Elasticsearch太重?它的超轻量的替代品找到了!
简要介绍
在海量数据时代,快速而精准地找到所需信息至关重要。如果您正为此苦恼,或者您是 Elasticsearch 的用户,并对其资源消耗或性能有所关注,那么今天我要向您介绍一款名为 Manticore Search 的开源搜索数据库,它或许能为您带来全新的选择。
Manticore Search 起源于 2017 年,是久负盛名的 Sphinx Search 引擎的现代延续 1。但这绝非简单的版本更迭,Manticore Search 在继承了 Sphinx 优秀基因的同时,进行了大量的改进和重写,修复了数百个 Bug,几乎完全重构了代码库 1。这一切努力使其成为一个现代、快速、轻量级且功能全面的搜索数据库,尤其在全文搜索方面表现卓越 1。您可以将其视为您在数据海洋中快速定位目标的强大工具 8。
Manticore Search 的核心优势在于其速度、灵活性以及完全开源的特性。性能是 Manticore Search 开发的核心驱动力,其目标是实现极低的响应时间,这对于分析大型数据集至关重要 8。它采用 C++ 语言编写,这是一种以性能和资源效率著称的编程语言,常用于操作系统、浏览器等对性能要求极高的软件开发 1。为了能够高效处理各种规模的数据,Manticore 提供了多存储选项,支持行式存储和列式存储 4。更重要的是,Manticore Search 是一款真正的开源软件,遵循 GPLv3 许可证,这意味着您可以自由使用,并且鼓励社区参与贡献 8。
Manticore Search 的目标是成为 Elasticsearch 的一个优秀替代品,甚至在某些方面表现更胜一筹 8。开发团队正努力使其能够作为 ELK 技术栈(Elasticsearch, Logstash, Kibana)中 Elasticsearch 的直接替代品 9。为了方便用户从 Elasticsearch 迁移,Manticore Search 甚至在一定程度上模拟了 Elasticsearch 的接口 10。
对比ES的亮点
闪电般的性能:基准测试最有说服力
Manticore Search 在各种基准测试中都展现出优于 Elasticsearch 的速度 8。例如,在处理大数据集(17 亿条文档)时,Manticore 的速度据称比 Elasticsearch 快 2.83 倍到 4 倍 8。在日志分析场景下(处理 1000 万条 Nginx 日志记录),Manticore 的速度甚至可以快 10.09 倍到 29 倍 8。即使在中小型数据集(如 Hackernews 评论)上,Manticore 也显示出显著的速度优势 8。这些具体的基准测试结果有力地证明了 Manticore 在性能方面的优势。通过展示其在不同场景(大数据、日志、小数据)下的卓越表现,可以更好地体现其多功能性 8。
资源效率:少即是多
Manticore Search 的设计目标是高性价比,即使在资源有限的小型虚拟机或容器上(例如,1 核 CPU,1GB 内存),它也能高效运行并提供令人印象深刻的速度 8。一个空的 Manticore Search 实例仅占用约 40MB 的内存 9。这种较低的资源消耗可以显著降低基础设施成本 15。相比之下,Elasticsearch 以其较高的内存使用而闻名 3。因此,对于资源受限的环境,Manticore Search 更具吸引力。
关键特性对比:Manticore 的闪光点
特性 | Manticore Search | Elasticsearch |
---|---|---|
开源许可证 | GPLv3 | 双重许可 (Server Side Public License 或 Elastic License) |
原生查询语言 | SQL | DSL (JSON) |
列式存储 | 是 | 是 |
实时索引 | 是 | 是 |
向量搜索 | 是 | 是 |
SQL 支持 | 是 | SQL 插件 |
Elasticsearch 兼容性 | 部分 | 不适用 |
资源消耗 | 低 | 高 |
性能(基准测试) | 通常更快 | 因情况而异 |
易用性(初始设置) | 通常更容易 | 更复杂 |
- SQL 支持: Manticore 的原生语法是 SQL,并且支持 MySQL 协议,这使得许多开发人员感到熟悉,并允许使用现有的 MySQL 客户端 5。它还支持通过 HTTP 进行 SQL 查询 6。对于已经熟悉 SQL 的开发人员来说,强大的 SQL 支持是一个显著的优势,与 Elasticsearch 的 DSL 相比,它可能降低了学习曲线 10。
- 列式存储: Manticore 提供列式存储(通过 Manticore Columnar Library),这对于分析工作负载和大型数据集非常高效,可以提高此类用例的查询速度并降低存储需求 5。列式存储是数据分析的关键特性,Elasticsearch 在这方面也很受欢迎。Manticore 的列式存储提供了一个性能优化的替代方案 9。
- 实时索引: Manticore 支持实时索引,这意味着新添加或更新的文档可以立即被搜索到 5。实时索引对于许多现代应用程序(如电子商务和新闻门户网站)至关重要。Manticore 在这方面的能力使其成为此类用例的可行选择 11。
- 向量搜索: Manticore 内置了对向量搜索的支持,从而实现了语义和基于相似性的搜索,这对于人工智能驱动的应用程序变得越来越重要 5。向量搜索是一项前沿技术,使 Manticore 在现代人工智能和机器学习应用程序领域具有相关性,Elasticsearch 也在这个领域不断扩展 5。
- 易用性: Manticore 的目标是易于使用,即使使用默认设置也只需要最少的配置 10。这与 Elasticsearch 通常需要复杂的配置才能获得最佳性能形成对比 10。用户通常更喜欢易于设置和使用的工具,而无需进行大量的配置。这种简洁性可能是 Manticore 的一个重要优势。
- 集成: Manticore 可以与各种数据源(MySQL,PostgreSQL,CSV,XML 等)开箱即用,并且还可以与 Kibana,Grafana,Logstash 和 Beats 等工具配合使用 1。与现有基础设施和 ELK 技术栈的兼容性使得已经投资于这些技术的用户更容易采用 1。
与ELK的兼容性(部分):利用熟悉的工具
Manticore 正朝着成为 ELK 技术栈中 ‘E’ (Elasticsearch, Logstash, Kibana)的直接替代品而努力 9。它已经对 Kibana 提供了 Beta 阶段的支持,允许用户使用熟悉的界面可视化数据 9。此外,它还提供与 Elasticsearch 兼容的写入操作,从而可以使用 Logstash 和 Filebeat(版本低于 7.13)等工具进行数据摄取 6。对于希望尝试 Manticore 而又不想彻底改变现有设置的 Elasticsearch 用户来说,能够与 ELK 技术栈的部分组件集成可以提供更平滑的过渡 9。
安装方法
入门:安装 Manticore Search
Manticore Search 提供了多种安装方法,以适应不同的操作系统和偏好 5。官方软件包适用于 Ubuntu、Debian、CentOS、RHEL、Amazon Linux、Oracle Linux、Windows(通过 WSL)和 macOS 9。此外,还提供了 Docker 镜像,方便进行部署和实验 9。广泛的安装选项使得不同平台的用户都可以方便地开始使用 Manticore Search 9。
Linux 安装:APT 和 YUM 包管理
-
Debian/Ubuntu/Mint (APT):
- 使用以下命令安装 Manticore 仓库:
wget https://repo.manticoresearch.com/manticore-repo.noarch.deb
,然后执行sudo dpkg -i manticore-repo.noarch.deb
9。 - 使用以下命令更新软件包列表:
sudo apt update
9。 - 使用以下命令安装 Manticore Search 及其额外工具:
sudo apt install manticore manticore-extra
9。 - 使用以下命令启动 Manticore 服务:
sudo systemctl start manticore
32。
- 使用以下命令安装 Manticore 仓库:
-
CentOS/RHEL/Amazon/Oracle Linux (YUM):
- 使用以下命令安装 Manticore 仓库:
sudo yum install https://repo.manticoresearch.com/manticore-repo.noarch.rpm
9。 - 使用以下命令安装 Manticore Search 及其额外工具:
sudo yum install manticore manticore-extra
9。 - 使用以下命令启动 Manticore 服务:
sudo systemctl start manticore
32。
- 使用以下命令安装 Manticore 仓库:
macOS 安装:使用 Homebrew 轻松设置
- 使用以下命令安装 Manticore Search:
brew install manticoresoftware/tap/manticoresearch manticoresoftware/tap/manticore-extra
9。 - 使用以下命令启动 Manticore 服务:
brew services start manticoresearch
32。
Windows 安装:利用 WSL
- 确保您的 Windows 版本为 10 (2004 或更高版本) 或 11,并且已启用 WSL2(Windows Subsystem for Linux)32。
- 按照 Linux 安装说明进行操作(建议在 WSL 中使用 APT 方法)32。
Docker 安装:快速且隔离的部署
- 从 Docker Hub 拉取官方 Manticore Search Docker 镜像:
docker pull manticoresearch/manticore
9。 - 使用以下命令运行 Manticore 容器并映射端口:
docker run --name manticore -p 9306:9306 -p 9308:9308 -d manticoresearch/manticore
9。 - 要持久化数据,请将本地卷挂载到
/var/lib/manticore
:docker run --name manticore -v $(pwd)/data:/var/lib/manticore -p 9306:9306 -p 9308:9308 -d manticoresearch/manticore
32。 - 之后,您可以使用 MySQL 客户端通过端口 9306 连接到 Manticore,也可以通过端口 9308 使用 HTTP 连接 35。
适用场景
驱动网站和应用程序搜索:快速且相关的结果
Manticore Search 非常适合在网站和应用程序中实现高性能的全文搜索 5。诸如自动完成、模糊搜索和词干提取等功能可以增强用户体验 5。它可以高效地处理大型数据集上的复杂文本查询 24。Manticore 的速度和全面的全文搜索功能使其成为构建快速且相关的用户搜索体验的有力竞争者 5。
高效的日志管理和分析:加速故障排除
Manticore Search 非常适合管理和分析大量的日志数据 8。其列式存储针对日志数据的分析查询进行了优化 9。与 Fluentbit、Vector.dev、Logstash、Filebeat 和 Grafana 等工具的集成使其成为日志管理工作流程的强大解决方案 1。对于处理大量日志数据的用户来说,Manticore 提供了一个快速高效的 Elasticsearch 替代方案,尤其是在性能至关重要的情况下 8。
电子商务产品搜索:提升购物体验
Manticore 的实时索引和分面搜索功能对电子商务平台非常有益 5。向量搜索可用于语义产品推荐和相似性搜索 5。其速度确保客户能够快速找到他们正在寻找的产品 5。对于在线零售商来说,Manticore 提供了一个高性能且功能丰富的解决方案来驱动其产品搜索和推荐系统,从而有可能提高转化率 5。
带有向量搜索的 AI 数据库:语义和相似性搜索
Manticore Search 内置了对向量搜索的支持,使其成为存储和查询 AI 相关数据(如嵌入向量)的绝佳选择 5。这实现了语义搜索、相似性搜索、推荐和其他 AI 驱动的功能 5。它可以处理多模态 AI 数据,包括文本、图像和音频 21。随着 AI 和机器学习变得越来越普及,Manticore 的向量搜索功能使其成为 AI 应用程序的相关数据库 5。
构建专用搜索引擎:满足独特需求的灵活性
Manticore 的灵活性和高级搜索功能使其可以用于构建各种领域的专用搜索引擎,例如文档检索系统、数字图书馆、知识库等 5。其丰富的全文运算符和排名因子集提供了对搜索相关性的细粒度控制 1。Manticore 的全面功能集和灵活性使其成为解决各种超出典型 Web 搜索的特定搜索需求的通用工具 5。
总结
Manticore Search 是一款快速、轻量级且开源的搜索数据库,它起源于备受推崇的 Sphinx Search 引擎 1。在各种场景下,它都比 Elasticsearch 展现出显著的性能优势,同时更节省资源,并且可能更具成本效益 8。凭借对 SQL、列式存储、实时索引和前沿向量搜索的支持,Manticore 为各种应用程序提供了一个引人注目的替代方案 5。它与 ELK 技术栈(如 Kibana 和 Logstash)的部分兼容性进一步简化了熟悉这些工具的用户进行迁移的过程 9。Manticore 在搜索引擎领域脱颖而出,它将性能、功能和易用性完美地结合在一起,使其成为值得考虑的 Elasticsearch 替代品 8。
无论您是构建高流量网站、管理海量日志文件、驱动电子商务平台,还是涉足 AI 驱动的搜索,Manticore Search 都能提供您所需的速度和灵活性 5。凭借适用于各种平台的简单安装选项和全面的文档,开始使用 Manticore Search 非常简单 5。我们鼓励您探索官方网站和文档 5,并在您的下一个项目中尝试 Manticore Search。您可能会对其性能提升感到惊讶!
相关文章:
Elasticsearch太重?它的超轻量的替代品找到了!
简要介绍 在海量数据时代,快速而精准地找到所需信息至关重要。如果您正为此苦恼,或者您是 Elasticsearch 的用户,并对其资源消耗或性能有所关注,那么今天我要向您介绍一款名为 Manticore Search 的开源搜索数据库,它或…...
【计算机视觉】OpenCV实战项目: Fire-Smoke-Dataset:基于OpenCV的早期火灾检测项目深度解析
Fire-Smoke-Dataset:基于OpenCV的早期火灾检测项目深度解析 在当今数字化时代,火灾检测技术的智能化发展至关重要。传统的火灾检测方法依赖于烟雾传感器或人工监控,往往存在响应延迟或误报的问题。而随着计算机视觉技术的飞速发展࿰…...
STM32--PWM--函数
TIM_OCInitTypeDef TIM_OCInitTypeDef 是 STM32 标准外设库中用于配置定时器输出比较(Output Compare, OC)功能的结构体,主要用于 PWM 生成、单脉冲输出等场景。 typedef struct {uint16_t TIM_OCMode; // 输出比较模式uint16_t TIM_…...
软件测试应用技术(3) -- 软件评测师(十六)
5 事件驱动架构软件测试 5.1 事件驱动架构软件测试概述 事件驱动架构,简称EDA,是常用的架构范式中的一种,其关注事件的产生、识别、处理、响应。对于事件驱动架构系统的测试应特别注意其业务逻辑处理上的异步特性导致的缺陷和事件队列处理中…...
人工智能之数学基础:二次型
本文重点 二次型作为线性代数领域的重要概念,架起了代数方程与几何分析之间的桥梁。从古典解析几何中的圆锥曲线方程到现代优化理论中的目标函数,二次型以其简洁的数学表达和丰富的结构特性,在数学物理、工程技术和经济金融等领域发挥着不可替代的作用。 二次型的基本概念…...
MongoDB 创建索引原则
MongoDB索引创建原则 MongoDB索引是提高查询性能的关键工具,以下是创建索引的核心原则和最佳实践: 一、索引基础原则 1. 索引本质:索引类似书籍目录,通过B-Tree数据结构对字段值排序存储,使查询复杂度从O(n)降为…...
空间复杂度** 与 **所需辅助空间**
当我们说一个算法的 空间复杂度是 O(1),通常特指“辅助空间”是 O(1),即:除了输入数据本身之外,算法只使用常数级别的额外空间。 ✅ 正确认解: O(1) 空间复杂度 ≈ O(1) 辅助空间 这表示: 不随输入规模增长…...
Spring Web MVC快速入门
什么是Spring Web MVC Spring Web MVC 是基于 Servlet API 构建的原始 Web 框架,从⼀开始就包含在 Spring 框架中。它的正式名称“Spring Web MVC”来⾃其源模块的名称(Spring-webmvc),但它通常被称为"Spring MVC". View(视图) 指在应⽤程序…...
RT-Thread 深入系列 Part 1:RT-Thread 全景总览
摘要: 本文将从 RTOS 演进、RT-Thread 的版本分支、内核架构、核心特性、社区与生态、以及典型产品应用等多维度,全面呈现 RT-Thread 的全景图。 关键词:RT-Thread、RTOS、微内核、组件化、软件包管理、SMP 1. RTOS 演进与 RT-Thread 定位 2…...
黄金、碳排放期货市场API接口文档
StockTV 提供了多种期货市场的数据接口,包括获取K线图表数据、查询特定期货的实时行情等。以下为对接期货市场的详细接口说明。 一、获取K线图表数据 通过调用/futures/kline接口,您可以获取指定期货合约的历史K线数据(例如开盘价、最高价、…...
SpringAI框架中的RAG知识库检索与增强生成模型详解
SpringAI框架中的RAG知识库检索与增强生成模型详解 一、RAG简介 RAG(Retrieval-Augmented Generation)可以通过检索知识库,克服大模型训练完成后参数冻结的局限性,携带知识让大模型根据知识进行回答。 二、SpringAI框架支持的R…...
LVGL- 按钮矩阵控件
1 按钮矩阵控件 lv_btnmatrix 是 LVGL(Light and Versatile Graphics Library) v8 中提供的一个非常实用的控件,用于创建带有多个按钮的矩阵布局。它常用于实现虚拟键盘、数字键盘、操作面板、选择菜单等场景,特别适用于嵌入式设…...
C++学习-入门到精通-【5】类模板array和vector、异常捕获
C学习-入门到精通-【5】类模板array和vector、异常捕获 类模板array和vector、异常捕获 C学习-入门到精通-【5】类模板array和vector、异常捕获一、array对象array对象的声明使用array对象的例子使用常量变量指定array对象的大小 二、基于范围的for语句三、利用array对象存放成…...
`待办事项css样式
vue <template> <div class"box"> <div class"head"> <h2>待办事项</h2> <input type"text" placeholder"请输入您的待办事项,按回车添加"> </div> <div class"main&q…...
spring ai alibaba 使用 SystemPromptTemplate 很方便的集成 系统提示词
系统提示词可以是.st 文件了,便于修改和维护 1提示词内容: 你是一个有用的AI助手。 你是一个帮助人们查找信息的人工智能助手。 您的名字是{name} 你应该用你的名字和{voice}的风格回复用户的请求。 每一次回答的时候都要增加一个65字以内的标题形如:【…...
Vue3 官方宣布淘汰 Axios,拥抱Alova.js
过去十年,Axios 凭借其简洁的API设计和浏览器/Node.js双环境支持,成为前端开发者的首选请求库。但随着现代前端框架的演进和工程化需求的升级,Alova.js 以更轻量、更智能、更符合现代开发范式的姿态登场。 一、Axios的痛点 1,冗余的适配逻辑,比如Axios的通用配置(但实际…...
2025年数维杯C题数据收集方式分享
2025年数维杯C题”清明时节雨纷纷,何处踏青不误春?“需要我们根据题目的要求自行数据,下图为目前已经收集到的问题一二数据集,本文将为大家详细的介绍具体收集数据方式以及处理方式。 通过网盘分享的文件:分享数据集 …...
手写 vue 源码 === ref 实现
目录 响应式的基本实现 Proxy 与属性访问器 Proxy 的工作原理 属性访问器(Getter/Setter) 为什么解构会丢失响应性 ref 和 toRefs 的解决方案 proxyRefs:自动解包 ref 总结 Vue3 的响应式系统是其核心特性之一,它通过 Pro…...
Python爬虫抓取Bilibili弹幕并生成词云
1. 引言 Bilibili(B站)是国内知名的视频分享平台,拥有海量的弹幕数据。弹幕是B站的核心特色之一,用户通过弹幕进行实时互动,这些数据对于分析视频热度、用户情感倾向等具有重要价值。 本文将介绍如何利用Python爬虫技…...
【Python 字典(Dictionary)】
Python 中的字典(Dictionary)是最强大的键值对(key-value)数据结构,用于高效存储和访问数据。以下是字典的核心知识点: 一、基础特性 键值对存储:通过唯一键(Key)快速访…...
k8s之探针
探针介绍: 编排工具运行时,虽说pod挂掉会在控制器的调度下会重启,出现pod重启的时候,但是pod状态是running,无法真实的反应当时pod健康状态,我们可以通过Kubernetes的探针监控到pod的实时状态。 Kubernetes三种探针类…...
upload-labs靶场通关详解:第三关
一、分析源代码 代码注释如下: <?php // 初始化上传状态和消息变量 $is_upload false; $msg null;// 检查是否通过POST方式提交了表单 if (isset($_POST[submit])) {// 检查上传目录是否存在if (file_exists(UPLOAD_PATH)) {// 定义禁止上传的文件扩展名列表…...
LeetCode:101、对称二叉树
递归法: /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val val; }* TreeNode(int val, TreeNode left, TreeNode right) {…...
zst-2001 历年真题 UML
UML - 第1题 ad UML - 第2题 依赖是暂时使用对象,关联是长期连接 依赖:依夜情 关联:天长地久 组合:组一辈子乐队 聚合:好聚好散 bd UML - 第3题 adc UML - 第4题 bad UML - 第5题 d UML - 第6题 …...
对称加密以及非对称加密
对称加密和非对称加密是两种不同的加密方式,它们在加密原理、密钥管理、安全性和性能等方面存在区别,以下是具体分析: 加密原理 对称加密:通信双方使用同一把密钥进行加密和解密。就像两个人共用一把钥匙,用这把钥匙锁…...
Java反射 八股版
目录 一、核心概念阐释 1. Class类 2. Constructor类 3. Method类 4. Field类 二、典型应用场景 1. 框架开发 2. 单元测试 3. JSON序列化/反序列化 三、性能考量 四、安全与访问控制 1. 安全管理器限制 2. 打破封装性 3. 安全风险 五、版本兼容性问题 六、最佳…...
C++跨平台开发实践:深入解析与常见问题处理指南
一、跨平台开发基础架构设计 1.1 跨平台架构的核心原则 分层设计模式: 平台抽象层(PAL):将平台相关代码集中管理 核心逻辑层:完全平台无关的业务代码 平台实现层:针对不同平台的特定实现 代码组织最佳实践: pro…...
【“星睿O6”AI PC开发套件评测】+ MTCNN 开源模型部署和测试对比
经过了前几篇文章的铺垫,从搭建 tensorflow 开发环境,到测试官方 onnx 模型部署到 NPU,接着部署自己的 mnist tensorflow 模型到 NPU。这是一个从易到难的过程,本篇文章介绍开源复杂的人脸识别模型 mtcnn 到 “星睿O6” NPU 的部署…...
JAVA实战开源项目:装饰工程管理系统 (Vue+SpringBoot) 附源码x
本文项目编号 T 179 ,文末自助获取源码 \color{red}{T179,文末自助获取源码} T179,文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…...
centos 7 安装 java 运行环境
centos 7 安装 java 运行环境 java -version java version "1.8.0_131" Java(TM) SE Runtime Environment (build 1.8.0_131-b11) Java HotSpot(TM) 64-Bit Server VM (build 25.131-b11, mixed mode)java -version java version "1.8.0_144" Java(TM) …...
力扣题解:21.合并两个有序链表(C语言)
将两个升序链表合并为一个新的升序链表是一个经典的链表操作问题。可以通过递归或迭代的方法来解决。以下是解释和代码实现: 递归: 每次比较两个链表的头节点,将较小的节点添加到新链表中,并递归处理剩余部分。 截至条件…...
iOS App 安全性探索:源码保护、混淆方案与逆向防护日常
iOS App 安全性探索:源码保护、混淆方案与逆向防护日常 在 iOS 开发者的日常工作中,我们总是关注功能的完整性、性能的优化和UI的细节,但常常忽视了另一个越来越重要的问题:发布后的应用安全。 尤其是对于中小团队或独立开发者&…...
SpringBoot默认并发处理(Tomcat)、项目限流详解
SpringBoot默认并发处理 在 Spring Boot 项目中,默认情况下,同一时间能处理的请求数由内嵌的 Tomcat 服务器的线程池配置决定。 默认并发处理能力 请求处理流程 请求到达:新请求首先进入 TCP 连接队列(最大 ma…...
Xterminal(或 X Terminal)通常指一类现代化的终端工具 工具介绍
Xterminal(或 X Terminal)通常指一类现代化的终端工具,旨在为开发者、运维人员提供更高效、更智能的命令行操作体验。 📢提示:文章排版原因,资源链接地址放在文章结尾👇👇ÿ…...
如何把win10 wsl的安装目录从c盘迁移到d盘
标题:如何把win10 wsl的安装目录从c盘迁移到d盘 通过microsoft store安装的 wsl 目录默认在 C:\Users[用户名]\AppData\Local\wsl 下 wsl的docker镜像以及dify的编译环境会占用大量硬盘空间,0.15.3 、1.1.3、1.3.1 三个版本的环境占用空间超过40GB [图…...
2025医疗信息化趋势:健康管理系统如何重构智慧医院生态
当北京协和医院的门诊大厅启用智能分诊机器人时,距离其3000公里外的三甲医院正通过健康管理系统将慢性病复诊率降低42%。这场静默发生的医疗革命,正在重新定义2025年智慧医院的建设标准。 一、穿透数据孤岛的三大核心引擎 最新版《智慧医院评价指标体系…...
java volatile关键字
volatile 是 Java 中用于保证多线程环境下变量可见性和禁止指令重排序的关键字。 普通变量不加volatile修饰有可见性问题,即有线程修改该变量值,其他线程无法立即感知该变量值修改了。代码: private static int intVal 0; // 普通变量未加 …...
中阳策略模型:结构节奏中的方向感知逻辑
中阳策略模型:结构节奏中的方向感知逻辑 在交易世界中,“节奏”与“结构”的互动远比大多数人想象得复杂。中阳研究团队在大量实战数据分析中提出一个核心观点:方向感的建立,必须以结构驱动为前提,以节奏确认为依据。 …...
死锁的形成
死锁的形成 背景学习资源死锁的本质 背景 面试可能会被问到. 学习资源 一个案例: https://www.bilibili.com/video/BV1pz421Y7kM 死锁的本质 互相持有对方的资源. 存在资源竞争都没有释放. 可能出现死锁. insert into demo_user (no, name) values (6, ‘test1’) on dupl…...
每天五分钟深度学习框架pytorch:视觉工具包torchvison
本文重点 在pytorch深度学习框架中,torchvision是一个非常优秀的视觉工具包,我们可以使用它加载一些著名的数据集,然后我们可以使用它来加载网络模型,比如vgg,resnet等等,还可以使用它来预处理一些图片数据,本节课程我们将学习一下它的使用方式。 torchvision的四部分…...
C++之运算符重载实例(日期类实现)
日期类实现 C 日期类的实现与深度解析一、代码结构概览1.1 头文件 Date.h1.2 源文件 Date.cpp 二、关键函数实现解析2.1 获取某月天数函数 GetMonthDay2.2 构造函数 Date2.3 日期加减法运算2.4 前置与后置自增/自减操作2.5 日期比较与差值计算 三、代码优化与注意事项3.1 代码优…...
数据分析怎么做?高效的数据分析方法有哪些?
目录 一、数据分析的对象和目的 (一)数据分析的常见对象 (二)数据分析的目的 二、数据分析怎么做? (一)明确问题 (二)收集数据 (三)清洗和…...
数组和切片的区别
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 非常期待和您一起在这个小…...
【Linux】自定义shell的编写
📝前言: 这篇文章我们来讲讲【Linux】简单自定义shell的编写,通过这个简单的模拟实现,进一步感受shell的工作原理。 🎬个人简介:努力学习ing 📋个人专栏:Linux 🎀CSDN主页…...
【C/C++】为什么要noexcept
为什么要noexcept 在C中,noexcept修饰符用于指示函数不会抛出异常 1. 性能优化 减少异常处理开销:编译器在生成代码时,若函数标记为noexcept,可以省略异常处理的相关机制(如栈展开代码),从而减…...
运用fmpeg写一个背英文单词的demo带翻译
-男生会因为不配而离开那个深爱的她吗?? 一, fmpeg-7.0.1 是做什么用的?? FFmpeg 7.0.1 是 FFmpeg 的一个版本,FFmpeg 是一个开源的多媒体框架,用于处理音视频数据。FFmpeg 提供了强大的工具和…...
Android 项目中配置了多个 maven 仓库,但依赖还是下载失败,除了使用代理,还有其他方法吗?
文章目录 前言解决方案gradlemaven 仓库 前言 我们在Android 开发的过程中,经常会遇到三方依赖下载不下来的问题。一般情况下我们会在项目的build.gradle文件中配置多个 maven 仓库来解决。 // Top-level build file where you can add configuration options com…...
vue3: pdf.js5.2.133 using typescript
npm install pdfjs-dist5.2.133 项目结构: <!--* creater: geovindu* since: 2025-05-09 21:56:20* LastAuthor: geovindu* lastTime: 2025-05-09 22:12:17* 文件相对于项目的路径: \jsstudy\vuepdfpreview\comonents\pdfjs.vue* message: geovindu* IDE: vscod…...
doxygen 生成 html 网页的一个简单步骤
假设项目源码目录是 src 那么在 src 上一级运行: doxygen -g生成 Doxyfile 随后配置 Doxyfile # 项目相关配置 PROJECT_NAME "你的项目名称" PROJECT_NUMBER "1.0" PROJECT_BRIEF "项目简短描述" …...
云原生环境下服务治理体系的构建与落地实践
📝个人主页🌹:慌ZHANG-CSDN博客 🌹🌹期待您的关注 🌹🌹 一、引言:服务治理正在从“框架能力”向“平台能力”演进 随着微服务架构逐步成熟,越来越多的企业开始向云原生迁移,Kubernetes、Service Mesh、Serverless 等新兴技术不断推动系统的基础设施演进。 与…...