当前位置: 首页 > news >正文

机器学习——朴素贝叶斯法运用

一、朴素贝叶斯法

1.1  基本概念

朴素贝叶斯法是一种基于贝叶斯定理的简单概率分类方法,它假设特征之间相互独立。它适用于分类问题,尤其是在文本分类中表现良好。其核心思想是通过考虑各个特征的概率来预测分类(即对于给出的待分类样本,计算该样本在每个类别下出现的概率,最大的就被认为是该分类样本所属于的类别

1.2  朴素贝叶斯的一般过程

1.准备数据:收集并预处理数据,将数据分为特征和标签

2.特征选择:选择对分类有帮助的特征

3.模型训练:使用训练数据计算每个类别的先验概率和条件概率

4.预测:对新数据进行分类,选择概率最大的类别作为预测结果

1.3  朴素贝叶斯的优缺点

1.优点

  • 具有稳定的分类效率
  • 在数据较少时仍然有效,可以处理多类别的问题
  • 对缺失数据不太敏感
  • 进行分类时对时间和空间的开销都比较小

2.缺点

  • 对于输入数据的准备方式比较敏感,需要对数据进行适当的预处理
  • 需要假设属性之间相互独立,这在实际情况中往往不太现实
  • 需要知道先验概率,但是由于先验概率大多取决于假设,故很容易因此导致预测效果不佳

1.4  朴素贝叶斯应用场合

朴素贝叶斯主要被广泛地应用在文本分类垃圾邮件过滤情感分析等场合

二、算法原理

2.1  计算公式

1.贝叶斯定理

朴素贝叶斯算法的核心是贝叶斯定理,公式如下:

其中:

  • P(y|X)是后验概率,即在给定特征 X 的情况下类别 y 的概率
  • P(X|y)是条件概率,即在类别 y 的情况下特征 X 的概率
  • P(y)是类别y的先验概率
  • P(X)是特征X的边缘概率

2.条件独立性假设

联合概率分解为:

3.最终分类决策

选择使后验概率最大的类别:

2.2  计算步骤

1.计算先验概率

2.计算条件概率

离散特征:

连续特征(假设服从高斯分布):

3.计算联合后验概率(取对数避免下溢)

4.计算最大概率对应的类别

2.3  贝叶斯公式涉及概率

  1. 先验概率:根据以往的经验和分析得出的,对某个事件发生概率的初始假设估计
  2. 条件概率:指在某个事件A已经发生的条件下,另一个事件B发生的概率
  3. 后验概率:指在考虑了新的证据或数据之后,我们对某个事件发生的概率的更新估计
  4. 边缘概率:指不考虑其他事件的情况下,某个事件发生的概率
  5. 联合概率:指两个或多个事件同时发生的概率

2.4  平滑处理(避免零概率事件)

1.拉普拉斯平滑(适用于离散特征):

三、实例:判断西瓜好坏

3.1  测试数据

1.相关数据集

2.对新数据进行西瓜品质分类,测试数据如下

编号色泽根蒂敲声纹理脐部触感密度含糖率好瓜
测1青绿蜷缩浊响清晰凹陷硬滑0.6970.460

3.2  数据集分析

1.计算先验概率

在所给的相关数据集中,总共有17个数据,其中最后判别结果为好瓜的有8个,坏瓜的有9个,分别计算好瓜和坏瓜的先验概率,如下图:

2.计算条件概率

(1)离散特征(色泽、根蒂等):

(2)连续特征(密度、含糖率等)(假设服从高斯分布):

由于 密度=0.697 含糖率=0.460 在坏瓜中没有出现(概率=0),直接计算会导致零概率问题,因此需要使用拉普拉斯平滑调整:

调整后的概率:

3.计算联合后验概率(直接相乘)

(1)好瓜的联合后验概率:

(2)坏瓜的联合后验概率:

4.比较后验概率

由好瓜和坏瓜的联合后验概率计算结果可以很明显的看出:

P( 好瓜 | x) > P( 坏瓜 | x)

因此我们可以得出结论,预测测1的西瓜为好瓜

3.3  测试代码

import numpy as np
import pandas as pd# 加载数据集函数
def loadDataset():dataset = [['青绿', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', 0.697, 0.460, '是'],['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', 0.774, 0.376, '是'],['乌黑', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', 0.634, 0.264, '是'],['青绿', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', 0.608, 0.318, '是'],['浅白', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', 0.556, 0.215, '是'],['青绿', '稍蜷', '浊响', '清晰', '稍凹', '软粘', 0.403, 0.237, '是'],['乌黑', '稍蜷', '浊响', '稍糊', '稍凹', '软粘', 0.481, 0.149, '是'],['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '硬滑', 0.437, 0.211, '是'],['乌黑', '稍蜷', '沉闷', '稍糊', '稍凹', '硬滑', 0.666, 0.091, '否'],['青绿', '硬挺', '清脆', '清晰', '平坦', '软粘', 0.243, 0.267, '否'],['浅白', '硬挺', '清脆', '模糊', '平坦', '硬滑', 0.245, 0.057, '否'],['浅白', '蜷缩', '浊响', '模糊', '平坦', '软粘', 0.343, 0.099, '否'],['青绿', '稍蜷', '浊响', '稍糊', '凹陷', '硬滑', 0.639, 0.161, '否'],['浅白', '稍蜷', '沉闷', '模糊', '凹陷', '硬滑', 0.657, 0.198, '否'],['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '软粘', 0.360, 0.370, '否'],['浅白', '蜷缩', '浊响', '模糊', '平坦', '硬滑', 0.593, 0.042, '否'],['青绿', '蜷缩', '沉闷', '稍糊', '稍凹', '硬滑', 0.719, 0.103, '否']]testset = [['青绿', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', 0.697, 0.460]]labels = ['色泽', '根蒂', '敲声', '纹理', '脐部', '触感', '密度', '含糖率', '好瓜']return dataset, testset, labels# 计算先验概率P(C)
def prior(C):dataset = loadDataset()[0]counts = 0countAll = len(dataset)for item in dataset:if item[-1] == C:counts += 1P_C = round(counts / countAll, 3)return P_C# 计算条件概率P(x|C)
def P_x_given_C(x, C, labels=loadDataset()[2]):dataset = loadDataset()[0]counts = 0countB = 0for item in dataset:if item[-1] == C:lst = [item[index] for index, feature in enumerate(labels) if feature != '好瓜']if x in lst:counts += 1countB += 1P_x_given_C = round(counts / countB, 3)return P_x_given_C# 计算所有特征的后验概率并进行比较
def classify():dataset, testset, labels = loadDataset()test_data = testset[0]results = []for cla in ('是', '否'):p = prior(cla)for x in test_data:fx_x_given_c = P_x_given_C(x, cla, labels)p *= fx_x_given_cresults.append((cla, p))results.sort(key=lambda x: x[1], reverse=True)return results[0][0]# 预测新数据
new_data = ['青绿', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', 0.697, 0.460
]
prediction = classify()
print("新数据特征:", new_data)
print("预测结果:", "好瓜" if prediction == '是' else "坏瓜")

3.4  测试结果分析

1.运行截图

2.结果分析

  • 加载数据集函数(loadDataset)

(1)这个函数定义了训练数据集和测试数据集,以及它们的标签
(2)数据集包括特征如色泽、根蒂、敲声等,以及目标变量“好瓜”

  • 计算先验概率(prior)

(1)这个函数计算给定类别(“是”或“否”)的先验概率
(2)它通过计算每个类别在数据集中出现的次数与总数据集大小的比例来实现

  • 计算条件概率

(1)这个函数计算在给定类别下某个特征值的条件概率
(2)它通过计算该特征值在特定类别下出现的次数与该类别总出现次数的比例来实现

  • 分类函数(classify)

(1)这个函数使用朴素贝叶斯定理来预测测试数据的类别。
(2)它计算测试数据在每个类别下的后验概率,并选择概率最大的类别作为预测结果

  •  预测结果分析

测试数据:

  • 色泽: 青绿
  • 根蒂: 蜷缩
  • 敲声: 浊响
  • 纹理: 清晰
  • 脐部: 凹陷
  • 触感: 硬滑
  • 密度: 0.697
  • 含糖率: 0.460

预测结果:

  • 根据代码输出,预测结果为“好瓜”
  •  结果合理性
  • 数据分布:在训练数据中,具有相似特征的西瓜大多数被标记为“好瓜”。这表明模型有足够的证据将这些特征与“好瓜”类别关联起来
  • 模型假设:朴素贝叶斯模型假设特征之间相互独立,这在实际应用中可能不完全成立,但通常可以提供合理的预测结果,尤其是在特征数量较多且特征之间确实相对独立的情况下
  • 模型性能:由于朴素贝叶斯模型简单且计算效率高,它通常适用于初步的分类任务。然而,对于更复杂的数据集或需要更高精度的应用,可能需要考虑更复杂的模型

相关文章:

机器学习——朴素贝叶斯法运用

一、朴素贝叶斯法 1.1 基本概念 朴素贝叶斯法是一种基于贝叶斯定理的简单概率分类方法,它假设特征之间相互独立。它适用于分类问题,尤其是在文本分类中表现良好。其核心思想是通过考虑各个特征的概率来预测分类(即对于给出的待分类样本&am…...

内存池管理项目——面试题总结

一.项目描述 项⽬概述:本项⽬通过实现⾸次拟合法和伙伴系统算法,完成对内存池的管理,旨在为程序提供⾼效、合理的内存分配与回收机制,优化内存使⽤效 率。 主要内容及技术: ⾸次拟合法实现:定义WORD结构体…...

基于Python+Neo4j实现新冠信息挖掘系统

软件说明书 一、引言 便携本使用说明的目的是充分叙述本软件所能实现的功能及运行环境,以便使用者了解本软件的使用范围和使用方法,并为软件的维护和更新提供必要的信息。 二、软件概述 2.1软件简介 新型冠状病毒肺炎肆虐全球,给人们的健…...

深入浅出理解并应用自然语言处理(NLP)中的 Transformer 模型

1 引言 随着信息技术的飞速发展,自然语言处理(Natural Language Processing, NLP)作为人工智能领域的一个重要分支,已经取得了长足的进步。从早期基于规则的方法到如今的深度学习技术,NLP 正在以前所未有的速度改变着我…...

AEB法规升级后的市场预测与分析:技术迭代、政策驱动与产业变革

文章目录 一、政策驱动:全球法规升级倒逼市场扩容二、技术迭代:从“基础防护”到“场景全覆盖”三、市场格局:竞争加剧与生态重构四、挑战与未来展望五、投资建议结语 近年来,全球汽车安全法规的加速升级正深刻重塑AEB&#xff08…...

《代码之美:静态分析工具与 CI 集成详解》

《代码之美:静态分析工具与 CI 集成详解》 引言 在现代软件开发的快节奏环境中,代码质量和效率始终是开发者关注的核心。无论您是初学者,还是经验丰富的资深开发者,一个强大的工具链都能让您如虎添翼。而 Python 的静态代码分析工具,如 pylint、flake8 和 mypy,正是提升…...

Adobe Photoshop(PS)2022 版安装与下载教程

Adobe Photoshop下载安装和使用教程 Adobe Photoshop,简称“PS”,是由Adobe Systems开发和发行的图像处理软件。Photoshop主要处理以像素所构成的数字图像。使用其众多的编修与绘图工具,可以有效地进行图片编辑和创造工作&#xff0c…...

Universal Value Function Approximators 论文阅读(强化学习,迁移?)

前言 Universal Value Function Approximators 个人实现(请大佬指正) *关于UVFA如何迁移的问题,这也是我为什么反复看这篇文章的原因,我觉值函数逼近的最大用法就是如何迁移,如果仅仅是更改值函数的结构,…...

论文阅读:2024 arxiv HybridFlow: A Flexible and Efficient RLHF Framework

https://www.doubao.com/chat/3875396379023618 HybridFlow: A Flexible and Efficient RLHF Framework https://arxiv.org/pdf/2409.19256 https://github.com/volcengine/verl 速览 这篇论文主要介绍了一个名为HybridFlow的新型框架,旨在提升大语言模型&…...

WPF实现多语言切换

WPF实现多语言切换完整指南 一、基础实现方案 1. 资源文件准备 首先创建不同语言的资源文件: Resources/ ├── Strings.resx // 默认语言(英语) ├── Strings.zh-CN.resx // 简体中文 └── Strings.ja-JP.resx // 日语 ​​Strings.resx​​ (默认英…...

wpf操作主流数据

WPF 操作主流数据库详解 WPF(Windows Presentation Foundation)应用程序经常需要与数据库交互以实现数据的持久化和展示。主流的关系型数据库包括 ​​SQL Server​​、​​MySQL​​、​​PostgreSQL​​ 和 ​​SQLite​​。本文将详细介绍如何在 WPF 应用程序中使用这些主…...

Docker Compose--在Ubuntu中安装Docker compose

原文网址:Docker Compose--在Ubuntu中安装Docker compose_IT利刃出鞘的博客-CSDN博客 简介 说明 本文介绍如何在Ubuntu中安装docker compose。 docker-compose是用于管理Docker的,相对于单纯使用Docker更方便、更强大。 如果还没安装docker&#xf…...

推荐几个免费提取音视频文案的工具(SRT格式、通义千问、飞书妙记、VideoCaptioner、AsrTools)

文章目录 1. 前言2. SRT格式2.1 SRT 格式的特点2.2 SRT 文件的组成2.3 SRT 文件示例 3. 通义千问3.1 官网3.2 上传音视频文件3.3 导出文案 4. 飞书妙记4.1 官网4.2 上传音视频文件4.3 导出文案4.4 缺点 5. VideoCaptioner5.1 GitHub地址5.2 下载5.2.1 通过GitHub下载5.2.2 通过…...

驱动汽车供应链数字化转型的标杆解决方案:全星研发项目管理APQP软件系统:

全星研发项目管理APQP软件系统:驱动汽车供应链数字化转型的标杆解决方案 一、行业痛点与转型迫切性 在汽车行业电动化、智能化浪潮下,主机厂对供应链企业的APQP(先期产品质量策划)合规性、开发效率及体系化管理能力提出严苛要求。…...

PyTorch数据加载与预处理

数据加载与预处理详解 1. 数据集类(Dataset和DataLoader) 1.1 Dataset基类 PyTorch中的Dataset是一个抽象类,所有自定义的数据集都应该继承这个类,并实现以下两个方法: __len__(): 返回数据集的大小__getitem__(): 根据索引返回一个样本 …...

MyBatis 官方子项目详细说明及表格总结

MyBatis 官方子项目详细说明及表格总结 1. 核心子项目说明 1.1 mybatis-3 GitHub 链接:https://github.com/mybatis/mybatis-3功能: MyBatis 核心框架的源码,提供 SQL 映射、动态 SQL、缓存、事务管理等核心功能。主要功能: 支持…...

Java学习手册:常用的内置工具类包

以下是常用 Java 内置工具包。 • 日期时间处理工具包 • java.time包(JSR 310):这是 Java 8 引入的一套全新的日期时间 API,旨在替代陈旧的java.util.Date和java.util.Calendar类。其中的LocalDate用于表示不带时区的日期&…...

启动你的RocketMQ之旅(六)-Broker详细——主从复制

前言: 👏作者简介:我是笑霸final。 📝个人主页: 笑霸final的主页2 📕系列专栏:java专栏 📧如果文章知识点有错误的地方,请指正!和大家一起学习,一…...

QT跨平台软件开发要点

一、Qt跨平台开发核心优势 1.统一代码基 通过Qt的抽象层(Qt Platform Abstraction, QPA),同一套代码可编译部署到Windows、macOS、Linux、嵌入式系统(如ARM设备)甚至移动端(通过Qt for Android/iOS&#…...

【C语言】柔性数组

目录 一柔性数组的定义与特点 定义: 特点: 注意事项 二柔性数组的使用方法 三示例代码详解 四与其他知识的结合 五总结 前言: 柔性数组是C99标准引入的一种特殊结构体成员类型,允许在结构体的末尾定义一个长度未知的数组…...

AWS中国区ICP备案全攻略:流程、注意事项与最佳实践

导语 在中国大陆地区开展互联网业务时,所有通过域名提供服务的网站和应用必须完成ICP备案(互联网内容提供商备案)。对于选择使用AWS中国区(北京/宁夏区域)资源的用户,备案流程因云服务商的特殊运营模式而有所不同。本文将详细解析AWS中国区备案的核心规则、操作步骤及避坑…...

基于Matlab的MDF文件导入与处理研究

摘要 本文围绕MDF文件格式展开全面研究,系统阐述了MDF文件的基本结构与数据块概念,深入探讨了在Matlab环境下导入和处理这些文件的理论与实践方法。首先,介绍了MDF文件在现代工业和汽车电子领域的应用背景及重要意义。接着,详细剖析了MDF文件的结构,包括头部信息、数据块、…...

架构师备考-设计模式23种及其记忆特点

引言 以下是一篇关于架构师备考中设计模式23种的博文架构及记忆技巧总结,内容清晰、结构系统,适合快速掌握核心知识点。 考试类型是给语句描述或者类图,判断是哪一种设计模式(会出现英文的名词),2024年的两…...

学习记录:DAY18

前端实战与项目部署学习笔记 前言 时间固执沉默无情的流逝, 小心握紧漠然通达的当下。 今天要把前端实战部分学完,有时间写写学科作业 ----4.26---- 放纵注定是场与自我无休止的拉扯,过度的妥协只会跌入自我空虚的深渊 真该死啊&#xff0c…...

【OSG学习笔记】Day 10: 字体与文字渲染(osgText)

osgText库简介 osgText 是OpenSceneGraph(OSG)中用于文本渲染的重要模块,支持在3D场景中添加静态/动态文字、自定义字体、文字样式(颜色、大小、对齐方式等)以及动态更新文本内容。通过结合OSG的场景图机制&#xff0…...

[特殊字符] 深入理解Spring Cloud与微服务架构:全流程详解(含中间件分类与实战经验)

📚 目录 Spring Cloud 简介与发展 Spring Cloud 与 Spring Cloud Alibaba 的关系 为什么需要微服务?单体架构 vs 微服务对比 微服务常用中间件汇总 微服务如何科学拆分? 一个微服务对应一个数据库(服务自治原则) …...

深入理解算力:从普通电脑到宏观计算世界

在科技飞速发展的当下,“算力” 一词频繁出现在我们的视野中,无论是前沿的人工智能领域,还是新兴的区块链世界,算力都扮演着至关重要的角色。但对于大多数普通人来说,算力仿佛是一个既熟悉又陌生的概念。今天&#xff…...

IntelliJ IDEA 2025.2 和 JetBrains Rider 2025.1 恢复git commit为模态窗口

模态提交在 2025.1 中作为插件存在。 如下图所示安装插件 安装完之后,在设置里把下图的配置项打勾...

Linux——动静态库

目录 1. 动静态库基本原理 2. 认识动静态库 3. 动静态库的特点 3.1 静态库的优缺点 3.2 动态库的优缺点 4. 静态库的打包和使用 4.1 打包 4.2 使用 5. 动态库的打包和使用 5.1 打包 5.2 使用 6. 库的理解与加载 6.1 目标文件 6.2 ELF文件 6.3 ELF形成到加载…...

从频域的角度理解S参数:

从频域的角度理解S参数: S参数是一种频域模型,在频域的每一个频点都可以通过该频点的S参数来得到入射信号和反射信号之间的一组关系。这种方法不关注网络内部的具体结构,无论网络内部结构是什么,只要网络是线性不变的,就可以当作“…...

Java 安全:如何保护敏感数据?

Java 安全:如何保护敏感数据? 在当今数字化时代,数据安全成为了软件开发中至关重要的课题。对于 Java 开发者而言,掌握如何在 Java 应用中保护敏感数据是必备的技能。本文将深入探讨 Java 安全领域,聚焦于敏感数据保护…...

PySpark实现ABC_manage_channel逻辑

问题描述 我们需要确定"ABC_manage_channel"列的逻辑,该列的值在客户连续在同一渠道下单时更新为当前渠道,否则保留之前的值。具体规则如下: 初始值为第一个订单的渠道如果客户连续两次在同一渠道下单,则更新为当前渠…...

栈与堆的演示

1、栈与堆的演示 &#xff08;1&#xff09;网页视图 &#xff08;2&#xff09;代码 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, in…...

【Kafka】Windows环境下生产与消费流程详解(附流程图)

1. 背景说明 在搭建基于Kafka的数据流通系统(例如流式推荐、实时日志采集)时,常见的操作是: 生产者 Producer 向 Kafka Topic 写入消息消费者 Consumer 从 Kafka Topic 读取消息本文以Windows本地环境 + Kafka 2.8.1版本为例,手把手演示生产消费流程。 2. 准备条件 Kafka…...

基于FFmpeg命令行的实时图像处理与RTSP推流解决方案

前言 在一些项目开发过程中需要将实时处理的图像再实时的将结果展示出来&#xff0c;此时如果再使用一张一张图片显示的方式展示给开发者&#xff0c;那么图像窗口的反复开关将会出现窗口闪烁的问题&#xff0c;实际上无法体现出动态画面的效果。因此&#xff0c;需要使用码流…...

神经网络笔记 - 感知机

一 感知机是什么 感知机&#xff08;Perceptron&#xff09;是一种接收输入信号并输出结果的算法。 它根据输入与权重的加权和是否超过某个阈值&#xff08;threshold&#xff09;&#xff0c;来判断输出0还是1。 二.计算方式 感知机的基本公式如下&#xff1a; X1, X2 : …...

【双指针】专题:LeetCode 15题解——三数之和

三数之和 一、题目链接二、题目三、题目解析四、算法原理解法一&#xff1a;排序 暴力枚举 利用set去重解法二&#xff1a;排序 双指针处理细节问题1、去重越界问题 2、不漏 五、编写代码六、时间复杂度和空间复杂度 一、题目链接 三数之和 二、题目 三、题目解析 i ! j …...

如何创建一个导入模板?全流程图文解析

先去找到系统内可以上传东西的按钮 把你的模板上传上去,找到对应的fileName 图里的文字写错了,是复制粘贴"filePath"到URL才能下载...

JS自动化获取网站信息开发说明

一、自动获取信息的必要性 1. 提高效率与节省时间 批量处理&#xff1a;自动化可以快速抓取大量数据&#xff0c;比人工手动操作快得多。 24/7 运行&#xff1a;自动化工具可以全天候工作&#xff0c;不受时间限制。 减少重复劳动&#xff1a;避免人工反复执行相同的任务&am…...

Python爬虫-爬取汽车之家各品牌月销量榜数据

前言 本文是该专栏的第54篇,后面会持续分享python爬虫干货知识,记得关注。 在本文中,笔者已整理19篇汽车平台相关的爬虫项目案例。对此感兴趣的同学,可以直接翻阅查看。 而本文,笔者将以汽车之家平台为例子。基于Python爬虫,实现批量爬取“各品牌月销量榜”的数据。废话…...

WPF 调用 OpenCV 库

WPF 调用 OpenCV 库指南 OpenCV 是一个强大的计算机视觉库,WPF 是 Windows 平台的 UI 框架。将两者结合可以实现强大的图像处理和计算机视觉应用。本文将详细介绍如何在 WPF 应用程序中集成和使用 OpenCV 库。 一、准备工作 1. 安装 OpenCV 方法一:通过 NuGet 安装 在 Vi…...

LLM(大语言模型)技术的最新进展可总结

截至2025年4月26日&#xff0c;LLM&#xff08;大语言模型&#xff09;技术的最新进展可总结为以下关键方向&#xff1a; 1. 架构创新与性能突破 多模态能力深化&#xff1a;GPT-4o等模型通过统一架构支持文本、图像、音频和视频的跨模态推理&#xff0c;显著提升复杂场景下的…...

Fedora 43 计划移除所有 GNOME X11 相关软件包

Fedora 43 计划移除所有 GNOME X11 相关软件包&#xff0c;这是 Fedora 项目团队为全面拥抱 Wayland 所做的重要决策。以下是关于此计划的详细介绍&#xff1a; 提案内容&#xff1a;4 月 23 日&#xff0c;Neal Gompa 提交提案&#xff0c;建议从 Fedora 软件仓库中移除所有 G…...

解构与重构:“整体部分”视角下的软件开发思维范式

在软件开发的复杂图景中&#xff0c;整体与部分的关系始终是决定项目成败的关键命题。《人月神话》“整体部分”一章以深邃的洞察力&#xff0c;揭示了软件开发过程中系统设计与实现的内在逻辑&#xff0c;不仅探讨了规格说明、设计方法等技术层面的核心要素&#xff0c;更深入…...

NdrpConformantVaryingArrayUnmarshall函数分析--重要

第一部分&#xff1a; void NdrpConformantVaryingArrayUnmarshall( PMIDL_STUB_MESSAGE pStubMsg, uchar ** ppMemory, PFORMAT_STRING pFormat, uchar fMustCopy, uchar fMustAlloc ) { uchar * …...

ZYNQ笔记(十四):基于 BRAM 的 PS、PL 数据交互

版本&#xff1a;Vivado2020.2&#xff08;Vitis&#xff09; 实验任务&#xff1a; PS 将字符串数据写入BRAM&#xff0c;再将数据读取出来&#xff1b;PL 从 BRAM 中读取数据&#xff0c;bing。通过 ILA 来观察读出的数据&#xff0c;与前面串口打印的数据进行对照&#xff0…...

月之暗面开源 Kimi-Audio-7B-Instruct,同时支持语音识别和语音生成

我们向您介绍在音频理解、生成和对话方面表现出色的开源音频基础模型–Kimi-Audio。该资源库托管了 Kimi-Audio-7B-Instruct 的模型检查点。 Kimi-Audio 被设计为通用的音频基础模型&#xff0c;能够在单一的统一框架内处理各种音频处理任务。主要功能包括&#xff1a; 通用功…...

文件操作及读写-爪哇版

文章目录 前言 初识文件文件路径里的符号文件分类文件操作方法文件读写字节流输入输出输入输出 字符流输入输出输入输出 前言 Windows用户需知&#xff1a;“/”和“\”&#xff0c; 文件路径分隔符一般都用“/”&#xff0c;但Windows系统一直保留着“\”&#xff0c;这两种符…...

【matlab】绘制maxENT模型的ROC曲线和omission curve

文章目录 一、maxENT模型二、ROC曲线三、实操3.1 数据提取3.2 绘制ROC曲线3.3 绘制遗漏曲线3.4 多次训练的ROC和测试的ROC 一、maxENT模型 前面的文章已经详细讲过了。 maxENT软件运行后&#xff0c;会生成一个html报告&#xff0c;里面有ROC曲线&#xff0c;但我们往往需要自…...

个人电子白板(svg标签电子画板功能包含正方形、文本、橡皮 (颜色、尺寸、不透明度)、 撤销、取消撤销 等等功能,)

在Http开发中&#xff0c;svg标签电子画板功能包含正方形、文本、橡皮 &#xff08;颜色、尺寸、不透明度&#xff09;、 撤销、取消撤销 等等功能&#xff0c; 效果图 代码如下&#xff1a; <!DOCTYPE html> <html lang"en"> <!--<link href&qu…...