【运维】构建基于Python的自动化运维平台:用Flask和Celery打造高效管理工具
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!
解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界
随着企业IT基础设施的复杂性不断增加,手动运维已无法满足高效管理的需求。本文详细介绍如何基于Python构建一个自动化运维平台,利用Flask
提供轻量级Web界面,结合Celery
实现异步任务调度。文章从环境搭建开始,逐步讲解如何设计任务管理系统、实现前端交互、调度后台任务,并处理任务结果。通过大量代码示例和中文注释,读者将学习如何集成Redis
作为消息队列、使用Bootstrap
美化界面,以及实现常见的运维功能(如服务器状态检查、批量脚本执行)。本文适合对Python有一定基础且希望深入学习自动化运维的开发者和运维工程师。通过本文,读者不仅能掌握Flask和Celery的核心使用方法,还能理解如何将这些工具应用于实际生产环境中,显著提升运维效率。
一、引言
在现代IT环境中,服务器数量和任务复杂度不断增加,传统的手动运维方式效率低下且容易出错。自动化运维平台通过代码实现任务的调度与管理,不仅提高了效率,还降低了人为失误的风险。本文将带你一步步构建一个基于Python的自动化运维平台,使用Flask
搭建Web界面,结合Celery
实现异步任务处理。我们将涵盖从环境配置到功能实现的完整过程,并提供详细的代码和注释。
二、环境准备
在开始之前,我们需要安装必要的工具和依赖。以下是所需的环境和库:
- Python 3.8+:确保已安装Python。
- Flask:轻量级Web框架,用于前端交互。
- Celery:分布式任务队列,用于异步任务处理。
- Redis:作为Celery的消息代理和结果存储。
- Bootstrap:用于美化Web界面。
运行以下命令安装依赖:
pip install flask celery redis Flask-Bootstrap
此外,需要安装并启动Redis服务。Linux用户可通过以下命令安装:
sudo apt-get install redis-server
sudo systemctl start redis
三、项目结构设计
一个清晰的项目结构是开发复杂应用的基础。以下是我们平台的目录结构:
auto_ops_platform/
├── app.py # Flask主应用文件
├── tasks.py # Celery任务定义
├── templates/ # HTML模板文件夹
│ ├── index.html # 主页模板
│ └── result.html # 任务结果页面
├── static/ # 静态文件(如CSS、JS)
└── requirements.txt # 依赖列表
四、实现核心功能
4.1 使用Flask搭建Web界面
首先,我们在app.py
中初始化Flask应用并定义基本路由。
from flask import Flask, render_template, request, jsonify
from flask_bootstrap import Bootstrap
from tasks import check_server_status # 导入Celery任务
import uuidapp = Flask(__name__)
Bootstrap(app) # 集成Bootstrap# 主页路由
@app.route('/')
def index():return render_template('index.html')# 提交任务路由
@app.route('/start_task', methods=['POST'])
def start_task():server_ip = request.form.get('server_ip') # 获取用户输入的服务器IPtask = check_server_status.delay(server_ip) # 异步调用Celery任务return jsonify({'task_id': task.id}) # 返回任务ID# 查询任务状态路由
@app.route('/task_status/<task_id>')
def task_status(task_id):task = check_server_status.AsyncResult(task_id)if task.state == 'PENDING':response = {'state': 'PENDING', 'status': '任务正在等待...'}elif task.state == 'SUCCESS':response = {'state': 'SUCCESS', 'result': task.result}else:response = {'state': task.state, 'status': '任务失败'}return jsonify(response)if __name__ == '__main__':app.run(debug=True, host='0.0.0.0', port=5000)
代码解释:
@app.route('/')
:定义主页路由,渲染index.html
。/start_task
:接收前端提交的服务器IP,调用Celery任务并返回任务ID。/task_status/<task_id>
:根据任务ID查询任务状态,返回JSON格式的结果。
4.2 配置Celery
在tasks.py
中定义任务逻辑并配置Celery。
from celery import Celery
import s
相关文章:
【运维】构建基于Python的自动化运维平台:用Flask和Celery打造高效管理工具
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 随着企业IT基础设施的复杂性不断增加,手动运维已无法满足高效管理的需求。本文详细介绍如何基于Python构建一个自动化运维平台,利用Flask…...
ES6入门---第三单元 模块三:async、await
async function fn(){ //表示异步:这个函数里面有异步任务 let result await xxx //表示后面结果需要等待 } 读取文件里数据实例: const fs require(fs);//简单封装 fs封装成一个promise const readFile function (fileName){return…...
洛谷 P2866 [USACO06NOV] Bad Hair Day S
题目描述 农夫约翰有 N 头奶牛正在过乱头发节。 每一头牛都站在同一排面朝右,它们被从左到右依次编号为 1,2,⋯,N。编号为 i 的牛身高为 hi。第 N 头牛在最前面,而第 1 头牛在最后面。 对于第 i 头牛前面的第 j 头牛,如果 hi>hi1…...
TS 变量类型生成
TS简单类型注解 let count:number 15 let myName:string MIO let isLoading:boolean false let a:null null let b:undefined undefined let s:symbol Symbol()console.log(hello ts)TS数组类型 数组类型两种写法: 问题:数组中只能存在单一类型数…...
工业大模型:从设备诊断到工艺重构
引言 工业大模型正在引发制造业认知革命。据埃森哲研究,到2026年全球工业大模型市场规模将突破280亿美元,其中工艺优化应用占比达42%。本文将系统解析工业大模型的"预训练-领域适配-应用落地"技术路径,并通过设备健康诊断与工艺参数生成的实践案例,展示如何构建…...
【项目篇之统一内存操作】仿照RabbitMQ模拟实现消息队列
我们的操作分为两种,一种是在内存上进行统一的操作,一种是在硬盘上面操作,今天我写的文章是编写了一个MemoryDataCenter类来实现了 在内存上面的统一操作: 实现统一内存操作 如何使用内存来组织数据 创建一个类来统一管理内存上的…...
强化学习机器人模拟器——GridWorld:一个用于强化学习的 Python 环境
GridWorld 是一个为强化学习(Reinforcement Learning, RL)实验设计的多功能 Python 环境。它提供了一个可定制的二维网格,智能体(agent)需要从起始位置导航到目标位置,避开障碍物、穿越泥泞单元格并收集奖励。本篇博客将详细介绍 grid_world.py 代码中实现的 GridWorld 环…...
DeepSeek Copilot idea插件推荐
🌌 DeepSeek Copilot for IntelliJ IDEA 让 AI 成为你的编程副驾驶,极速生成单元测试 & 代码注释驱动开发! 🚀 简介 DeepSeek Copilot 是一款为 IntelliJ IDEA 打造的 AI 编程助手插件,它能够智能分析你的代码逻辑…...
vue-cropper实现图片裁剪
一、什么是vue-cropper? Vue-Cropper 是一个基于 Vue.js 的图片裁剪组件库,专为 Web 应用设计。当你在网上搜索的时候发现还有一个叫cropper的库,下面是他们的区别: 特性cropper.jsvue-cropper框架依赖纯 JavaScript&am…...
MPI,Pthreads和OpenMP等并行实验环境配置
(假设你已按照文档前面的步骤正确安装了 VMware 和 Ubuntu 20.04) 第一部分:安装 C/OpenMP/Pthreads 环境(修正后) 打开终端: 在 Ubuntu 中启动终端应用程序。 更新软件包列表: sudo ap…...
Spring AI Advisors API:AI交互的灵活增强利器
Spring AI Advisors API:AI交互的灵活增强利器 前言 在当今的软件开发领域,随着人工智能技术的飞速发展,将AI融入应用程序变得越来越普遍。Spring AI作为一个强大的框架,为开发者提供了便捷的方式来实现这一目标。其中的Advisor…...
排序功法入门指南【江湖算法笔记】
话说江湖风云变幻,各路英雄好汉行走江湖,总得有个名号排行。若问“东邪西毒南帝北丐”谁强谁弱,总得排个座次不是?这排序之道,恰似武功秘籍,练好了能号令群雄,练岔了怕是要被笑掉大牙࿰…...
Free Draft Model!Lookahead Decoding加速大语言模型解码新路径
Free Draft Model!Lookahead Decoding加速大语言模型解码新路径 大语言模型(LLMs)在当今AI领域大放异彩,但其自回归解码方式锁死了生成效率。本文将为你解读一种全新的解码算法——Lookahead Decoding,它无需Draft Mo…...
Spring AI 实战:第八章、Spring AI Tool Calling之与时俱进
引言:AI的"知识截止日期"尴尬 如果你想问大模型"明天是星期几?",猜猜TA会怎么答复你~ @GetMapping("/tools/simple/test") public String simpleTest() {return chatClient.prompt...
PyTorch数据集与数据集加载
PyTorch中的Dataset与DataLoader详解 1. Dataset基础 Dataset是PyTorch中表示数据集的抽象类,我们需要继承它并实现两个关键方法: from torch.utils.data import Datasetclass CustomDataset(Dataset):def __init__(self, data, labels):""…...
探秘 Git 底层原理:理解版本控制的基石
Git 是一款开源的分布式版本控制系统,在软件开发领域广泛应用,能有效管理项目的版本变更,Git 已经成为了版本控制的代名词。日常使用中,我们通过git commit提交代码,用git push推送变更,这些便捷操作背后&a…...
chili3d调试10 网页元素css node deepwiki 生成圆柱体 生成零件图片
.input是input的外框,.input input是input的内框 沙雕 全部input都换成textarea了 自己的方法用接口定义,把自己的方法pub出去,定义在内部拉出去只是取个值 这其实是mainwindow端pub回来的 窗口pub端把数据pub回 mainwindow端让mainwindow端…...
【计网】互联网的组成
回顾: 互联网(Internet):它是一个专有名词,是一个特定的互连网,它是指当下全球最大的、最开放的、由众多网络相互连接而形成的特定的的互连网,采用TCP/IP协议族作为通信规则。 一、互联网的组成部分 从互联网的工作方…...
Go语言接口实现面对对象的三大特征
一.知识回顾 在 Go 语言中,接口是一种强大的抽象机制,它允许我们定义一组方法签名,任何类型只要实现了这些方法,就被视为实现了该接口。接口的实现是隐式的,这意味着类型不需要显式声明它实现了某个接口,只…...
TS 字面量类型
str是string类型l str2是常量,类型是字面量类型 用途:配合联合类型确定更严谨精确的可选值利恩...
langchain中 callbacks constructor实现
目录 代码代码解释代码结构代码功能 类似例子 代码 from typing import Any, Dict, Listfrom langchain_openai import ChatOpenAI from langchain_core.callbacks import BaseCallbackHandler from langchain_core.messages import BaseMessage from langchain_core.outputs …...
小土堆pytorch--tensorboard的使用
小土堆pytorch--tensorboard的使用 小土堆pytorch--tensorboard的使用0.介绍1.使用tensorboard绘制 y x 等简单函数1.1 相应的代码1.2 对上述代码的解释1.3 可能遇到的问题1.3.1 问题1.3.2 解决方法 2.使用tensorboard加载数据集中的图片2.1 相应代码2.2 对上述代码的解释2.2.…...
从 0 到 1:使用 Jetpack Compose 和智能自动化实现高效 Android UI 开发
现代 Android UI 开发正逐步从命令式 XML 向声明式 Compose 转变。Compose 凭借其简洁、高效、易测试的特点,能够让开发者更专注于界面和业务逻辑,而不必陷入大量模板化的代码。手把手带你构建一个完整的 Todo List 应用,并演示如何借助自动化…...
学习黑客 week1周测 复盘
Day 7 – 周测 & 复盘 今天任务: 完成 10 道快测题,涵盖 Week 1 的核心知识点:《CIA 三要素》、OWASP Top 10、MITRE ATT&CK、NIST RMF、Linux 权限、TCP/IP、网络安全法、“黑客五阶段” 与风险管理。撰写 300 字周总结…...
【五一培训】Day 3
Topic 1:元学习 一、概念:learn to learn 区分少样本学习与元学习 少样本学习(Few-shot learning)是元学习的一个重要应用,它指的是机器能够在仅有少量样本的情况下,成功地学习和泛化到新任务上。在许多现…...
C++继承详讲
1.继承的概念 继承是实现代码复用的手段,它允许程序员在保持基类特性的基础上进行扩展,增加功能,这样产生新的类,称派生类。 2.继承和组合 1.继承体系下,子类对象包含父类的成员。组合体系下,子类对象包含…...
第四节:OpenCV 基础入门-第一个 OpenCV 程序:图像读取与显示
一、引言:为什么选择 OpenCV? 在计算机视觉领域,OpenCV(Open Source Computer Vision Library)是一个开源的、跨平台的计算机视觉库,广泛应用于图像处理、模式识别、机器学习等领域。它支持多种编程语言&a…...
基于PHP实现的easy管理系统
easy管理系统 2.0.1 easy管理系统 是一个多功能的 Web 管理平台,旨在简化项目管理、文件共享和协作流程。它集成了大创项目管理、在线文档生成、代码托管等多种功能,并提供了用户管理、系统设置、日志查看等后台管理能力。 ✨ 功能特性 统一管理平台:…...
ios systeam introduction
Here is an in-depth look at Apple’s iOS, from its inception to its latest major release, covering architecture, core components, security, app lifecycle, development tools, and the headline features of iOS 18. iOS began life as “iPhone OS,” unveiled alo…...
【论文阅读】LLMOPT:一种提升优化泛化能力的统一学习框架
文章目录 第一遍一、摘要二、关键词三、预知识1. 什么是优化泛化问题2. 什么是消融研究3. model alignment(模型对齐) 第二遍:了解论文论点一、研究背景与目的二、相关工作三、LLMOPT框架四、METHODOLOGY(方法论)1. 数据处理2. 学习过程3. 自…...
Prompt多版本测试指南:如何科学评估不同提示词的效果
对于现代AI开发来说,同一个需求,不同的提示表达方式往往会产生截然不同的结果。因此,如何设计、测试和优化提示词成为了一项关键技能。 本文将深入探讨Prompt多版本测试的技术方法,帮助你系统性地评估不同提示词的效果࿰…...
每日c/c++题 备战蓝桥杯(洛谷P1015 [NOIP 1999 普及组] 回文数)
洛谷P1015 [NOIP 1999 普及组] 回文数 题解 题目描述 P1015 回文数 是NOIP 1999普及组的经典模拟题。题目要求如下: 给定一个数N(十进制)和进制K(2≤K≤16),将N转换为K进制表示后,通过以下操…...
最小单调子序列的长度+联通最小乘积
因为题目ICPC是英文版,基于大家都不怎么看的懂的情况下直接给大家进行题目讲解 题目1: 题目分析: 构造一个长度为n的排列 p(里面的数是1-n),不能重复得 max(lis(p),lds(p)) 最小。 其中,lis(p)是 p 的最长递增子序…...
OpenHarmony平台驱动开发(一),ADC
OpenHarmony平台驱动开发(一) ADC 概述 功能简介 ADC(Analog to Digital Converter),即模拟-数字转换器,可将模拟信号转换成对应的数字信号,便于存储与计算等操作。除电源线和地线之外&#…...
数据结构与算法:回溯
回溯 先给出一些leetcode算法题,以后遇见了相关题目再往上增加 主要参考代码随想录 2.1、组合问题 关于去重:两种写法的性能分析 需要注意的是:使用set去重的版本相对于used数组的版本效率都要低很多,大家在leetcode上提交&#x…...
KaiwuDB X 遨博智能 | 构建智能产线监测管理新系统
01 项目背景 遨博智能作为国内协作机器人行业领军企业,深度布局制造、农业、医疗、教育、民生等场景,出货量连续四年蝉联国内第一、世界第二。随着工业自动化的蓬勃发展,遨博智能生产规模不断扩大,先后在常州、淄博等地建设完成…...
高等数学第三章---微分中值定理与导数的应用(§3.6 函数图像的描绘§3.7 曲率)
3.6 函数图像的描绘 一、曲线的渐近线 对于某些函数,其图形向无穷远处延伸时,会越来越趋近于某一条直线,这条直线被称为曲线的渐近线 (Asymptote)。 1. 定义 若曲线 y f ( x ) yf(x) yf(x) 上一点 P ( x , y ) P(x, y) P(x,y) 沿曲线趋…...
【PostgreSQL数据分析实战:从数据清洗到可视化全流程】4.2 数据类型转换(CAST函数/自定义函数)
👉 点击关注不迷路 👉 点击关注不迷路 👉 点击关注不迷路 文章大纲 PostgreSQL数据分析实战:数据清洗之数据类型转换(CAST函数/自定义函数)4.2 数据类型转换:让数据「格式正确,类型对…...
docker:制作镜像+上传镜像+拉取镜像
1.dockerfile制作镜像 示例内容: 1.创建一个index.js的文件 console.log("hello world")2.在相同目录下创建名为dockerfile的文件 FROM node:alpine COPY index.js /index.js CMD node /index.js3.构建镜像 docker build -t minterra/hello-docker . …...
信息系统监理师第二版教材模拟题第三组(含解析)
信息系统监理师模拟题第三组(30题) 监理基础理论 信息系统工程监理的性质是( ) A. 服务性、独立性、公正性、科学性 B. 强制性、营利性、行政性、技术性 C. 临时性、从属性、随意性、主观性 D. 单一性、封闭性、被动性、保守性答案:A 解析:监理具有服务性、独立性、公正…...
潮乎盲盒商城系统全开源多级分销推广海报奖品兑换试玩概率OSS云存储多端源码
一、源码描述 这是一套潮乎盲盒商城源码,仿小叮当盲盒商城,后端Laravel框架前端uniappvue,前后端数据库分离,支持四端同步数据(H5小程序等),测试环境: php7.4,mysql5.6,…...
文章记单词 | 第64篇(六级)
一,单词释义 residence [ˈrezɪdəns] n. 住宅;居住;住所;居住期fling [flɪŋ] v. (用力地)扔,掷,抛;猛动(身体或身体部位);急冲&a…...
数据同步实战篇
文章目录 数据同步实战篇1. mysql数据同步1.1 mysql集群部署1.2 数据同步1.2.1 同步复制1.2.2 异步复制1.2.3 半同步复制 2. redis数据同步2.1 redis集群部署2.2 数据同步 3. mq数据同步3.1 mq集群部署3.2 数据同步 4. es数据同步4.1 es集群部署4.2 数据同步 数据同步实战篇 数…...
具身系列——Double DQN算法实现CartPole游戏(强化学习)
完整代码参考: rl/ddqn_cartpole.py 陈先生/ailib - Gitee.com 部分训练得分: Model saved to ./output/best_model.pth New best model saved with average reward: 9.6 Episode: 0 | Train Reward: 25.0 | Epsilon: 0.995 | Best Eval Avg: 9.6…...
以下是在 Ubuntu 上的几款PDF 阅读器,涵盖轻量级、功能丰富和特色工具:
默认工具:Evince(GNOME 文档查看器) 特点:Ubuntu 预装,轻量快速,支持基本标注和书签。 安装:已预装,或手动安装: sudo apt install evince功能全面:Okular&…...
有关水下图像增强的论文
4.21 TEBCF:Real-World Underwater Image Texture Enhancement Model Based on Blurriness and Color Fusion 基于模糊和颜色融合的现实水下图像纹理增强模型 2022年的一篇文章,基于传统方法,基于不同的色彩方法构建了两个新的融合输入。一…...
Raycaster光线投射
Raycaster光线投射 3D虚拟工厂在线体验 描述 光线投射Raycaster,用于进行raycasting(光线投射)。 光线投射用于进行鼠标拾取(在三维空间中计算出鼠标移过了什么物体)。 构造器 Raycaster( origin : Vector3, dire…...
javaEE——单例模式
目录 前言1.概念2. 实现3. 比较和改进总结 前言 本篇文章来介绍单例模式,并讲述在保证线程安全的前提下,单例模式的写法。 1.概念 单例模式是一种设计模式,可以说是写代码的一种模板,如果在一些固定的场景下按照设计模式进行写…...
WSL在D盘安装Ubuntu
目录 前提条件步骤一:查看可用的Linux发行版步骤二:安装Ubuntu 22.04步骤三:导出已安装的Ubuntu到D盘步骤四:注销当前Ubuntu安装步骤五:在D盘导入Ubuntu启动Ubuntu 前提条件 Windows 10或Windows 11系统已启用WSL功能…...
Java并发编程-多线程基础(三)
文章目录 线程间通信线程间通信的核心问题volatile 关键字1. 核心特性2. 使用限制3. 示例 synchronized 关键字1. 核心特性2. 示例 volatile 与 synchronized 的对比Volatile 和 Synchronized 最佳实践 线程间通信 线程间通信的核心问题 多个线程通过共享内存实现信息交换&am…...