MySQL-存储过程--游标
存储过程
游标
什么是游标
一个游标是一个SQL语句执行时系统内存创建的一个临时工作区域。一个游标包含一个查询语句的信息和它操作的数据行的信息。
mysql游标的特点
- 只读: 无法通过游标更新基础表中的数据
- 不可滚动: 只能根据select中确定的顺序来获取行数据,不能跳行
- 敏感:敏感游标使用实际的数据,不敏感游标使用实际数据的副本,敏感游标速度快,但如果更新数据则会影响实际数据,mysql游标是敏感的同时是只读的
基础语法
A. 声明游标
DECLARE 游标名称 CURSOR 1 FOR 查询语句 ;
B. 打开游标
OPEN 游标名称 ;
C. 获取游标记录
FETCH 游标名称 INTO 变量 [, 变量 ] ;
D. 关闭游标
CLOSE 游标名称 ;
游标开发示例
准备工作:
# 班级定义表
create table t_class (
cid int not null auto_increment,
cname varchar(40),
primary key (cid)
) engine=innodb charset=utf8 collate=utf8_general_ci;
# 学生表
create table t_student(
sid int not null auto_increment,
sname varchar(40),
score int,
class int,
primary key (sid)
)engine=innodb charset=utf8 collate=utf8_general_ci;
# 学生等级
create table t_grade(
gid int not null auto_increment,
cid int not null,
A int not null default 0,
B int not null default 0,
C int not null default 0,
D int not null default 0,
primary key (gid)
) engine=innodb charset=utf8 collate=utf8_general_ci;
# 班级定义表
create table t_class ( cid int not null auto_increment,cname varchar(40),primary key (cid)
) engine=innodb charset=utf8 collate=utf8_general_ci;
# 学生表
create table t_student ( sid int not null auto_increment,sname varchar(40),score int,class int,primary key (sid)
) engine=innodb charset=utf8 collate=utf8_general_ci;
# 学生等级
create table t_grade ( gid int not null auto_increment,cid int not null,A int not null default 0,B int not null default 0,C int not null default 0,D int not null default 0,primary key (gid)
) engine=innodb charset=utf8 collate=utf8_general_ci;
功能描述: 统计每个班的学生数据,并进行成绩分类:
- 大于等于90 为A
- 大于等于75分小于90分为B
- 大于等于60分小于75分为C
- 小于60分为D
将统计的数据存放在下面的表格t_grade中,下面为测试数据
insert into `t_student`(`sid`,`sname`,`score`,`class`) values (1,'小明',90,1),(2,'小李子',95,1),(3,'张三丰',60,1),(4,'王紫',50,1),(5,'王敏',75,1),(6,'赵晓峰',90,2),(7,'刘小锋',80,2),(8,'孙涛',75,2),(9,'朱晓',40,2),(10,'李思敏',78,2),(11,'王晓飞',95,3),(12,'吴蒙',90,3),(13,'夏非',80,3),(14,'郑宝',92,3);
存储过程如下:
drop procedure if exists pro_stat_score;
delimiter $
create procedure pro_stat_score()
begin
declare a int default 0;
declare b int default 0;
declare c int default 0;
declare d int default 0;
declare done boolean default true;
declare cls_cid int default 0;
declare cls_cur cursor for select cid from t_class;
declare continue handler for not found set done=false;
open cls_cur;
while done do
fetch cls_cur into cls_cid;
select COUNT(*) into a from t_student where class=cls_cid and score >= 90;
select COUNT(*) into b from t_student where class=cls_cid and score >=75 and score <90;
select COUNT(*) into c from t_student where class=cls_cid and score >=60 and score <75;
select COUNT(*) into d from t_student where class=cls_cid and score <60;
insert into t_grade(cid,A,B,C,D)values(cls_cid,a,b,c,d);
end while;
close cls_cur;
end $
delimiter ;
相关文章:
MySQL-存储过程--游标
存储过程 游标 什么是游标 一个游标是一个SQL语句执行时系统内存创建的一个临时工作区域。一个游标包含一个查询语句的信息和它操作的数据行的信息。 mysql游标的特点 只读: 无法通过游标更新基础表中的数据不可滚动: 只能根据select中确定的顺序来…...
Spring AOP 事务
目录 一,引入依赖: 二,切面 1,基本概念 2, 通知类型: 3,Pointcut 4, 切面优先级: 5 ,自定义优先级Order 6,切点表达式 7, 自定义注解 总结: AOP有几种创建方式 三, Spring AOP原理 1, 代理模式 (1)静态代理 (2)动态代理 △JDK动态代理 △CGLIB动态代理 JDB和c…...
Itext进行PDF的编辑开发
这周写了一周的需求,是制作一个PDF生成功能,其中用到了Itext来制作PDF的视觉效果。其中一些功能不是很懂,仅作记录,若要学习请仔细甄别正确与否。 开始之前,我还是想说,这傻福需求怎么想出来的,…...
Python 中消费者 - 生产者模式详解
目录 引言 消费者 - 生产者模式原理 示例场景 Python 实现消费者 - 生产者模式 使用队列(Queue)实现 代码解释 使用协程实现 代码解释 应用场景 总结 引言 在软件开发里,消费者 - 生产者模式是一种常见且重要的设计模式。这种模式让…...
基于Hadoop的音乐推荐系统(源码+lw+部署文档+讲解),源码可白嫖!
摘要 本毕业生数据分析与可视化系统采用B/S架构,数据库是MySQL,网站的搭建与开发采用了先进的Java语言、爬虫技术进行编写,使用了Spring Boot框架。该系统从两个对象:由管理员和用户来对系统进行设计构建。主要功能包括ÿ…...
移动端动态滑动拨盘选择器【Axure元件库】
模拟移动端底部对话框效果,制作的年份、日期滑动拨盘选择器,支持日期动态滑动选择,提升原型制作强度。 该模板主要使用中继器、动态面板和矩形制作,使用简单,复用性强。只需对中继器数据表格中的数据项进行修改、增删…...
7. 深入Spring AI:刨析 Advisors 机制
目录 1、序言2、什么是Advisor?3、源码分析Advisor3.1、Advisor接口3.2、Advisor Ordered3.3、CallAroundAdvisor & StreamAroundAdvisor3.4、BaseAdvisor4、内置的Advisor类型4.1、MessageChatMemoryAdvisor4.2、PromptChatMemoryAdvisor4.3、VectorStoreChatMemoryAdvis…...
高保真动态项目管理图表集
本作品为项目管理图表类原型,以关系图谱、甘特图、流程图、泳道图为核心,提供基础的图表设计风格和交互案例,再进阶到高级的动态交互设计,由浅入深诠释Axure设计高端复杂的动态交互设计的魅力。 作品介绍 原型名称:Ax…...
MCP:AI时代的“万能插座”,开启大模型无限可能
摘要:Model Context Protocol(MCP)由Anthropic在2024年底开源,旨在统一大模型与外部工具、数据源的通信标准。采用客户端-服务器架构,基于JSON-RPC 2.0协议,支持stdio、SSE、Streamable HTTP等多种通信方式…...
IDEA打不开、打开报错
目录 场景异常原因解决 场景 1、本机已经安装了IDEA 2、再次安装另外一个版本的IDEA后打不开、打开报错 异常 这里忘记截图了。。。 原因 情况1-打不开:在同一台电脑安装多个IDEA是需要对idea的配置文件进行调整的,否则打不开 情况2-打开报错&#…...
TM1640学习手册及示例代码
数据手册 TM1640数据手册 数据手册解读 这里我们看管脚定义DIN和SCLK,一个数据线一个时钟线 SEG1~SEG8为段码,GRID1~GRID16为位码(共阴极情况下) 这里VDD给5V 数据指令 数据命令设置 地址命令设置 显示控制命令 共阴极硬件连接图…...
动态规划-零钱兑换
332.零钱兑换 给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。你可以认为每种硬币的数量是无…...
leetcode50.pow(x,n)
class Solution {private double f(double x,long n){if(n0)return 1.0;else {double tempf(x,n/2);return n%21?temp*temp*x:temp*temp;}}public double myPow(double x, int n) {long Nn;return n>0?f(x,N):1.0/f(x,-N);} }...
ECA 注意力机制:让你的卷积神经网络更上一层楼
ECA 注意力机制:让你的卷积神经网络更上一层楼 在深度学习领域,注意力机制已经成为提升模型性能的重要手段。从自注意力(Self-Attention)到各种变体,研究人员不断探索更高效、更有效的注意方法。今天我们要介绍一种轻…...
《谷歌Gemini 1.5:长语境理解重塑文档分析与检索新格局》
在人工智能的快速发展进程中,大语言模型不断突破边界,为各个领域带来变革性影响。谷歌Gemini 1.5的问世,凭借其卓越的长语境理解能力,在文档分析和检索任务方面掀起了一阵技术革新的浪潮。 以往的大语言模型在处理长文本时&#…...
量变与质变的辩证关系
量变和质变是唯物辩证法中揭示事物发展状态和形式的一对重要范畴,二者之间存在着密切的辩证关系。 一、量变是质变的必要准备 含义 量变是指事物数量的增减和场所的变更,是一种渐进的、不显著的变化。例如,水的温度升高,从0℃逐…...
讯联桌面TV版apk下载-讯联桌面安卓电视版免费下载安装教程
在智能电视的使用过程中,一款好用的桌面应用能极大提升我们的使用体验。讯联桌面 TV 版就是这样一款备受关注的应用,它可以让安卓电视拥有更个性化、便捷的操作界面。今天,就为大家详细介绍讯联桌面 TV 版 apk 的免费下载安装教程。 一、下载…...
【Vue】组件基础
目录 🚀 Vue 非单文件组件 和 单文件组件 的区别与实践对比 ✨ 引言 一、非单文件组件 1. 基本使用 2. 注意: 3. 组件的嵌套 4. 关于VueComponent: 5. 一个重要的内置关系(有点难理解) 二、 单文件组件 那就…...
OpenCV---图像预处理(四)
OpenCV—图像预处理(四) 文章目录 OpenCV---图像预处理(四)九,图像掩膜9.1 制作掩膜9.2 与运算9.3 颜色替换9.3.19.3.2 颜色替换 十,ROI切割十 一,图像添加水印11.1模板输入11.2 与运算11.3 图像…...
《MySQL:MySQL表的基本查询操作CRUD》
CRUD:Create(创建)、Retrieve(读取)、Update(更新)、Delete(删除)。 Create into 可以省略。 插入否则更新 由于主键或唯一键冲突而导致插入失败。 可以选择性的进行同步…...
Psychology 101 期末测验(附答案)
欢呼 啦啦啦~啦啦啦~♪(^∇^*) 终于考过啦~ 开心(*^▽^*) 撒花✿✿ヽ(▽)ノ✿ |必须晒下证书: 判卷 记录下判卷,还是错了几道,填空题2道压根填不上。惭愧~ 答案我隐藏了,实在想不出答案的朋友可以留言,不定时回复。 建议还是认认真真的学习~认认真真的考试~,知识就…...
Linux:权限相关问题
文章目录 shell命令以及运行的原理Linux权限 shell命令以及运行的原理 操作系统分为内核和外壳程序,xshell是外壳程序,外壳程序包括我们windows桌面上的图形化界面,本质都是翻译给核心处理,再显示出来,而我们输入的命令…...
大模型应用开发大纲
AI大模型学习路径脑图结构 一、AI及LLM基础 学习目标:建立对AI和LLM的基础理解,了解主要的机器学习和神经网络模型,掌握API调用方法。 1.1 AI领域基础概念 AI, NL/NLU/NLG机器学习: 学习方法, 拟合评估神经网络: CNN, RNN, TransformerTra…...
【NCCL】transport建立(一)
transport建立 NCCL transport建立主要在ncclTransportP2pSetup函数中实现。 概况 先简单概括一下ncclTransportP2pSetup函数做了哪些事,方便理解代码流程。 recvpeer 表示本卡作为接收端的对端,sendpeer 表示本卡作为发送端的对端。假设8个rank全连接…...
智慧能源安全新纪元:当能源监测遇上视频联网的无限可能
引言:在数字化浪潮席卷全球的今天,能源安全已成为国家安全战略的重要组成部分。如何构建更加智能、高效的能源安全保障体系?能源安全监测平台与视频监控联网平台的深度融合,正为我们开启一扇通向未来能源管理新世界的大门。这种创…...
腾讯一面-软件开发实习-PC客户端开发方向
1.自我介绍就不多赘述了 2. 请介绍一下你的项目经历 - 介绍了专辑鉴赏项目,前端使用html语言编写,后端基于http协议使用C语言进行网页开发。此外,还提及项目中涉及处理多线程问题以及做过内存池管理项目。 3. 项目中HTTP协议是使用库实现的…...
Cad c# 射线法判断点在多边形内外
1、向量叉乘法 2、射线法原理 射线法是判断点与多边形位置关系的经典算法,核心思想是: 从目标点发出一条水平向右的射线(数学上可视为 y p_y, x \geq p_x 的射线),统计该射线与多边形边的交点数量: - 偶…...
【第16届蓝桥杯软件赛】CB组第一次省赛
个人主页:Guiat 归属专栏:算法竞赛 文章目录 A. 移动距离(5分填空题)B. 客流量上限(5分填空题)C. 可分解的正整数D. 产值调整E. 画展布置F. 水质检测G. 生产车间H. 装修报价 正文 总共10道题。 A. 移动距离…...
DePIN驱动的分布式AI资源网络
GAEA通过通证经济模型激励全球用户共享闲置带宽、算力、存储资源,构建覆盖150多个国家/地区的分布式AI基础设施网络。相比传统云服务,GAEA具有显著优势: 成本降低70%:通过利用边缘设备资源,避免了集中式数据中心所需…...
CC注入Tomcat Upgrade/Executor/WebSocket内存马
学习一下Tomcat中和组件内存马不一样的马。除了学习注入原理外,其payload还在一些缩短payload的场景有应用,比如shiro CC注入Tomcat Upgrade/Executor/WebSocket内存马 漏洞所用环境及测试全部代码https://github.com/godownio/TomcatMemshell 漏洞路…...
算法工程师面试题与参考答案资料(2025年版)
一、核心技术能力 1. 编程能力与工具 问题 1(选择题): 下列哪种Python数据类型是通过哈希表实现的? A. 列表 (list)...
烂土豆Juicypotato提权原理和利用
烂土豆Juicypotato提权原理和利用 0x00 Potato(烂土豆)提权的原理: 所谓的烂土豆提权就是俗称的MS16-075 可以将Windows工作站上的特权从最低级别提升到“ NT AUTHORITY \ SYSTEM” – Windows计算机上可用的最高特权级别。 一、简单的原…...
基于LangChain4J的AI Services实践:用声明式接口重构LLM应用开发
基于LangChain4J的AI Services实践:用声明式接口重构LLM应用开发 前言:当Java开发遇上LLM编程困境 在LLM应用开发领域,Java开发者常面临两大痛点:一是需要手动编排Prompt工程、记忆管理和结果解析等底层组件,二是复杂…...
重构便携钢琴专业边界丨特伦斯便携钢琴V30Pro定义新一代便携电钢琴
在便携电钢琴领域,特伦斯推出的V30Pro折叠钢琴以"技术革新场景适配"的双重升级引发关注。这款产品不仅延续了品牌标志性的折叠结构,更通过声学系统重构与智能交互优化,重新定义了便携乐器的专业边界。 ▶ 核心特点:技术…...
【uniapp-兼容性处理】安卓uView组件中u-input后置插槽不展示
【日期】2025-04-21 【问题】 在小程序上u-input后置插槽展示,真机运行安卓机上不展示 【原因】: 原代码:(插槽写法惯性使用#,此处在APP上不兼容该写法) <u-input v-model"currentScore"…...
每天学一个 Linux 命令(30):cut
可访问网站查看,视觉品味拉满: http://www.616vip.cn/28/index.html cut 命令用于从文件或输入流中提取文本的特定部分(如列、字符或字节位置)。它常用于处理结构化数据(如 CSV、TSV)或按固定格式分割的文本。以下是详细说明和示例: 命令格式 cut [选项] [文件...]…...
部署本地Dify
本文我们来演示一下Dify的部署安装。 一、安装docker环境 Dify只是一个dashboard,所以这里的话咱们一般不用使用物理部署了,直接使用docker启动一个即可,所以一定要先确保服务器上有docker环境和docker-compose环境。 docker的安装可参考&…...
大数据组件学习之--Kafka 安装搭建
一、前置环境 在搭建kafka之前,请确认自己的hadoop、zookeeper是否搭建完成且可正常运行 二、下载并上传安装包(链接为百度网盘) kafka安装包 tar -zxvf /opt/software/kafka_2.12-2.4.1.tgz -C /opt/module/ 进入解压后的目录更改文件名…...
RK3588芯片NPU的使用:PPOCRv4例子在安卓系统部署
本文的目标 将PPOCRv4 C语言例子适配安卓端,提供选择图片后进行OCR识别功能。PPOCRv4 C语言例子请参考之前的博文《RK3588芯片NPU的使用:Windows11 Docker中运行PPOCRv4例子》。 开发环境说明 主机系统:Windows 11目标设备:搭载RK3588芯片的安卓开发板核心工具:Android …...
算法 | 鲸鱼优化算法(WOA)与强化学习的结合研究
===================================================== github:https://github.com/MichaelBeechan CSDN:https://blog.csdn.net/u011344545 ===================================================== 鲸鱼优化算法与强化学习 一、结合机制与关键方向1、 参数动态调整2、…...
Spring AI 框架-快速搭建以及会话日志(笔记)
概述: Spring AI是Spring生态中应用于人工智能领域的应用框架,它的目标是将Spring 生态系统的设计原则(如可移植性、模块化设计)应用于AI领域,Spring AI更新迭代非常快,对Spring生态非常友好,可以大大简化…...
一段式端到端自动驾驶:VAD:Vectorized Scene Representation for Efficient Autonomous Driving
论文地址:https://github.com/hustvl/VAD 代码地址:https://arxiv.org/pdf/2303.12077 1. 摘要 自动驾驶需要对周围环境进行全面理解,以实现可靠的轨迹规划。以往的方法依赖于密集的栅格化场景表示(如:占据图、语义…...
CMake execute_process用法详解
execute_process 是 CMake 中的一个命令,用于在 CMake 配置阶段(即运行 cmake 命令时)执行外部进程。它与 add_custom_command 或 add_custom_target 不同,后者是在构建阶段(如 make 或 ninja)执行命令。ex…...
使用Postman调测“获取IAM用户Token”接口实际操作
概述 Postman是网页调试与辅助接口调用的工具,具有界面简洁清晰、操作方便快捷的特性,可以处理用户发送的HTTP请求,例如:GET,PUT、POST,DELETE等,支持用户修改HTTP请求中的参数并返回响应数据。…...
大模型面经 | 春招、秋招算法面试常考八股文附答案(三)
大家好,我是皮先生!! 今天给大家分享一些关于大模型面试常见的面试题,希望对大家的面试有所帮助。 往期回顾: 大模型面经 | 春招、秋招算法面试常考八股文附答案(RAG专题一) 大模型面经 | 春招、秋招算法面试常考八股文附答案(RAG专题二) 大模型面经 | 春招、秋招算法…...
高效Java面试题(附答案)
Java全家桶 Java基础 1. Java为什么被称为平台无关性语言? 2. 解释下什么是面向对象?面向对象和面向过程的区别 3. 面向对象的三大特性?分别解释下? 4. Java 中的参数传递时传值呢?还是传引用? 5. JD…...
Unreal如何使用后处理材质实现一个黑屏渐变效果
文章目录 前言相机后期处理材质创建材质相机设置动态修改FadeAlpha参数使用示例最后前言 UE5 开发VR ,如何通过PostProcess轻松实现黑屏渐变效果 最简单的办法,其实是使用一个半球形模型,遮挡住相机,然后控制这个半球形遮罩的颜色透明度,至少Unity中默认的Tunneling是这么…...
【自然语言处理与大模型】模型压缩技术之剪枝
一、什么是模型剪枝? 模型剪枝(Model Pruning)是一种神经网络模型压缩技术,其核心思想是通过删除或稀疏化模型中冗余的部分(如不重要的参数或神经元连接),在尽量保持模型性能的前提下࿰…...
OOA-CNN-LSTM-Attention、CNN-LSTM-Attention、OOA-CNN-LSTM、CNN-LSTM四模型多变量时序预测一键对比
OOA-CNN-LSTM-Attention、CNN-LSTM-Attention、OOA-CNN-LSTM、CNN-LSTM四模型多变量时序预测一键对比 目录 OOA-CNN-LSTM-Attention、CNN-LSTM-Attention、OOA-CNN-LSTM、CNN-LSTM四模型多变量时序预测一键对比预测效果基本介绍程序设计参考资料 预测效果 基本介绍 基于OOA-CN…...
Android Studio 国内镜像使用与 SDK 下载速度优化指南
本文适用于刚装好 Android Studio、SDK 下载缓慢、更新困难,以及 Gradle 构建缓慢的开发者。我们会讲: 如何替换国内镜像源(包括 SDK 和 Gradle) 如何解决 emulator 镜像下载失败的问题 一些终极提速技巧(比如代理配…...