240421 leetcode exercises
240421 leetcode exercises
@jarringslee
文章目录
- 240421 leetcode exercises
- [31. 下一个排列](https://leetcode.cn/problems/next-permutation/)
- 什么是字典序?
- 🔁二次遍历查找
- [82. 删除排序链表中的重复元素 II](https://leetcode.cn/problems/remove-duplicates-from-sorted-list-ii/)
- 🔁遍历 & 去重
31. 下一个排列
整数数组的一个 排列 就是将其所有成员以序列或线性顺序排列。
- 例如,
arr = [1,2,3]
,以下这些都可以视作arr
的排列:[1,2,3]
、[1,3,2]
、[3,1,2]
、[2,3,1]
。整数数组的 下一个排列 是指其整数的下一个字典序更大的排列。更正式地,如果数组的所有排列根据其字典顺序从小到大排列在一个容器中,那么数组的 下一个排列 就是在这个有序容器中排在它后面的那个排列。如果不存在下一个更大的排列,那么这个数组必须重排为字典序最小的排列(即,其元素按升序排列)。
- 例如,
arr = [1,2,3]
的下一个排列是[1,3,2]
。- 类似地,
arr = [2,3,1]
的下一个排列是[3,1,2]
。- 而
arr = [3,2,1]
的下一个排列是[1,2,3]
,因为[3,2,1]
不存在一个字典序更大的排列。给你一个整数数组
nums
,找出nums
的下一个排列。必须原地修改,只允许使用额外常数空间。
示例 1:
输入:nums = [1,2,3] 输出:[1,3,2]
示例 2:
输入:nums = [3,2,1] 输出:[1,2,3]
示例 3:
输入:nums = [1,1,5] 输出:[1,5,1]
很难受的一道题。算法只考了简单的排序,重点在思维与理解。首先你需要知道数组是如何按照字典序排序的。
什么是字典序?
字典序(Lexicographical Order)就是把序列(比如字符串、数组、单词序列等)当成“字典里的一行行词条”来排序,遵循人们查字典时的顺序习惯。具体来说:
逐位比较
给定两个序列 AA 和 BB,从第 0 位(或第 1 位)开始,往后依次比较它们的元素:
- 如果在第 k位上,A[k]<B[k],那么 A 在字典序中就排在 BB之前;
- 如果 A[k]>B[k,则 A排在 B之后;
- 如果 A[k]=B[k],继续比较下一位,直到遇到不相等的位置或其中一个序列结束。
前缀规则
如果一个序列是另一个序列的前缀,比如A=[1,2],B=[1,2,3]A = [1,2]\quad,\quad B = [1,2,3]
那么较短的那个 AA 会排在较长的那个 BB 之前(因为在“字典”里 shorter word 通常更靠前)。
形式化定义
我们设一下吧。设有两个整数序列。
A=(a0,a1,…,an−1),B=(b0,b1,…,bm−1)A = (a_0, a_1,…, a_{n-1}), B = (b_0, b_1,…, b_{m-1})
它们的字典序比较规则是:
找到最小的下标 k 使得 ak≠bk。
- 若存在这样的 kk,则
A<B ⟺ ak<bk
如果所有对应位置都相等(即前 min(n,m)\min(n,m) 个元素都相同),则
A<B ⟺ n<m
EXAMPLE
字符串
"apple"
与"apply"
:
比较到第四个字符然后
e < y
,所以"apple" < "apply"
。数组
- [1,2,4][1, 2, 4] 与 [1,2,3,9][1, 2, 3, 9]:
第 0、1 位都相同,比较第 2 位,4>34 > 3,所以 [1,2,4][1,2,4] 排在 [1,2,3,9][1,2,3,9] 之后。- [1,2][1,2] 与 [1,2,0][1,2,0]:
前两位相同,但第一个序列长度为 2,第二个长度为 3,所以 [1,2]<[1,2,0][1,2] < [1,2,0]。
在这个问题里,我们把所有排列看成有序列表,按照字典序从小到大排好,当前排列的“下一个”就是紧挨着它、在这套顺序里最小但又比它大的那个排列。正因为字典序天然对应“从小到大”的顺序,才能保证算法只需做一次局部修改(找到分界、交换、反转)就能得到下一个。
相信看到这里你依旧没看懂。不过没有关系,我们只需要凭感觉排列一下:
123
132
213
231
312
321
就是这样凭直觉来的排序。先升序排序,再交换后两位,再后三位,后四位…
那么我们再比如:
1 1 2 3 7 6 4
我们迅速找到最大数字7,往后看:是64
。说明这是1123746
的下一种排序。
那么这个下一个字典序一定要从当前数列后四位开始做文章。在3764
中,3XXX
的排序方法刚好排完,因为764
是降序,一定是最后一种(有了这个发现,我们就知道可以直接找数列从后到前升序的数列,并从这个数列的再向前一位开始处理)。
所以我们把比3大的下一个数字4摘出来放到3的位置,数列变成4XXX
。
而4XXX
的第一个字典序排序方法,上面也讲过了,当然是升序排序:4376
。那么,我们就得到了1123764
的下一种按字典序排序的数列:
1 1 2 4 3 7 6
🔁二次遍历查找
通过上面的例子,我们可以总结出“寻找下一个排列的”大致方法:
步骤 1:从后往前找到第一个降序对
我们用i
从后往前遍历,找到第一个满足 nums[i] < nums[i+1]
的索引 i
,我们称之为分界点”。如果找不到这样的 i
(整个数组是降序的),说明当前已经是最大的排列,我们将数组全部翻转成最小的排列(即升序)。否则,继续下一步。
步骤 2:从后往前找到第一个比 nums[i]
大的数字
我们继续从后往前查找,在数列的分界点右边找到第一个大于 nums[i]
的数字 nums[j]
。这里因为分界点之后的数列已经是降序数列了,所以直接遍历查找即可。
步骤 3:交换 nums[i]
和 nums[j]
步骤 4:翻转分界点右边所有数字(即升序排列)
交换后,右边部分仍是降序的,我们为了找到最小的比当前排列大的数,就要把这部分变成升序。
举个例子:nums = [1, 2, 3]
- 找到 i = 1,因为
nums[1] = 2 < 3
- 找到 j = 2,因为
nums[2] = 3 > 2
- 交换:nums = [1, 3, 2]
- 反转
i+1
之后的部分,不影响,因为2
后面已经是升序
//交换量输的函数
void swap(int* a, int* b) {int temp = *a;*a = *b;*b = temp;
}// 翻转函数,用于把降序变为升序
void reverse(int* nums, int start, int end) {while (start < end) {swap(&nums[start], &nums[end]);start++;end--;}
}void nextPermutation(int* nums, int numsSize) {int i = numsSize - 2;//找到第一个下降的位置 iwhile (i >= 0 && nums[i] >= nums[i + 1]) {i--;}if (i >= 0) {//找到第一个比 nums[i] 大的数字 jint j = numsSize - 1;while (j >= 0 && nums[j] <= nums[i]) {j--;}//交换 nums[i] 和 nums[j]swap(&nums[i], &nums[j]);}//翻转 i+1 到 numsSize-1 的部分reverse(nums, i + 1, numsSize - 1);
}
82. 删除排序链表中的重复元素 II
给定一个已排序的链表的头
head
, 删除原始链表中所有重复数字的节点,只留下不同的数字 。返回 已排序的链表 。示例 1:
输入:head = [1,2,3,3,4,4,5] 输出:[1,2,5]
示例 2:
输入:head = [1,1,1,2,3] 输出:[2,3]
这道题原本可以有点难度,但是他给出的是已经排好序的链表,所以难度断崖式降低。会遍历、会删除,这道题就没什么大问题了。
🔁遍历 & 去重
依旧是设置虚拟头结点和指向它的结构体指针。
由于要为删除链表做准备,所以我们在遍历时需要比较当前节点的后两个节点的值(那第一个节点就有重复怎么办?这就是我们设置虚拟头结点的原因之一。第一次遍历时直接开始比较的当前节点的下一个节点正是给出链表的头结点)。
我们把当前结点的下一个结点的值设为val,并和下下一个比较。如果这两个节点的值相同,那说明后面可能会有更多相同值,也可能没有了,但是我们一视同仁,直接进入删除环节:
再次进入判断:如果val值等于当前结点的下一个节点的值,那么删除该节点,并让当前节点移动至下一个节点,直到下一个节点的值不等于val值。
出判断后,当前这一坨相同值已经被我们处理干净了。我们让指针移动,继续判断后面的情况,最后返回虚拟头结点的下一个节点,也就是去重后链表的头结点。
struct ListNode* deleteDuplicates(struct ListNode* head) {struct ListNode dummy = {0, head};struct ListNode* now = &dummy;while (now -> next && now -> next -> next ){//判断后两个值int val = now -> next -> val;if (val == now -> next -> next -> val){//如果相等就进入循环删除操作while (now -> next && now -> next -> val == val){now -> next = now -> next -> next;}} else {//未发现重复就继续遍历链表now = now -> next;}}return dummy.next;
}
相关文章:
240421 leetcode exercises
240421 leetcode exercises jarringslee 文章目录 240421 leetcode exercises[31. 下一个排列](https://leetcode.cn/problems/next-permutation/)什么是字典序?🔁二次遍历查找 [82. 删除排序链表中的重复元素 II](https://leetcode.cn/problems/remove…...
批量导出多个文件和文件夹名称与路径信息到Excel表格的详细方法
在数字化时代,电脑中的文件和文件夹管理变得越来越重要啦。没有对文件进行定期整理时,寻找文件会我们耗费大量的时间。为了高效查找文件或文件夹,可以将其名称和路径记录下来并整理成清单。然而,当文件夹数量非常多时,…...
基于亚马逊云科技 Amazon Bedrock Tool Use 实现 Generative UI
背景 在当前 AI 应用开发浪潮中,越来越多的开发者专注于构建基于大语言模型(LLM)的 chatbot 和 AI Agent。然而,传统的纯文本对话形式存在局限性,无法为用户提供足够直观和丰富的交互体验。为了增强用户体验ÿ…...
Buildroot、BusyBox与Yocto:嵌入式系统构建工具对比与实战指南
文章目录 Buildroot、BusyBox与Yocto:嵌入式Linux系统构建工具完全指南一、为什么需要这些工具?1.1 嵌入式系统的特殊性1.2 传统开发的痛点二、BusyBox:嵌入式系统的"瑞士军刀"2.1 什么是BusyBox?2.2 核心功能2.3 安装与使用2.4 典型应用场景三、Buildroot:自动…...
Android 最简单的native二进制程序
Android.bp cc_binary {name: "my_native_bin",srcs: ["main.cpp"],cflags: ["-Wall", // 启用标准警告"-Werror", // 将警告视为错误"-fPIE", // 生成位置无关代码"-pie", …...
VR、AR、互动科技:武汉数字展馆制作引领未来展览新体验
在科技飞速发展的今天,数字化技术正以前所未有的速度渗透到各个领域,展馆行业也不例外。数字展馆,作为一种新兴的展示形式,正逐渐走进大众的视野,成为当下展馆发展的新潮流。 那么,究竟什么是数字展馆呢&am…...
从代码学习深度学习 - 学习率调度器 PyTorch 版
文章目录 前言一、理论背景二、代码解析2.1. 基本问题和环境设置2.2. 训练函数2.3. 无学习率调度器实验2.4. SquareRootScheduler 实验2.5. FactorScheduler 实验2.6. MultiFactorScheduler 实验2.7. CosineScheduler 实验2.8. 带预热的 CosineScheduler 实验三、结果对比与分析…...
Kotlin安卓算法总结
Kotlin 安卓算法优化指南 排序算法优化 1. 快速排序 // 使用三向切分的快速排序,对包含大量重复元素的数组更高效 fun optimizedQuickSort(arr: IntArray, low: Int 0, high: Int arr.lastIndex) {if (high < low) returnvar lt lowvar gt highval pivot …...
Eteam 0.3版本开发规划
Eteam 0.1系列经历了3个小版本,主要完成了团队资料库功能。 Eteam 0.2系列经历了22个小版本,主要完成了白板和AI交互的能力。 目前的问题 目前白板上的数据有两个来源,团队资料库和外部数据。外部数据和团队资料库数据边界不是很清晰。 0.3版…...
每天五分钟机器学习:凸优化
本文重点 凸优化作为一类特殊的数学优化问题,因其理论完备性和计算高效性,在人工智能领域发挥着至关重要的作用。从经典的逻辑回归到深度神经网络的初始化,从支持向量机的核技巧到强化学习的策略优化,凸优化理论不仅为算法提供了坚实的数学基础,还直接推动了人工智能模型…...
PyTorch与TensorFlow模型全方位解析:保存、加载与结构可视化
目录 前言一、保存整个模型二、pytorch模型的加载2.1 只保存的模型参数的加载方式:2.2 保存结构和参数的模型加载三、pytorch模型网络结构的查看3.1 print3.2 summary3.3 netron3.3.1 解决方法13.3.2 解决方法23.4 TensorboardX四、tensorflow 框架的线性回归4.1 …...
【图像变换】pytorch-CycleGAN-and-pix2pix的学习笔记
1. 问题记录 (1)在2080Ti上训练时模型“卡在了第63个epoch”没有任何变换 我们观察到模型一直卡在这里,“像静止了一样”没有任何变化; 也查看了一下显卡情况,看到显存占用为0%,如图所示,...
微信小程序 == 倒计时验证码组件 (countdown-verify)
组件介绍 这是一个用于获取验证码的倒计时按钮组件,支持自定义倒计时时间、按钮样式和文字格式。 基本用法 <countdown-verify seconds"60"button-text"获取验证码"bind:send"onSendVerifyCode" />属性说明 属性名类型默认…...
Ldap高效数据同步- Delta-Syncrepl复制模式配置实战手册(上)
#作者:朱雷 文章目录 一、Syncrepl 和Delta-syncrepl 回顾对比1.1. 什么是复制模式1.2. 什么是 syncrepl同步复制1.3. syncrepl同步复制的缺点1.4. 什么是Delta-syncrepl 复制 二、Ldap环境部署三、配置复制类型3.1. 编译安装3.2. 提供者端配置 一、Syncrepl 和Del…...
【Hive入门】Hive概述:大数据时代的数据仓库桥梁
目录 1 Hive概述:连接SQL世界与Hadoop生态 2 从传统数据仓库到Hive的演进之路 2.1 传统数据仓库的局限性 2.2 Hive的革命性突破 3 Hive的核心架构与执行流程 3.1 Hive系统架构 3.2 SQL查询执行全流程 4 Hive与传统方案的对比分析 5 Hive最佳实践 5.1 存储…...
靠华为脱胎换骨,但赛力斯仍需要Plan B
文|刘俊宏 编|王一粟 2024年底,撒贝宁在央视的一场直播中,终于“按捺不住”问了赛力斯董事长张兴海一个好奇已久的问题——“与华为合作之后,晚上是不是乐得睡不着觉?” “睡觉的时候还是该睡觉......不…...
【ESP32】【微信小程序】MQTT物联网智能家居案例
这里写自定义目录标题 案例成果1.Ardino写入部分2.微信小程序JS部分3.微信小程序xml部分4. 微信小程序CSS部分 案例成果 1.Ardino写入部分 #include <WiFi.h> // ESP32 WiFi库 #include <PubSubClient.h> // MQTT客户端库 #include <DHT.h> …...
应用层核心协议详解:HTTP, HTTPS, RPC 与 Nginx
应用层核心协议详解:HTTP, HTTPS, RPC 与 Nginx 前言一、HTTP:Web的基石1.1 HTTP协议的核心特点1.2 HTTP 报文格式1.3 HTTP 方法 (Methods)1.4 HTTP 状态码 (Status Codes)1.5 连接管理:短连接 vs 长连接1.6 HTTP 版本演进1.7 状态管理&#…...
解析三大中间件:Nginx、Apache与Tomcat
目录 一、基础定义与核心功能 二、核心区别与适用场景对比 三、为什么需要组合使用? 四、如何选择?一句话总结 五、技术演进与未来趋势 一、基础定义与核心功能 Nginx 定位:高性能的HTTP服务器与反向代理工具。核心能…...
关于 梯度下降算法、线性回归模型、梯度下降训练线性回归、线性回归的其他训练算法 以及 回归模型分类 的详细说明
以下是关于 梯度下降算法、线性回归模型、梯度下降训练线性回归、线性回归的其他训练算法 以及 回归模型分类 的详细说明: 1. 梯度下降算法详解 核心概念 梯度下降是一种 优化算法,用于寻找函数的最小值。其核心思想是沿着函数梯度的反方向逐步迭代&a…...
【数据结构和算法】4. 链表 LinkedList
本文根据 数据结构和算法入门 视频记录 文章目录 1. 链表的概念1.1 链表的类型1.2 链表的基本操作 2. 单向链表的实现2.1 插入2.2 删除2.3 查找2.4 更新 1. 链表的概念 我们知道数组是很常用的数据储存方式,而链表就是继数组之后,第二种最通用的数据储…...
基于S2B2C模式与定制开发开源AI智能名片的小程序商城系统研究
摘要:在新零售蓬勃发展的大背景下,S2B2C模式凭借其对消费场景的强力支撑以及柔性供应链的显著优势,成为推动零售行业变革的关键力量。本文深入剖析S2B2C模式,着重探讨定制开发开源AI智能名片S2B2C商城小程序源码的实践意义。通过分…...
【Python核心库实战指南】从数据处理到Web开发
目录 前言:技术背景与价值当前技术痛点解决方案概述目标读者说明 一、技术原理剖析核心概念图解核心作用讲解关键技术模块对比 二、实战演示环境配置要求核心代码实现(5个案例)案例1:NumPy数组运算案例2:Pandas数据分析…...
【错误记录】Windows 命令行程序循环暂停问题分析 ( 设置 “ 命令记录 “ 选项 | 启用 “ 丢弃旧的副本 “ 选项 | 将日志重定向到文件 )
文章目录 一、报错信息二、问题分析1、Windows 命令行的缓冲区机制2、命令记录设置 三、解决方案1、设置 " 命令记录 " 选项2、将日志重定向到文件 一、报错信息 Java 程序中 , 设置 无限循环 , 每次循环 休眠 10 秒后 , 再执行程序逻辑 , 在命令行中打印日志信息 ; …...
【iOS】Blocks学习
Blocks学习 Blocks概要Blocks模式Blocks语法Blocks类型变量截获自动变量值__block说明符截获的自动变量 Blocks的实现Blocks的实质截获自动变量值__block说明符Block存储域_block变量存储域截获对象__block变量和对象 总结 Blocks概要 Blocks是C语言的扩充功能,简单…...
Spring MVC DispatcherServlet 的作用是什么? 它在整个请求处理流程中扮演了什么角色?为什么它是核心?
DispatcherServlet 是 Spring MVC 框架的绝对核心和灵魂。它扮演着前端控制器(Front Controller)的角色,是所有进入 Spring MVC 应用程序的 HTTP 请求的统一入口点和中央调度枢纽。 一、 DispatcherServlet 的核心作用和职责: 请…...
QT 5.15 程序打包
说明: windeployqt 是 Qt 提供的一个工具,用于自动收集并复制运行 Qt 应用程序所需的动态链接库(.dll 文件)及其他资源(如插件、QML 模块等)到可执行文件所在的目录。这样你就可以将应用程序和这些依赖项一…...
PyCharm 初级教程:从安装到第一个 Python 项目
作为 Python 程序员,无论是刚入门还是工作多年,PyCharm 都是一个绕不开的开发工具。它是 JetBrains 出品的一款强大的 Python IDE,有自动补全、调试、虚拟环境支持、代码检查等等功能,体验比命令行 记事本舒服一百倍。 今天这篇…...
【Linux】进程替换与自定义 Shell:原理与实战
目录 一、进程程序替换 1、替换原理 2、替换函数 (1)函数解释 ① filename / pathname ② 参数表传递 ③ 环境变量表传递 (2)命名理解 二、自定义shell命令行解释器 1、实现原理 2、实现代码 (1)获…...
【AI提示词】数据分析专家
提示说明 数据分析师专家致力于通过深入分析和解读数据,帮助用户发现数据背后的模式和趋势。他们通常在商业智能、市场研究、社会科学等领域发挥重要作用,为决策提供数据支持。 提示词 # 角色 数据分析师专家## 注意 1. 数据分析师专家需要具备高度的…...
Lucky配置反向代理+Https安全访问AxureCloud服务(解决证书续签问题)
前言 之前用AxureCloud配置了SSL证书,发现ssl证书3个月就过期了,还需要手动续证书,更改配置文件,重启服务才能正常使用,太过于麻烦。也暴露了过多不安全的端口在公网,操作过于麻烦。另外暴露了过多不安全的…...
vscode使用remote ssh插件连接服务器的问题
本人今天发现自己的vscode使用remote ssh连接不上服务器了,表现是:始终在初始化 解决方法: 参考链接:vscode remote-ssh 连接失败的基本原理和优雅的解决方案 原因 vscode 的 SSH 之所以能够拥有比传统 SSH 更加强大的功能&a…...
WWW和WWWForm类
WWW类 WWW类是什么 //WWW是Unity提供的简单的访问网页的类 //我们可以通过该类上传和下载一些资源 //在使用http是,默认的请求类型是get,如果想要用post上传需要配合WWWFrom类使用 //它主要支持的协议: //…...
利用课程编辑器创新教学,提升竞争力
(一)快速创建优质教学内容 对于教育机构来说,教学内容的质量是吸引学员的关键因素之一。而课程编辑器就像是一位得力的助手,帮助教师快速创建出优质的教学内容。课程编辑器通常具有简洁易用的界面,教师即使没有专业的…...
spark与hadoop的区别
一.概述 二.处理速度 三.编程模型 四:实时性处理 五.spark内置模块 六.spark的运行模式...
【项目日记(三)】
目录 SERVER服务器模块实现: 1、Buffer模块:缓冲区模块 2、套接字Socket类实现: 3、事件管理Channel类实现: 4、 描述符事件监控Poller类实现: 5、定时任务管理TimerWheel类实现: eventfd 6、Reac…...
【图片转PDF工具】如何批量将文件夹里的图片以文件夹为单位批量合并PDF文档,基于WPF实现步骤及总结
应用场景 在实际工作和生活中,我们可能会遇到需要将一个文件夹内的多张图片合并成一个 PDF 文档的情况。例如,设计师可能会将一个项目的所有设计稿图片整理在一个文件夹中,然后合并成一个 PDF 方便交付给客户;摄影师可能会将一次拍摄的所有照片按拍摄主题存放在不同文件夹…...
深度解析算法之位运算
33.常见位运算 1.基础位运算 << 左移操作符 > >右移操作符号 ~取反 &按位与:有0就是0 |按位或:有1就是1 ^按位异或:相同为0,不用的话就是1 /无进位相加 0 1 0 0 1 1 0 1 0 按位与结果 0 1 1 按位或结果 0 0 1 …...
深入探索Qt异步编程--从信号槽到Future
概述 在现代软件开发中,应用程序的响应速度和用户体验是至关重要的。尤其是在图形用户界面(GUI)应用中,长时间运行的任务如果直接在主线程执行会导致界面冻结,严重影响用户体验。 Qt提供了一系列工具和技术来帮助开发者实现异步编程,从而避免这些问题。本文将深入探讨Qt…...
【KWDB 创作者计划】_本地化部署与使用KWDB 深度实践
引言 KWDB 是一款面向 AIoT 场景的分布式多模数据库,由开放原子开源基金会孵化及运营。它能在同一实例同时建立时序库和关系库,融合处理多模数据,具备强大的数据处理能力,可实现千万级设备接入、百万级数据秒级写入、亿级数据秒级…...
基于XC7V690T的在轨抗单粒子翻转系统设计
本文介绍一种基于XC7V690T 的在轨抗单粒子翻转系统架构;其硬件架构主要由XC7V690TSRAM 型FPGA芯片、AX500反熔丝型FPGA 芯片以及多片FLASH 组成;软件架构主要包括AX500反熔丝型FPGA对XC7V690T进行配置管理及监控管理,对XC7V690T进行在轨重构管理,XC7V690T通过调用内部SEMIP核实…...
机器学习 Day13 Boosting集成学习方法: Adaboosting和GBDT
大多数优化算法可以分解为三个主要部分: 模型函数:如何组合特征进行预测(如线性加法) 损失函数:衡量预测与真实值的差距(如交叉熵、平方损失) 优化方法:如何最小化损失函数&#x…...
Floyd算法求解最短路径问题——从零开始的图论讲解(3)
目录 前言 Djikstra算法的缺陷 为什么无法解决负权图 模拟流程 什么是Floyd算法 Floyd算法的核心思想 状态表示 状态转移方程 边界设置 代码实现 逻辑解释 举例说明 Floyd算法的特点 结尾 前言 这是笔者图论系列的第三篇博客 第一篇: 图的概念,图的存储,图的…...
spark和hadoop的区别与联系
区别 1. 数据处理模型 Hadoop:主要依赖 MapReduce 模型,计算分 Map(映射)和 Reduce(归约)两个阶段,中间结果常需写入磁盘,磁盘 I/O 操作频繁,数据处理速度相对受限&#…...
XMLXXE 安全无回显方案OOB 盲注DTD 外部实体黑白盒挖掘
# 详细点: XML 被设计为传输和存储数据, XML 文档结构包括 XML 声明、 DTD 文档类型定义(可 选)、文档元素,其焦点是数据的内容,其把数据从 HTML 分离,是独立于软件和硬件的 信息传输…...
C# .NET如何自动实现依赖注入(DI)
为解决重复性的工作,自动实现依赖注入(DI) 示例代码如下 namespace DialysisSOPSystem.Infrastructure {public static class ServiceCollectionExtensions{/// <summary>/// 批量注入服务/// </summary>/// <param name&qu…...
FastGPT Docker Compose本地部署与硅基流动免费AI接口集成指南
本文参考:https://doc.tryfastgpt.ai/docs/development/ 一、背景与技术优势 FastGPT是基于LLM的知识库问答系统,支持自定义数据训练与多模型接入。硅基流动(SiliconFlow)作为AI基础设施平台,提供高性能大模型推理引…...
AI对话高效输入指令攻略(三):使用大忌——“AI味”
免责声明: 1.本文所提供的所有 AI 使用示例及提示词,仅用于学术写作技巧交流与 AI 功能探索测试,无任何唆使或鼓励利用 AI 抄袭作业、学术造假的意图。 2.文章中提及的内容旨在帮助读者提升与 AI 交互的能力,合理运用 AI 辅助学…...
算法 | 成长优化算法(Growth Optimizer,GO)原理,公式,应用,算法改进研究综述,matlab代码
===================================================== github:https://github.com/MichaelBeechan CSDN:https://blog.csdn.net/u011344545 ===================================================== 成长优化算法 一、算法原理二、核心公式三、应用领域四、算法改进研究五…...
生产环境问题排查:日志分析与性能瓶颈定位(一)
引言 在当今数字化时代,各类应用系统如潮水般涌现,支撑着我们生活和工作的方方面面。从日常使用的电商平台、社交网络,到企业内部复杂的业务系统,它们的稳定运行和高效性能至关重要。而在生产环境中,日志分析与性能瓶…...