MySQL 索引(B+树)详解
MySQL 索引(B+树)详解
- MySQL逻辑架构
- 对比InnoDB与MyISAM
- 存储结构
- 存储空间
- 可移植性、备份及恢复
- 事务支持
- AUTO_INCREMENT
- 表锁差异
- 全文索引
- 表主键
- 表的具体行数
- CRUD操作
- 外键
- sql优化简介
- 什么情况下进行sql优化
- sql语句执行过程
- sql优化就是优化索引
- 索引
- 索引的优势
- 索引的弊端
- 索引的分类
- 创建索引
- MySQL索引原理 -> `B+树`
- B+Tree相对于B-Tree有几点不同
- 聚簇索引与非聚簇索引
- 聚簇索引
- 非聚簇索引
- 如何触发联合索引
- 对user表建立联合索引username、password
- 触发联合索引
- 分析sql的执行计划---explain
- explan使用简介
- 用户表
- 部门表
- 未触发索引
- 触发索引
- 结果分析
- explain查询结果简介
MySQL逻辑架构
MySQL的存储引擎架构将查询处理与数据的存储/提取相分离,和其他数据库相比,MySQL有点与众不同,主要体现在存储引擎的架构上,这种架构可以根据业务的需求和实际需求选择合适的存储引擎。
下面是MySQL的逻辑架构分层:
- 连接层:最上层是一些客户端和连接服务,包含本地sock通信和大多数基于客户端/服务端工具实现的类似于tcp/ip的通信。主要完成一些类似于连接处理、授权认证、及相关的安全方案。在该层上引入了线程池的概念,为通过认证安全接入的客户端提供线程。同样在该层上可以实现基于SSL的安全链接。服务器也会为安全接入的每个客户端验证它所具有的操作权限。
- 服务层:MySQL的核心服务功能层,该层是MySQL的核心,包括查询缓存,解析器,解析树,预处理器,查询优化器。主要进行查询解析、分析、查询缓存、内置函数、存储过程、触发器、视图等,select操作会先检查是否命中查询缓存,命中则直接返回缓存数据,否则解析查询并创建对应的解析树。
- 引擎层:存储引擎层,存储引擎真正的负责了MySQL中数据的存储和提取,服务器通过API与存储引擎进行通信。不同的存储引擎具有的功能不同,这样我们可以根据自己的实际需要进行选取。
- 存储层:数据存储层,主要是将数据存储在运行于裸设备的文件系统之上,并完成与存储引擎的交互。
对比InnoDB与MyISAM
存储结构
MyISAM:每个MyISAM在磁盘上存储成三个文件。分别为:表定义文件、数据文件、索引文件。第一个文件的名字以表的名字开始,扩展名指出文件类型。.frm文件存储表定义。数据文件的扩展名为.MYD (MYData)。索引文件的扩展名是.MYI (MYIndex)。
InnoDB:所有的表都保存在同一个数据文件中(也可能是多个文件,或者是独立的表空间文件),InnoDB表的大小只受限于操作系统文件的大小,一般为2GB。
存储空间
MyISAM: MyISAM支持支持三种不同的存储格式:静态表(默认,但是注意数据末尾不能有空格,会被去掉)、动态表、压缩表。当表在创建之后并导入数据之后,不会再进行修改操作,可以使用压缩表,极大的减少磁盘的空间占用。
InnoDB: 需要更多的内存和存储,它会在主内存中建立其专用的缓冲池用于高速缓冲数据和索引。
可移植性、备份及恢复
MyISAM:数据是以文件的形式存储,所以在跨平台的数据转移中会很方便。在备份和恢复时可单独针对某个表进行操作。
InnoDB:免费的方案可以是拷贝数据文件、备份 binlog,或者用 mysqldump,在数据量达到几十G的时候就相对痛苦了。
事务支持
MyISAM:强调的是性能,每次查询具有原子性,其执行数度比InnoDB类型更快,但是不提供事务支持。
InnoDB:提供事务支持事务,外部键等高级数据库功能。 具有事务(commit)、回滚(rollback)和崩溃修复能力(crash recovery capabilities)的事务安全(transaction-safe (ACID compliant))型表。
AUTO_INCREMENT
MyISAM:可以和其他字段一起建立联合索引。引擎的自动增长列必须是索引,如果是组合索引,自动增长可以不是第一列,他可以根据前面几列进行排序后递增。
InnoDB:InnoDB中必须包含只有该字段的索引。引擎的自动增长列必须是索引,如果是组合索引也必须是组合索引的第一列。
表锁差异
MyISAM: 只支持表级锁,用户在操作myisam表时,select,update,delete,insert语句都会给表自动加锁,如果加锁以后的表满足insert并发的情况下,可以在表的尾部插入新的数据。
InnoDB: 支持事务和行级锁,是innodb的最大特色。行锁大幅度提高了多用户并发操作的新能。但是InnoDB的行锁,只是在WHERE的主键是有效的,非主键的WHERE都会锁全表的。
全文索引
MyISAM:支持 FULLTEXT类型的全文索引
InnoDB:不支持FULLTEXT类型的全文索引,但是innodb可以使用sphinx插件支持全文索引,并且效果更好。
表主键
MyISAM:允许没有任何索引和主键的表存在,索引都是保存行的地址。
InnoDB:如果没有设定主键或者非空唯一索引,就会自动生成一个6字节的主键(用户不可见),数据是主索引的一部分,附加索引保存的是主索引的值。
表的具体行数
MyISAM: 保存有表的总行数,如果select count() from table;会直接取出出该值。
InnoDB: 没有保存表的总行数,如果使用select count(*) from table;就会遍历整个表,消耗相当大,但是在加了wehre条件后,myisam和innodb处理的方式都一样。
CRUD操作
MyISAM:如果执行大量的SELECT,MyISAM是更好的选择。
InnoDB:如果你的数据执行大量的INSERT或UPDATE,出于性能方面的考虑,应该使用InnoDB表。
外键
MyISAM:不支持
InnoDB:支持
sql优化简介
什么情况下进行sql优化
性能低、执行时间太长、等待时间太长、连接查询、索引失效。
sql语句执行过程
- 编写过程
select distinct ... from ... join ... on ... where ... group by ... having ... order by ... limit ...
- 解析过程
from ... on ... join ... where ... group by ... having ... select distinct ... order by ... limit ...
sql优化就是优化索引
- 索引相当于书的目录。
- 索引的数据结构是B+树。
索引
索引的优势
- 提高查询效率(降低IO使用率)
- 降低CPU使用率
比如查询order by age desc,因为B+索引树本身就是排好序的,所以再查询如果触发索引,就不用再重新查询了。
索引的弊端
- 索引本身很大,可以存放在内存或硬盘上,通常存储在硬盘上。
- 索引不是所有情况都使用,比如①少量数据②频繁变化的字段③很少使用的字段
- 索引会降低增删改的效率
索引的分类
- 单值索引
- 唯一索引
- 联合索引
- 主键索引
备注:唯一索引和主键索引唯一的区别:主键索引不能为null
创建索引
alter table user add INDEX `user_index_username_password` (`username`,`password`)
MySQL索引原理 -> B+树
MySQL索引的底层数据结构是 B+树
B+Tree是在B-Tree基础上的一种优化,使其更适合实现外存储索引结构,InnoDB存储引擎就是用B+Tree实现其索引结构。
B-Tree结构图中每个节点中不仅包含数据的key值,还有data值。而每一个页的存储空间是有限的,如果data数据较大时将会导致每个节点(即一个页)能存储的key的数量很小,当存储的数据量很大时同样会导致B-Tree的深度较大,增大查询时的磁盘I/O次数,进而影响查询效率。在B+Tree中,所有数据记录节点都是按照键值大小顺序存放在同一层的叶子节点上,而非叶子节点上只存储key值信息,这样可以大大加大每个节点存储的key值数量,降低B+Tree的高度。
B+Tree相对于B-Tree有几点不同
- 非叶子节点只存储键值信息。
- 所有叶子节点之间都有一个链指针。
- 数据记录都存放在叶子节点中。
由于B+Tree的非叶子节点只存储键值信息,假设每个磁盘块能存储4个键值及指针信息,则变成B+Tree后其结构如下图所示:
通常在B+Tree上有两个头指针,一个指向根节点,另一个指向关键字最小的叶子节点,而且所有叶子节点(即数据节点)之间是一种链式环结构。因此可以对B+Tree进行两种查找运算:一种是对于主键的范围查找和分页查找,另一种是从根节点开始,进行随机查找。
可能上面例子中只有22条数据记录,看不出B+Tree的优点,下面做一个推算:
InnoDB存储引擎中页的大小为16KB
,一般表的主键类型为INT(占用4个字节)或BIGINT
(占用8个字节),指针类型也一般为4或8个字节,也就是说一个页(B+Tree中的一个节点)中大概存储16KB/(8B+8B)=1K
个键值。也就是说一个深度为3的B+Tree索引可以维护103 * 10^3 * 10^3 = 10亿
条记录。
实际情况中每个节点可能不能填充满,因此在数据库中,B+Tree的高度一般都在24层。MySQL的InnoDB存储引擎在设计时是将根节点常驻内存的,也就是说查找某一键值的行记录时最多只需要13次磁盘I/O操作。
数据库中的B+Tree索引可以分为聚集索引(clustered index)和辅助索引(secondary index)。上面的B+Tree示例图在数据库中的实现即为聚集索引,聚集索引的B+Tree中的叶子节点存放的是整张表的行记录数据。辅助索引与聚集索引的区别在于辅助索引的叶子节点并不包含行记录的全部数据,而是存储相应行数据的聚集索引键,即主键。当通过辅助索引来查询数据时,InnoDB存储引擎会遍历辅助索引找到主键,然后再通过主键在聚集索引中找到完整的行记录数据。
聚簇索引与非聚簇索引
mysql中普遍使用B+Tree做索引,但在实现上又根据聚簇索引和非聚簇索引而不同。
聚簇索引
所谓聚簇索引,就是指主索引文件和数据文件为同一份文件,聚簇索引主要用在Innodb存储引擎中。在该索引实现方式中B+Tree的叶子节点上的data就是数据本身,key为主键,如果是一般索引的话,data便会指向对应的主索引,如下图所示:
在B+Tree的每个叶子节点增加一个指向相邻叶子节点的指针,就形成了带有顺序访问指针的B+Tree。做这个优化的目的是为了提高区间访问的性能,例如上图中如果要查询key为从18到49的所有数据记录,当找到18后,只需顺着节点和指针顺序遍历就可以一次性访问到所有数据节点,极大提到了区间查询效率。
非聚簇索引
非聚簇索引就是指B+Tree的叶子节点上的data,并不是数据本身,而是数据存放的地址。主索引和辅助索引没啥区别,只是主索引中的key一定得是唯一的。主要用在MyISAM存储引擎中,如下图:
非聚簇索引比聚簇索引多了一次读取数据的IO操作,所以查找性能上会差。
如何触发联合索引
对user表建立联合索引username、password
触发联合索引
使用联合索引的全部索引键可触发联合索引
使用联合索引的全部索引键,但是用or连接的,不可触发联合索引
单独使用联合索引的左边第一个字段时,可触发联合索引
单独使用联合索引的其它字段时,不可触发联合索引
分析sql的执行计划—explain
explain可以模拟sql优化执行sql语句。
explan使用简介
用户表
部门表
未触发索引
触发索引
结果分析
explain中第一行出现的表是驱动表。
- 指定了联接条件时,满足查询条件的记录行数少的表为[驱动表]
- 未指定联接条件时,行数少的表为[驱动表]
- 对驱动表直接进行排序就会触发索引,对非驱动表进行排序不会触发索引。
explain查询结果简介
-
id:SELECT识别符。这是SELECT的查询序列号。
-
select_type:SELECT类型:
- SIMPLE: 简单SELECT(不使用UNION或子查询)
- PRIMARY: 最外面的SELECT
- UNION:UNION中的第二个或后面的SELECT语句
- DEPENDENT UNION:UNION中的第二个或后面的SELECT语句,取决于外面的查询
- UNION RESULT:UNION的结果
- SUBQUERY:子查询中的第一个SELECT
- DEPENDENT SUBQUERY:子查询中的第一个SELECT,取决于外面的查询
- DERIVED:导出表的SELECT(FROM子句的子查询)
-
table:表名
-
type:联接类型
- system:表仅有一行(=系统表)。这是const联接类型的一个特例。
- const:表最多有一个匹配行,它将在查询开始时被读取。因为仅有一行,在这行的列值可被优化器剩余部分认为是常数。const用于用常数值比较PRIMARY KEY或UNIQUE索引的所有部分时。
- eq_ref:对于每个来自于前面的表的行组合,从该表中读取一行。这可能是最好的联接类型,除了const类型。它用在一个索引的所有部分被联接使用并且索引是UNIQUE或PRIMARY KEY。eq_ref可以用于使用= 操作符比较的带索引的列。比较值可以为常量或一个使用在该表前面所读取的表的列的表达式。
- ref:对于每个来自于前面的表的行组合,所有有匹配索引值的行将从这张表中读取。如果联接只使用键的最左边的前缀,或如果键不是UNIQUE或PRIMARY KEY(换句话说,如果联接不能基于关键字选择单个行的话),则使用ref。如果使用的键仅仅匹配少量行,该联接类型是不错的。ref可以用于使用=或<=>操作符的带索引的列。
- ref_or_null:该联接类型如同ref,但是添加了MySQL可以专门搜索包含NULL值的行。在解决子查询中经常使用该联接类型的优化。
- index_merge:该联接类型表示使用了索引合并优化方法。在这种情况下,key列包含了使用的索引的清单,key_len包含了使用的索引的最长的关键元素。
- unique_subquery:该类型替换了下面形式的IN子查询的ref:value IN (SELECT primary_key FROMsingle_table WHERE some_expr);unique_subquery是一个索引查找函数,可以完全替换子查询,效率更高。
- index_subquery:该联接类型类似于unique_subquery。可以替换IN子查询,但只适合下列形式的子查询中的非唯一索引:value IN (SELECT key_column FROM single_table WHERE some_expr)
- range:只检索给定范围的行,使用一个索引来选择行。key列显示使用了哪个索引。key_len包含所使用索引的最长关键元素。在该类型中ref列为NULL。当使用
=、<>、>、>=、<、<=、IS NULL、<=>、BETWEEN或者IN操作符
,用常量比较关键字列时,可以使用range
index:该联接类型与ALL相同,除了只有索引树被扫描。这通常比ALL快,因为索引文件通常比数据文件小。 - all:对于每个来自于先前的表的行组合,进行完整的表扫描。如果表是第一个没标记const的表,这通常不好,并且通常在它情况下很差。通常可以增加更多的索引而不要使用ALL,使得行能基于前面的表中的常数值或列值被检索出。
-
possible_keys:possible_keys列指出MySQL能使用哪个索引在该表中找到行。注意,该列完全独立于EXPLAIN输出所示的表的次序。这意味着在possible_keys中的某些键实际上不能按生成的表次序使用。
-
key:key列显示MySQL实际决定使用的键(索引)。如果没有选择索引,键是NULL。要想强制MySQL使用或忽视possible_keys列中的索引,在查询中使用FORCE INDEX、USE INDEX或者IGNORE INDEX。
-
key_len:key_len列显示MySQL决定使用的键长度。如果键是NULL,则长度为NULL。注意通过key_len值我们可以确定MySQL将实际使用一个多部关键字的几个部分。
-
ref:ref列显示使用哪个列或常数与key一起从表中选择行。
-
rows:rows列显示MySQL认为它执行查询时必须检查的行数。
-
Extra:该列包含MySQL解决查询的详细信息。
- Distinct:MySQL发现第1个匹配行后,停止为当前的行组合搜索更多的行。
- Not exists:MySQL能够对查询进行LEFT JOIN优化,发现1个匹配LEFT JOIN标准的行后,不再为前面的的行组合在该表内检查更多的行。
- range checked for each record (index map: #):MySQL没有发现好的可以使用的索引,但发现如果来自前面的表的列值已知,可能部分索引可以使用。对前面的表的每个行组合,MySQL检查是否可以使用range或index_merge访问方法来索取行。
- Using filesort:MySQL需要额外的一次传递,以找出如何按排序顺序检索行。通过根据联接类型浏览所有行并为所有匹配WHERE子句的行保存排序关键字和行的指针来完成排序。然后关键字被排序,并按排序顺序检索行。
- Using index:从只使用索引树中的信息而不需要进一步搜索读取实际的行来检索表中的列信息。当查询只使用作为单一索引一部分的列时,可以使用该策略。
- Using temporary:为了解决查询,MySQL需要创建一个临时表来容纳结果。典型情况如查询包含可以按不同情况列出列的GROUP BY和ORDER BY子句时。
- Using where:WHERE子句用于限制哪一个行匹配下一个表或发送到客户。除非你专门从表中索取或检查所有行,如果Extra值不为Using where并且表联接类型为ALL或index,查询可能会有一些错误。
- Using sort_union(…), Using union(…), Using intersect(…):这些函数说明如何为index_merge联接类型合并索引扫描。
- Using index for group-by:类似于访问表的Using index方式,Using index for group-by表示MySQL发现了一个索引,可以用来查询GROUP BY或DISTINCT查询的所有列,而不要额外搜索硬盘访问实际的表。并且,按最有效的方式使用索引,以便对于每个组,只读取少量索引条目。
通过相乘EXPLAIN输出的rows列的所有值,你能得到一个关于一个联接如何的提示。这应该粗略地告诉你MySQL必须检查多少行以执行查询。当你使用max_join_size变量限制查询时,也用这个乘积来确定执行哪个多表SELECT语句。
相关文章:
MySQL 索引(B+树)详解
MySQL 索引(B树)详解 MySQL逻辑架构对比InnoDB与MyISAM存储结构存储空间可移植性、备份及恢复事务支持AUTO_INCREMENT表锁差异全文索引表主键表的具体行数CRUD操作外键 sql优化简介什么情况下进行sql优化sql语句执行过程sql优化就是优化索引 索引索引的优…...
【不稳定的BUG】__scrt_is_managed_app()中断
【不稳定的BUG】__scrt_is_managed_app函数中断 参考问题详细的情况临时解决方案 参考 发现出现同样问题的文章: 代码运行完所有功能,仍然会中断 问题详细的情况 if (!__scrt_is_managed_app())exit(main_result);这里触发了一个断点很奇怪,这中断就发生了一次,代…...
护网蓝队日志分析
Windows日志分析 一、事件查看器 在「事件查看器」中,可以查看系统中记录的所有事件日志。操作步骤如下: 1、打开 Windows 事件查看器 1、使用Windows R快捷键打开「运行」对话框,输入eventvwr.msc,然后按回车键打开事件查看…...
滤波器设计(八)-McClellan-Parks design algorithm
步骤 Initialization: Choose an extremal set of frequences {ωi(0)}.Finite Set Approximation: Calculate the best Chebyshev approximation on the present extremal set, giving a value δ(m) for the min-max error on the present extremal set.Interpolation: Calc…...
ElasticSearch常见的索引_集群的备份与恢复方案
方案一:使用Elasticsearch的快照和恢复功能进行备份和恢复。该方案适用于集群整体备份与迁移,包括全量、增量备份和恢复。 方案二:通过reindex操作在集群内或跨集群同步数据。该方案适用于相同集群但不同索引层面的迁移,或者跨集…...
C#对Excel表csv文件的读写操作
C#对Excel表csv文件的读写 一、变量定义二、加载主窗口三、创建表头四、向表中添加数据五、从表中读取数据六、单击按钮向表中添加数据七、测试验证 一、变量定义 #region 变量定义 private string CurAppExeDir System.AppDomain.CurrentDomain.BaseDirectory; private strin…...
【MySQL】mysql服务器架构
目录 1、背景2、mysql服务器架构解释3、总结 1、背景 简单理解一下mysql的服务器架构。 2、mysql服务器架构解释 mysql的架构图如下: 主要分为三部分:客户端、服务端、存储引擎。接下来我们来解释一下各个部分: 客户端 用来连接mysql服务…...
Vue Web开发(三)
1. 添加el-menu样式 将Home.vue文件重新命名为Main.vue文件,本节涉及新的home目录和User目录下的index.js文件,因为侧边导航栏Aside和顶部Header是在每一个页面都存在的,所以重新命名为Main,而home文件夹下的index.js则对应系统首…...
Java项目实战II基于微信小程序的小区租拼车管理信息系统 (开发文档+数据库+源码)
目录 一、前言 二、技术介绍 三、系统实现 四、核心代码 五、源码获取 全栈码农以及毕业设计实战开发,CSDN平台Java领域新星创作者,专注于大学生项目实战开发、讲解和毕业答疑辅导。 一、前言 随着城市化进程的加速,小区居民对于出行方…...
云安全:云计算安全
目录 云安全的定义和重要性 云安全的关键组成部分 云安全技术实现 云安全最佳实践 云安全的定义和重要性 云安全是指在云计算环境中保护数据、应用程序和相关服务不受威胁的一系列策略、技术和控制措施。随着云计算的快速发展,云安全已成为企业和个人用户最关心…...
git clone加速(亲测好用)
用公司网git clone特别卡,本以为宿舍网会好一点,回来下的时候也只有几十kb. 然后找到了一种方法,就是在原始下载命令前加一个gitclone 比如 git clone https://github.com/infiniflow/ragflow.git替换成 git clone https://gitclone.com/gi…...
Python 网络爬虫进阶:突破数据采集的边界
在成功踏入 Python 网络爬虫的入门之境后,我们犹如初窥宝藏的探险家,领略到了数据采集世界的奇妙与潜力。而此刻,进阶之路在脚下徐徐展开,它将引领我们深入这片领域的更深处,挖掘出更为强大和精妙的爬虫技艺࿰…...
【网络安全】网站常见安全漏洞 - 网站基本组成及漏洞定义
文章目录 引言1. 一个网站的基本构成2. 一些我们经常听到的安全事件3. 网站攻击者及其意图3.1 网站攻击者的类型3.2 攻击者的意图 4. 漏洞的分类4.1 按来源分类4.2 按危害分类4.3 常见漏洞与OWASP Top 10 引言 在当今的数字化时代,安全问题已成为技术领域不可忽视的…...
[论文解读]Street Gaussians: Modeling Dynamic Urban Scenes with Gaussian Splatting
Street Gaussians是年初的一篇动态场景重建论文, 在当时是做到了SOTA,至今为止很多自动驾驶或者动态场景重建的文章都会将Street Gaussians作为实验的比较对象,这也表明了这篇文章的重要性,今天就一起来看看这篇文章; …...
在Github上上传大文件的办法(图文版)
在上一篇笔记中,笔者用图文的形式介绍了如何在GITHUB中上传文件夹。 可参考这篇笔记 在GITHUB上传本地文件指南(详细图文版)-CSDN博客 但接下来,笔者在继续上传别的文件的过程中,遇到了新的问题,gitbash…...
关于springBoot+vue项目中配置SSL证书问题
前端可以通过https进行访问 1.前端在访问后端接口时,使用https进行访问,在request.js配置文件中,这个文件是配置axios的基本请求的,在基础请求地址中改为https方式 2.需要在Linux中的nginx中配置ssl证书,具体请参考&…...
GitLab
Git服务器 一、概念 C/S 架构的 Git 服务端是存放代码的公用平台是多人并行协作的核心部分通常单独部署在一台独立的服务器上客户端可以通过网络访问服务器上的仓库 GitLab搭建 一、部署 1、安装依赖包 [rootGitLab ~]# yum -y install policycoreutils-python-utils.noarc…...
TCP客户端服务器端通信(线程池版)
1、什么是监听套接字,和UDP相比,TCP为什么文件描述符变多了? 在网络编程中,TCP和UDP是两种常见的传输协议,它们之间最大的不同之一在于连接的管理方式。为了更好地理解这个区别,我们可以用一个生动的比喻来…...
go语言的成神之路-标准库篇-fmt标准库
目录 一、三种类型的输出 print: println: printf: 总结: 代码展示: 二、格式化占位符 %s:用于格式化字符串。 %d:用于格式化整数。 %f:用于格式化浮点数。 %v࿱…...
高级java每日一道面试题-2024年12月08日-JVM篇-什么是类加载器?
如果有遗漏,评论区告诉我进行补充 面试官: 什么是类加载器? 我回答: 在Java高级面试中,类加载器(ClassLoader)是一个重要的概念,它涉及到Java类的加载和初始化机制。以下是对类加载器的详细解释: 定义与作用 类加…...
数据库之连接池Druid
Druid是一个由阿里巴巴开源的高性能数据库连接池组件,它在许多项目中都是首选的连接池实现。Druid不仅提供了高效的连接管理,还具备丰富的监控和统计功能,以及强大的安全特性。 一、功能介绍 1、高效连接管理 Druid采用了高效的连接管理机…...
【如何审稿】Notes on Constructive and Positive Reviewing
学习体会: 用chatgpt翻译的2005年审稿人如何审稿的一篇文章, 学着用审稿人的角度评审自己写的稿件~ 全文摘录: 作为审稿人,您代表的是您的社区,您的审稿意见应当是专业和建设性的。会议的质量取决于审稿的质量。审稿人的任务是选出高质量、创…...
1.文本方块方法(Spacy Text Splitter 方法)Can‘t find model ‘zh_core_web_sm‘
一、概述 执行如下: def split_spacy(text):import spacynlp spacy.load( "zh_core_web_sm" ) doc nlp(text) for s in doc.sents: print(s) # d:\programdata\anaconda3\envs\python310\lib\site-packages if __name__"__main__":text &q…...
IT类项目实施流程
一、项目启动准备阶段 (一)甲方组建项目委员会 **甲方委员会确立:**指定负责人,全权负责整个项目人员、启动及时间调配、需求确定及需求变更、项目节点的验收、项目款项的支付工作。 (二) 乙方组建项目实施工作组 **乙方实施工作组确立:**工作组主要包括项目经理、需…...
数据分析平台业务落地痛点分析
在当今数字化时代,数据已成为企业决策和运营的核心驱动力。数据分析平台作为数据处理和洞察的重要工具,其业务落地过程中的痛点分析对于企业的数据战略至关重要。本文将通过概述、功能点、背景、业务点、底层原理等多个方面,深入剖析数据分析…...
java语言学习(5)
第九章 目录 类变量和类方法 理解main方法语法 代码块 单列设计模式 final关键字 抽象类 接口 类变量/静态变量 该变量最大的特点就是会被本类的所有对象实例共享,类变量可以通过类名来访问 分析代码,探讨内存的分配 class Child{private Str…...
基于SSM框架点餐管理系统(计算机毕业设计)论文,Java
系统合集跳转 源码获取链接 一、系统环境 运行环境: 最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。 IDE环境: Eclipse,Myeclipse,IDEA或者Spring Tool Suite都可以 tomcat环境: Tomcat 7.x,8.x,9.x版本均可 操作系统…...
独家首发 | 基于 KAN、KAN卷积的轴承故障诊断模型
往期精彩内容: Python-凯斯西储大学(CWRU)轴承数据解读与分类处理 基于FFT CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客 基于FFT CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客 P…...
nginx-proxy-manager初次登录502 bad gateway
nginx-proxy-manager初次登录502 bad gateway 按照官方docker-compose安装后,页面如下: 默认账户密码: adminexample.com/changeme点击sign in,提示Bad Gateway 打开调试 重装后依然如此,最后查阅githup issue 找到答案 https://github.com/NginxProxyManager/nginx-proxy-…...
棋牌项目Go的日志打印问题
棋牌项目Go的日志打印问题 项目使用 go work 管理模块 github.com/spf13/viper 通过 application.yml 加载配置 $ tree . ├── README.md ├── common │ ├── application.yml │ ├── config │ │ └── config.go │ ├── go.mod │ ├── go.su…...
基于SpringBoot校园台球厅人员与设备管理系统设计与实现
1.1课题背景与意义 在Internet高速发展的今天,计算机的应用几乎完全覆盖我们生活的各个领域,互联网在经济,生活等方面有着举足轻重的地位,成为人们资源共享,信息快速传递的重要渠道。在中国,网上管理的兴起…...
样品前处理工作站自动化操作
样品前处理工作站通过集成多种技术和自动化模块,实现了对样品的高效、精准处理。以下是实现自动化操作的关键步骤和原理: 1、集成多种技术:工作站通常集成了液体处理、固相萃取、离心、过滤等多种技术。这些技术的结合使得工作站能够完成从样…...
在 Vue 3 中实现点击按钮后禁止浏览器前进或后退
在 Vue 3 中实现点击按钮后禁止浏览器前进或后退,我们可以通过 ref 和 watch 来管理状态,同时使用 onBeforeUnmount 来清理事件监听。 使用 Vue 3 实现: <template><div><button click"disableNavigation">点击…...
【Redis集群】使用docker compose创建docker集群,并暴露外部接口
使用 Docker Compose 创建一个 Redis 集群并暴露外部接口需要配置 docker-compose.yml 文件。以下是一个基本的步骤,包括 Redis 集群的创建和外部接口的暴露。 1、创建 docker-compose.yml 首先,您需要创建一个 docker-compose.yml 文件,配…...
RabbitMq 基础
文章目录 一、初识 MQ1.1 同步调用:1.2 异步调用: 二、RabbitMQ三、SpringAMQP3.1 依赖和配置文件3.2 消息发送和接收:3.2.1 消息发送:3.2.2 消息接收: 3.3 WorkQueues 模型:3.4 交换机类型:3.4…...
类文件结构详解
一、引言 Java 类文件是 Java 虚拟机执行的基本单元。它包含了 Java 程序的字节码以及其他重要的元数据信息。了解类文件结构可以帮助我们更好地理解 Java 程序的编译过程、运行机制以及如何进行优化。 二、类文件结构概述 Java 类文件采用一种紧凑的二进制格式,主…...
01_Linux
一.Linux简介 1.1 Linux介绍 Linux是一套免费使用和自由传播的操作系统。说到操作系 统,大家比较熟知的应该就是Windows和MacOS操作系统, 我们今天所学习的Linux也是一款操作系统 1.2 Linux发展历史 时间:1991年 地点:芬兰赫尔…...
区块链与AI结合:驱动Web3的未来发展
Web3作为下一代互联网的核心理念,强调去中心化、用户主权和透明性。而区块链技术和人工智能(AI)则是推动Web3发展的两大关键力量。两者的结合不仅为Web3带来了新的可能性,还推动了智能化、透明化、自治化等特点的实现。本文将探讨…...
如何解决 docker 容器中 “-bash: ping: command not found” 错误 ?
在 Docker 的世界里,遇到错误是学习曲线的一部分,其中一个常见的错误是: -bash: ping: command not found。当您在 Docker 容器中尝试使用 ping 命令来测试与其他网络机器或服务的连接,但该命令在您的容器环境中不可用时ÿ…...
Leetcode 每日一题 242.有效的字母异位词
目录 问题描述 示例 题目要求 解决方案 算法思路 过题图片 代码实现 算法分析 优化思路 优化后的代码实现 优化后的算法分析 题目链接 问题描述 给定两个字符串 s 和 t,我们需要编写一个函数来判断 t 是否是 s 的字母异位词。字母异位词指的是两个字符串…...
centos7搭建FTP详细讲解
文章目录 1、ftp服务1、工作原理2、工作模式3、身份验证模式4、ftp服务器配置5、ftp客户端操作 1、ftp服务 1、工作原理  是一个cs架构 2个通道,21端口为控制…...
YOLOv8-ultralytics-8.2.103部分代码阅读笔记-build.py
build.py ultralytics\data\build.py 目录 build.py 1.所需的库和模块 2.class InfiniteDataLoader(dataloader.DataLoader): 3.class _RepeatSampler: 4.def seed_worker(worker_id): 5.def build_yolo_dataset(cfg, img_path, batch, data, mode"train"…...
JAVA-动态代理
文章目录 概要两种主要方式JDK 动态代理Proxy 类作用:常用方法: InvocationHandler 接口作用: 目标对象、代理对象、被代理对象JDK 动态代理工作原理 cjlib 动态代理demo 对比 概要 Java 动态代理利用 Java 的反射机制,可以在运行…...
【前端】React_Next.js
定期更新,建议关注、收藏! 安装 要使用react的框架,都应当安装node.js conda install nodejs选择Next.js 并创建项目 npx create-next-applatest可以看到目录结构生成如下 作为网页中的一个子路由 想让其嵌入已经写好的项目中…...
深入理解malloc与vector:内存管理的对比
引言 在编程中,内存管理是一个至关重要的环节。无论是C语言中的malloc函数,还是C标准库中的vector容器,它们都在内存分配和释放上扮演着关键角色。然而,它们的设计理念和用法有着显著的不同。本文将深入探讨malloc和vector的区…...
LeetCode题练习与总结:四数相加 Ⅱ --454
一、题目描述 给你四个整数数组 nums1、nums2、nums3 和 nums4 ,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l) 能满足: 0 < i, j, k, l < nnums1[i] nums2[j] nums3[k] nums4[l] 0 示例 1: 输入:n…...
AI绘画设计实战-Day1
AI绘画变现方向: 生成猫咪拟人化;老照片修复;生成奇幻场景,换上客户的脸;生成商品详情模特图;商品宣传图;建筑/室内设计方案; AI视频-变现方向: AI跳舞视频ÿ…...
【Windows】ImmGetContext函数不适合跨进程工作
1. 教授回复 ChatGPT-o1: ImmGetContext() is not designed to work across process boundaries. It is indicates that a thread should not access the input context created by another thread, which implies that the function is intended for use within the same proc…...
【Linux】进程间通信——System V共享内存
🔥 个人主页:大耳朵土土垚 🔥 所属专栏:Linux系统编程 这里将会不定期更新有关Linux的内容,欢迎大家点赞,收藏,评论🥳🥳🎉🎉🎉 文章目…...
fastAPI快速使用
1. 安装: pip install fastapi 并且安装uvicorn来作为服务器: pip install uvicorn 最简单的 FastAPI 文件可能像下面这样: # main.pyfrom fastapi import FastAPIapp FastAPI()app.get("/") async def root():return {"message&qu…...