
点击下方卡片获取代码!
相关文章:
快速傅里叶变换暴力涨点!基于时频特征融合的高创新时间序列分类模型
往期精彩内容: 单步预测-风速预测模型代码全家桶-CSDN博客 半天入门!锂电池剩余寿命预测(Python)-CSDN博客 超强预测模型:二次分解-组合预测-CSDN博客 VMD CEEMDAN 二次分解,BiLSTM-Attention预测模型…...
股指期货的保证金交易和资金门槛是多少?
股指期货和股票交易最大的区别,就是它不用“全款买房”,而是“首付买房”——只需交一笔保证金就能撬动大额资金,但这也说明了门槛高、风险大。下面就来拆解,到底要准备多少钱才能“上车”。 一、保证金交易:用12万撬…...
spark:map 和 flatMap 的区别(Scala)
场景设定 假设有一个包含句子的 RDD: scala val rdd sc.parallelize(List("Hello World", "Hi Spark")) 目标是:将每个句子拆分成单词。 1. 用 map 的效果 代码示例 scala val resultMap rdd.map(sentence > sentence…...
判断两台设备是否在同一局域网内的具体方法
以下是判断两台设备是否在同一局域网内的具体方法: 1. 检查IP地址和子网掩码 操作步骤: Windows系统: 按 Win R 键,输入 cmd 并回车。输入 ipconfig,查看 IPv4 地址 和 子网掩码(如 192.168.1.5/255.255.2…...
cmake:test project
本文主要探讨cmake在测试和项目中的应用。 add_test add_test(NAME <name> COMMAND <command> [<arg>...] [CONFIGURATIONS <config>...] [WORKING_DIRECTORY <dir>] [COMMAND_EXPAND_LISTS]) add_test(NAME test_uni COMMAND $<TARGET_F…...
Qwen-2.5 omni
问题1 Qwen2.5-Omni的主要功能是什么? Qwen2.5-Omni的主要功能是处理和生成多种模态的数据,包括文本、图像、音频和视频。它能够同时理解和生成这些模态的信息,支持复杂的多模态任务,例如语音对话、视频理解、图像描述生成等。 …...
Problem D: 异常2
1.题目描述 检查危险品程序:生成货物类、机器类,货物类有属性name,机器类有检测的check方法,若货物名称是炸弹、毒药、刀具,则抛出异常提示。 代码如下: import java.util.Scanner; class goods{ Stri…...
AI智慧公园管理方案:用科技重塑市民的“夜游体验”
AI智慧公园管理方案:多场景智能巡检与安全防控 一、背景与痛点分析 夏季夜间,公园成为市民休闲娱乐的核心场所,但管理难度随之激增: 宠物管理失控:未牵绳宠物进入园区,随地排泄、惊扰游客,甚…...
AJAX原理
AJAX使用XHR 对象和服务器进行数据交互 XHR <p class"my-p"></p><script>const xhr new XMLHttpRequest()xhr.open(GET,http://hmajax.itheima.net/api/province)xhr.addEventListener(loadend,()>{// console.log(xhr.response)const data …...
内存泄露,如何判断是资源泄露还是堆栈泄露?
作为软件测试工程师,判断内存泄露类型对于定位和解决问题至关重要。以下是区分资源泄露和堆栈泄露的方法: 1. 基本概念区分 资源泄露(Resource Leak): 指非内存资源未正确释放,如文件句柄、数据库连接、网络套接字等 虽然不直接表现为Java堆内存增长,但会导致系统资源耗…...
无人甘蔗小车履带式底盘行走系统的研究
1.1 研究背景与意义 1.1.1 研究背景 甘蔗作为全球最重要的糖料作物之一,在农业经济领域占据着举足轻重的地位。我国是甘蔗的主要种植国家,尤其是广西、广东、云南等地,甘蔗种植面积广泛,是当地农业经济的重要支柱产业。甘蔗不仅…...
Redis设计与实现——单机Redis实现
RedisDB RedisDB的核心结构 键空间(dict*dict) 结构:哈希表(字典),键为字符串对象(SDS),值为 Redis 对象(字符串、列表、哈希等)。 功能&#x…...
ES C++客户端安装及使用
介绍 Elasticsearch , 简称 ES ,它是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful 风格接口,多数据源&…...
C++学习之STL学习
在经过前面的简单的C入门语法的学习后,我们开始接触C最重要的组成部分之一:STL 目录 STL的介绍 什么是STL STL的历史 UTF-8编码原理(了解) UTF-8编码原理 核心编码规则 规则解析 编码步骤示例 1. 确定码点范围 2. 转换为…...
【东枫科技】使用LabVIEW进行NVIDIA CUDA GPU 开发
文章目录 工具包 CuLab - LabVIEW 的 GPU 工具包特性和功能功能亮点类似 LabVIEW 的 GPU 代码开发支持的功能数值类型和维数开发系统要求授权售价 工具包 CuLab - LabVIEW 的 GPU 工具包 CuLab 是一款非常直观易用的 LabVIEW 工具包,旨在加速 Nvidia GPU 上的计算密…...
LangChain对话链:打造智能多轮对话机器人
LangChain对话链:打造智能多轮对话机器人 目录 LangChain对话链:打造智能多轮对话机器人ConversationChain 是什么核心功能与特点基本用法示例内存机制自定义提示词应用场景与其他链的结合`SequentialChain` 是什么 硬件组成: NodeMC…...
HTML12:文本框和单选框
表单元素格式 属性说明type指定元素的类型。text、password、 checkbox、 radio、submit、reset、file、hidden、image 和button,默认为textname指定表单元素的名称value元素的初始值。type为radio时必须指定一个值size指定表单元素的初始宽度。当type为text 或pas…...
JVM规范之运行时数据区域
JVM运行时数据区 前言为什么要阅读jvm规范?阅读本篇文章可以学习到啥? 正文概述JVM线程私有的运行时数据区pc(program counter) RegisterJVM StackNative Method Stack JVM线程共享的运行时数据区HeapMethod AreaRun-time constant pool 总结参考链接 前…...
LVGL(lv_btnmatrix矩阵按钮)
文章目录 🔧 1. 基本概念📌 lv\_btnmatrix 是什么? 🧱 2. 基本结构和用法✅ 创建按钮矩阵✅ 设置按钮文字 🧰 3. 设置按钮行为🔄 4. 响应按钮点击🎨 5. 自定义样式📌 6. 使用技巧&am…...
AUTOSAR图解==>AUTOSAR_TR_AIDesignPatternsCatalogue
AUTOSAR 人工智能设计模式目录 AUTOSAR传感器执行器与仲裁设计模式的深入解析与图解 目录 简介传感器和执行器模式 架构概述组件结构交互流程应用场景 多请求者或提供者之间的仲裁模式 架构概述组件结构仲裁流程应用场景 总结 1. 简介 AUTOSAR(AUTomotive Open Sy…...
英语时态--中英文对“时间”的不同理解
文章目录 中英文时间上的差异我现在正在休息一般现在时1. 经常发生的动作2. 表客观事实3. 表示现在的状态一般将来时1. will2. be going to含义1:打算在将来某时做某事含义2:某事预计要发生而且不可避免中英文时间上的差异 我现在正在休息 “我现在正在休息。”用英文怎么说…...
Linux基础开发工具一(yum/apt ,vim)
前言 Linux下,如何进行软件安装,查找,卸载 1.源代码安装 2. rpm安装方式,安装包的本质,就是把源代码在Linux下编译好,然后打包(别人把自己编译好的软件打包给你让你去安装) 上面…...
Java 线程池原理
Java 线程池是一种管理和复用线程的机制,其原理如下: 核心概念 线程池的初始化 :在创建线程池时,需要设置一些关键参数,如核心线程数(corePoolSize)、最大线程数(maximumPoolSize&am…...
AJAX 使用 和 HTTP
ajax学习 promise和 awit Node.js 和 webpack 前端工程化 Git工具 AJAX异步的JS和XML: 使用XML对象和服务器通信 在这里插入图片描述 统一资源定位符 URL HTTP 超文本传输协议 域名 资源路径 资源目录和类型 URL 查询参数 使用?表示之后的参数…...
mem0跟Memgraph交互
目录 1. 安装和设置2. 配置连接3. 使用 mem0 进行交互4. 添加和查询数据5. 代码运行结果 1. 安装和设置 首先,确保你已经安装了 Memgraph 和 mem0 库。你可以使用 pip 来安装 mem0: uv pip install "mem0ai[graph]" uv pip install langchai…...
httpclient请求出现403
问题 httpclient请求对方服务器报403,用postman是可以的 解决方案: request.setHeader( “User-Agent” ,“Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:50.0) Gecko/20100101 Firefox/50.0” ); // 设置请求头 原因: 因为没有设置为浏览器形式&#…...
验证码与登录过程逻辑学习总结
目录 前言 一、验证码与登录 二、使用步骤 1.先apipost测试一波 2.先搞验证码 3.跨域问题 4.后端走起 总结 前言 近期要做一个比较完整的demo,需要自己做一个前端登录页面,不过api接口都是现成的,一开始以为过程会很easy,…...
openai接口参数max_tokens改名max-completion-tokens?
文章目录 关于max_tokens参数max_tokens改max-completion-tokens?控制 OpenAI 模型响应的长度 关于max_tokens参数 大模型 API(比如 OpenAI、DeepSeek、Moonshot 等)都是按照“Token 数量”来计费。 控制内容:控制一次请求返回的…...
【办公类-39-07】20250511批量生成通义万相图片(七)彩色背景蝴蝶-筛选无黑无白的图片
制作了教师裁剪的拼图块后,发现如果图案上有黑色,就没法看清出凹凸角,剪起来有误差 所以黑色也要剔除 通义万相下载的彩色蝴蝶有彩色背景的图片,放弃有白色和黑色图案的图片,保留彩色图案的蝴蝶 deepseek、阿夏 20250…...
容器技术 20 年:颠覆、重构与重塑软件世界的力量
目录 容器技术发展史 虚拟化技术向容器技术转变 Docker的横空出世 容器编排技术与Kubernetes 微服务的出现与Istio 工业标准的容器运行时 容器技术与 DevOps 的深度融合 无服务架构推波助澜 展望未来发展方向 从 20 世纪硬件虚拟化的笨重,到操作系统虚拟…...
Docker 部署 - Crawl4AI 文档 (v0.5.x)
Docker 部署 - Crawl4AI 文档 (v0.5.x) 快速入门 🚀 拉取并运行基础版本: # 不带安全性的基本运行 docker pull unclecode/crawl4ai:basic docker run -p 11235:11235 unclecode/crawl4ai:basic# 带有 API 安全性启用的运行 docker run -p 11235:1123…...
在C++中,符号位是否参与位运算
在C中,符号位是否参与位运算取决于具体的运算符和数据类型。以下是详细解释: 1. 按位与(&)、按位或(|)、按位异或(^) 规则:这些运算符会处理包括符号位在内的所有二…...
【计算机网络】NAT技术、内网穿透与代理服务器全解析:原理、应用及实践
📚 博主的专栏 🐧 Linux | 🖥️ C | 📊 数据结构 | 💡C 算法 | 🅒 C 语言 | 🌐 计算机网络 上篇文章:以太网、MAC地址、MTU与ARP协议 下篇文章:五种IO模型与阻…...
redis数据结构-08(SINTER、SUNION、SDIFF、SISMEMBER)
集合运算:SINTER、SUNION、SDIFF、SISMEMBER Redis 集合是一种功能强大的数据结构,可用于存储一组唯一元素。本课基于上一课对 Redis 集合的介绍,深入探讨了使 Redis 集合如此多功能的基本集合操作: SINTER 、 SUNION 、 SDIFF 和…...
大模型都有哪些超参数
大模型的超参数是影响其训练效果、性能和泛化能力的关键设置,可分为以下几大类别并结合实际应用进行详细说明: 一、训练过程相关超参数 学习率(Learning Rate) 作用:控制参数更新的步长,直接影响收敛速度和稳定性。过高会导致震荡或过拟合,过低则收敛缓慢。调整策略:初…...
【更新至2023年】1999-2023年上市公司人工智能词频统计数据(年报词频统计)
【更新至2023年】1999-2023年上市公司人工智能词频统计数据(年报词频统计) 1、时间:1999-2023年 2、来源:上市公司年报 3、指标:股票代码、公司简称、年报标题、年份、行业名称、行业代码、全文-文本总长度、仅中英…...
通过 Azure DevOps 探索 Helm 和 Azure AKS
俗话说:“慷慨之人必昌盛;滋润他人者,必得滋润。” 如果您觉得这篇文章对您有有所帮助,请点赞,关注,转发! 前言 在不断发展的云计算世界中,应用程序的无缝部署和管理至关重要。Azu…...
Go语言标识符
文章目录 标识符的组成规则Go语言关键字预定义标识符标识符命名惯例 特殊标识符标识符访问权限控制 在Go语言中,标识符(Identifier)是用来命名变量、函数、类型、常量等程序实体的名称。 标识符的组成规则 1、必须以字母或下划线(_)开头: 字母包括Unico…...
Spring Cloud : OpenFeign(远程调用)
RestTemplate虽然比直接用HTTPClient简单的多,但是还是存在着许多的问题,比如url拼接麻烦,容易出错,并且可读性很差 public OrderDetail selectOrderById(Integer orderId){OrderDetail orderDetail orderMapper.selectOrderById…...
JVM内存结构有哪些?HashMap和HashTable的区别?
JVM内存结构 JVM内存主要分为以下几个区域: 程序计数器(Program Counter Register) 线程私有,记录当前线程执行的字节码行号指示器 唯一一个不会出现OOM的内存区域 Java虚拟机栈(Java Virtual Machine Stacks) 线程私有,生命周期与线程相…...
三维空间中的组织行为映射:MATLAB 数据插值可视化技术
在组织行为学研究中,如何直观呈现多维变量之间的关系一直是个挑战。今天我们将深入解析一段 MATLAB 代码,看看如何通过数据插值和三维可视化技术,将抽象的组织行为数据转化为直观的三维曲面图,揭示组织自尊 (OBSE)、牺牲性领导 (SSL) 与责任感知 (FO) 之间的复杂关系。 �…...
ImportError: DLL load failed: 找不到指定的程序。
查看其他博客说是缺少libssl-1_1-x64.dll 和 libcrypto-1_1-x64.dll 然后去下载放到博客说的目录下 没有用 解决不了一点 OpenSSL for Windows 64位 完整安装包 在这里 项目地址: https://gitcode.com/open-source-toolkit/eb627 注意事项 此安装包仅适用于64位Windows系…...
计算机的三个根本性基础
1. 计算机是执行输入、运算、输出的机器 从硬件上看,计算机是执行输入、运算、输出的机器,计算机的硬件由大量的IC(Integrated Circuit,集成电路)组成。 IC会在其中内部对外部输入的信息进行运算,并把运算…...
C++ Builder XE 使用DevMode设置打印机的自定义纸张,打印方向
代码功能介绍(以备以后查询):该代码片段展示了如何将TPanel控件的内容作为图像打印出来。首先,代码创建了一个与TPanel大小相同的位图,并通过BitBlt函数将TPanel的内容复制到位图中。接着,代码配置打印机,设…...