当前位置: 首页 > news >正文

从代码学习深度学习 - 学习率调度器 PyTorch 版

文章目录

  • 前言
  • 一、理论背景
  • 二、代码解析
    • 2.1. 基本问题和环境设置
    • 2.2. 训练函数
    • 2.3. 无学习率调度器实验
    • 2.4. SquareRootScheduler 实验
    • 2.5. FactorScheduler 实验
    • 2.6. MultiFactorScheduler 实验
    • 2.7. CosineScheduler 实验
    • 2.8. 带预热的 CosineScheduler 实验
  • 三、结果对比与分析
  • 总结


前言

学习率是深度学习优化中的关键超参数,决定了模型参数更新的步长。固定学习率可能导致训练初期收敛过慢或后期在次优解附近震荡。学习率调度器(Learning Rate Scheduler)通过动态调整学习率,帮助模型在不同训练阶段高效优化,平衡快速收敛与精细调整的需求。本文基于 PyTorch,在 Fashion-MNIST 数据集上使用 LeNet 模型,展示五种学习率调度策略:无调度器、SquareRootScheduler、FactorScheduler、MultiFactorScheduler 和 CosineScheduler(包括带预热的版本)。通过代码实现、实验结果和可视化,我们将深入探讨每种调度器的理论基础和实际效果,帮助读者从代码角度理解学习率调度器的核心作用。
值得注意的是,本文展示的代码不完整,仅展示了与学习率调度器相关的部分,完整代码包含了可视化、数据加载和训练辅助函数,完整代码可以通过下方链接下载。
完整代码:下载链接


一、理论背景

学习率调度器的设计需要考虑以下几个关键因素:

  1. 学习率大小:过大的学习率可能导致优化发散,过小则使训练缓慢或陷入次优解。问题条件数(最不敏感与最敏感方向变化的比率)影响学习率的选择。
  2. 衰减速率:学习率需要逐步降低以避免在最小值附近震荡,但衰减不能过快(如 ( O(t^{-1/2}) ) 是凸问题优化的一个合理选择)。
  3. 预热(Warmup):在训练初期,随机初始化的参数可能导致不稳定的更新方向。通过逐渐增加学习率(预热),可以稳定初期优化。
  4. 周期性调整:某些调度器(如余弦调度器)通过周期性调整学习率,探索更优的解空间。

本文将通过实验验证这些因素如何影响模型性能。

二、代码解析

以下是完整的 PyTorch 实现,包含模型定义、训练函数和五种调度器实验。

2.1. 基本问题和环境设置

我们使用 LeNet 模型在 Fashion-MNIST 数据集上进行分类,设置损失函数、设备和数据加载器。

%matplotlib inline
import math
import torch
from torch import nn
from torch.optim import lr_scheduler
import utils_for_train
import utils_for_data
import utils_for_huitudef net_fn():"""定义LeNet神经网络模型"""model = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.ReLU(),  # 输出: [batch_size, 6, 28, 28]nn.MaxPool2d(kernel_size=2, stride=2),  # 输出: [batch_size, 6, 14, 14]nn.Conv2d(6, 16, kernel_size=5), nn.ReLU(),  # 输出: [batch_size, 16, 10, 10]nn.MaxPool2d(kernel_size=2, stride=2),  # 输出: [batch_size, 16, 5, 5]nn.Flatten(),  # 输出: [batch_size, 16*5*5]nn.Linear(16 * 5 * 5, 120), nn.ReLU(),  # 输出: [batch_size, 120]nn.Linear(120, 84), nn.ReLU(),  # 输出: [batch_size, 84]nn.Linear(84, 10)  # 输出: [batch_size, 10])return model# 定义损失函数
loss = nn.CrossEntropyLoss()# 选择计算设备
device = utils_for_train.try_gpu()# 设置批量大小和训练轮数
batch_size = 256
num_epochs = 30# 加载Fashion-MNIST数据集
train_iter, test_iter = utils_for_data.load_data_fashion_mnist(batch_size=batch_size)

解析

  • LeNet 模型:适用于 Fashion-MNIST 的 28x28 灰度图像分类,包含两层卷积+池化和三层全连接层。
  • 损失函数:交叉熵损失,适合多分类任务。
  • 数据加载:批量大小为 256,输入维度为 [batch_size, 1, 28, 28],标签维度为 [batch_size]

2.2. 训练函数

训练函数支持多种学习率调度器,负责模型训练、评估和可视化。

def train(net, train_iter, test_iter, num_epochs, loss, trainer, device, scheduler=None):"""训练模型函数参数:net: 神经网络模型train_iter: 训练数据迭代器, 维度: [batch_size, 1, 28, 28], [batch_size]test_iter: 测试数据迭代器, 维度: [batch_size, 1, 28, 28], [batch_size]num_epochs: 训练轮数, 标量loss: 损失函数trainer: 优化器device: 计算设备(GPU/CPU)scheduler: 学习率调度器, 默认为None"""net.to(device)animator = utils_for_huitu.Animator(xlabel='epoch', xlim=[0, num_epochs],legend=['train loss', 'train acc', 'test acc'])for epoch in range(num_epochs):metric = utils_for_train.Accumulator(3)  # [总损失, 准确预测数, 样本总数]for i, (X, y) in enumerate(train_iter):net.train()trainer.zero_grad()X, y = X.to(device), y.

相关文章:

从代码学习深度学习 - 学习率调度器 PyTorch 版

文章目录 前言一、理论背景二、代码解析2.1. 基本问题和环境设置2.2. 训练函数2.3. 无学习率调度器实验2.4. SquareRootScheduler 实验2.5. FactorScheduler 实验2.6. MultiFactorScheduler 实验2.7. CosineScheduler 实验2.8. 带预热的 CosineScheduler 实验三、结果对比与分析…...

Kotlin安卓算法总结

Kotlin 安卓算法优化指南 排序算法优化 1. 快速排序 // 使用三向切分的快速排序&#xff0c;对包含大量重复元素的数组更高效 fun optimizedQuickSort(arr: IntArray, low: Int 0, high: Int arr.lastIndex) {if (high < low) returnvar lt lowvar gt highval pivot …...

Eteam 0.3版本开发规划

Eteam 0.1系列经历了3个小版本&#xff0c;主要完成了团队资料库功能。 Eteam 0.2系列经历了22个小版本&#xff0c;主要完成了白板和AI交互的能力。 目前的问题 目前白板上的数据有两个来源&#xff0c;团队资料库和外部数据。外部数据和团队资料库数据边界不是很清晰。 0.3版…...

每天五分钟机器学习:凸优化

本文重点 凸优化作为一类特殊的数学优化问题,因其理论完备性和计算高效性,在人工智能领域发挥着至关重要的作用。从经典的逻辑回归到深度神经网络的初始化,从支持向量机的核技巧到强化学习的策略优化,凸优化理论不仅为算法提供了坚实的数学基础,还直接推动了人工智能模型…...

PyTorch与TensorFlow模型全方位解析:保存、加载与结构可视化

目录 前言一、保存整个模型二、pytorch模型的加载2.1 只保存的模型参数的加载方式&#xff1a;2.2 保存结构和参数的模型加载三、pytorch模型网络结构的查看3.1 print3.2 summary3.3 netron3.3.1 解决方法13.3.2 解决方法23.4 TensorboardX四、tensorflow 框架的线性回归4.1 …...

【图像变换】pytorch-CycleGAN-and-pix2pix的学习笔记

1. 问题记录 &#xff08;1&#xff09;在2080Ti上训练时模型“卡在了第63个epoch”没有任何变换 我们观察到模型一直卡在这里&#xff0c;“像静止了一样”没有任何变化&#xff1b; 也查看了一下显卡情况&#xff0c;看到显存占用为0%&#xff0c;如图所示&#xff0c;...

微信小程序 == 倒计时验证码组件 (countdown-verify)

组件介绍 这是一个用于获取验证码的倒计时按钮组件&#xff0c;支持自定义倒计时时间、按钮样式和文字格式。 基本用法 <countdown-verify seconds"60"button-text"获取验证码"bind:send"onSendVerifyCode" />属性说明 属性名类型默认…...

Ldap高效数据同步- Delta-Syncrepl复制模式配置实战手册(上)

#作者&#xff1a;朱雷 文章目录 一、Syncrepl 和Delta-syncrepl 回顾对比1.1. 什么是复制模式1.2. 什么是 syncrepl同步复制1.3. syncrepl同步复制的缺点1.4. 什么是Delta-syncrepl 复制 二、Ldap环境部署三、配置复制类型3.1. 编译安装3.2. 提供者端配置 一、Syncrepl 和Del…...

【Hive入门】Hive概述:大数据时代的数据仓库桥梁

目录 1 Hive概述&#xff1a;连接SQL世界与Hadoop生态 2 从传统数据仓库到Hive的演进之路 2.1 传统数据仓库的局限性 2.2 Hive的革命性突破 3 Hive的核心架构与执行流程 3.1 Hive系统架构 3.2 SQL查询执行全流程 4 Hive与传统方案的对比分析 5 Hive最佳实践 5.1 存储…...

靠华为脱胎换骨,但赛力斯仍需要Plan B

文&#xff5c;刘俊宏 编&#xff5c;王一粟 2024年底&#xff0c;撒贝宁在央视的一场直播中&#xff0c;终于“按捺不住”问了赛力斯董事长张兴海一个好奇已久的问题——“与华为合作之后&#xff0c;晚上是不是乐得睡不着觉&#xff1f;” “睡觉的时候还是该睡觉......不…...

【ESP32】【微信小程序】MQTT物联网智能家居案例

这里写自定义目录标题 案例成果1.Ardino写入部分2.微信小程序JS部分3.微信小程序xml部分4. 微信小程序CSS部分 案例成果 1.Ardino写入部分 #include <WiFi.h> // ESP32 WiFi库 #include <PubSubClient.h> // MQTT客户端库 #include <DHT.h> …...

应用层核心协议详解:HTTP, HTTPS, RPC 与 Nginx

应用层核心协议详解&#xff1a;HTTP, HTTPS, RPC 与 Nginx 前言一、HTTP&#xff1a;Web的基石1.1 HTTP协议的核心特点1.2 HTTP 报文格式1.3 HTTP 方法 (Methods)1.4 HTTP 状态码 (Status Codes)1.5 连接管理&#xff1a;短连接 vs 长连接1.6 HTTP 版本演进1.7 状态管理&#…...

解析三大中间件:Nginx、Apache与Tomcat

目录 一、基础定义与核心功能 二、核心区别与适用场景对比 三、为什么需要组合使用&#xff1f; 四、如何选择&#xff1f;一句话总结 五、技术演进与未来趋势 一、基础定义与核心功能 ​​Nginx​​ ​​定位​​&#xff1a;高性能的HTTP服务器与反向代理工具。​​核心能…...

关于 梯度下降算法、线性回归模型、梯度下降训练线性回归、线性回归的其他训练算法 以及 回归模型分类 的详细说明

以下是关于 梯度下降算法、线性回归模型、梯度下降训练线性回归、线性回归的其他训练算法 以及 回归模型分类 的详细说明&#xff1a; 1. 梯度下降算法详解 核心概念 梯度下降是一种 优化算法&#xff0c;用于寻找函数的最小值。其核心思想是沿着函数梯度的反方向逐步迭代&a…...

【数据结构和算法】4. 链表 LinkedList

本文根据 数据结构和算法入门 视频记录 文章目录 1. 链表的概念1.1 链表的类型1.2 链表的基本操作 2. 单向链表的实现2.1 插入2.2 删除2.3 查找2.4 更新 1. 链表的概念 我们知道数组是很常用的数据储存方式&#xff0c;而链表就是继数组之后&#xff0c;第二种最通用的数据储…...

基于S2B2C模式与定制开发开源AI智能名片的小程序商城系统研究

摘要&#xff1a;在新零售蓬勃发展的大背景下&#xff0c;S2B2C模式凭借其对消费场景的强力支撑以及柔性供应链的显著优势&#xff0c;成为推动零售行业变革的关键力量。本文深入剖析S2B2C模式&#xff0c;着重探讨定制开发开源AI智能名片S2B2C商城小程序源码的实践意义。通过分…...

【Python核心库实战指南】从数据处理到Web开发

目录 前言&#xff1a;技术背景与价值当前技术痛点解决方案概述目标读者说明 一、技术原理剖析核心概念图解核心作用讲解关键技术模块对比 二、实战演示环境配置要求核心代码实现&#xff08;5个案例&#xff09;案例1&#xff1a;NumPy数组运算案例2&#xff1a;Pandas数据分析…...

【错误记录】Windows 命令行程序循环暂停问题分析 ( 设置 “ 命令记录 “ 选项 | 启用 “ 丢弃旧的副本 “ 选项 | 将日志重定向到文件 )

文章目录 一、报错信息二、问题分析1、Windows 命令行的缓冲区机制2、命令记录设置 三、解决方案1、设置 " 命令记录 " 选项2、将日志重定向到文件 一、报错信息 Java 程序中 , 设置 无限循环 , 每次循环 休眠 10 秒后 , 再执行程序逻辑 , 在命令行中打印日志信息 ; …...

【iOS】Blocks学习

Blocks学习 Blocks概要Blocks模式Blocks语法Blocks类型变量截获自动变量值__block说明符截获的自动变量 Blocks的实现Blocks的实质截获自动变量值__block说明符Block存储域_block变量存储域截获对象__block变量和对象 总结 Blocks概要 Blocks是C语言的扩充功能&#xff0c;简单…...

Spring MVC DispatcherServlet 的作用是什么? 它在整个请求处理流程中扮演了什么角色?为什么它是核心?

DispatcherServlet 是 Spring MVC 框架的绝对核心和灵魂。它扮演着前端控制器&#xff08;Front Controller&#xff09;的角色&#xff0c;是所有进入 Spring MVC 应用程序的 HTTP 请求的统一入口点和中央调度枢纽。 一、 DispatcherServlet 的核心作用和职责&#xff1a; 请…...

QT 5.15 程序打包

说明&#xff1a; windeployqt 是 Qt 提供的一个工具&#xff0c;用于自动收集并复制运行 Qt 应用程序所需的动态链接库&#xff08;.dll 文件&#xff09;及其他资源&#xff08;如插件、QML 模块等&#xff09;到可执行文件所在的目录。这样你就可以将应用程序和这些依赖项一…...

PyCharm 初级教程:从安装到第一个 Python 项目

作为 Python 程序员&#xff0c;无论是刚入门还是工作多年&#xff0c;PyCharm 都是一个绕不开的开发工具。它是 JetBrains 出品的一款强大的 Python IDE&#xff0c;有自动补全、调试、虚拟环境支持、代码检查等等功能&#xff0c;体验比命令行 记事本舒服一百倍。 今天这篇…...

【Linux】进程替换与自定义 Shell:原理与实战

目录 一、进程程序替换 1、替换原理 2、替换函数 &#xff08;1&#xff09;函数解释 ① filename / pathname ② 参数表传递 ③ 环境变量表传递 &#xff08;2&#xff09;命名理解 二、自定义shell命令行解释器 1、实现原理 2、实现代码 &#xff08;1&#xff09;获…...

【AI提示词】数据分析专家

提示说明 数据分析师专家致力于通过深入分析和解读数据&#xff0c;帮助用户发现数据背后的模式和趋势。他们通常在商业智能、市场研究、社会科学等领域发挥重要作用&#xff0c;为决策提供数据支持。 提示词 # 角色 数据分析师专家## 注意 1. 数据分析师专家需要具备高度的…...

Lucky配置反向代理+Https安全访问AxureCloud服务(解决证书续签问题)

前言 之前用AxureCloud配置了SSL证书&#xff0c;发现ssl证书3个月就过期了&#xff0c;还需要手动续证书&#xff0c;更改配置文件&#xff0c;重启服务才能正常使用&#xff0c;太过于麻烦。也暴露了过多不安全的端口在公网&#xff0c;操作过于麻烦。另外暴露了过多不安全的…...

vscode使用remote ssh插件连接服务器的问题

本人今天发现自己的vscode使用remote ssh连接不上服务器了&#xff0c;表现是&#xff1a;始终在初始化 解决方法&#xff1a; 参考链接&#xff1a;vscode remote-ssh 连接失败的基本原理和优雅的解决方案 原因 vscode 的 SSH 之所以能够拥有比传统 SSH 更加强大的功能&a…...

WWW和WWWForm类

WWW类 WWW类是什么 //WWW是Unity提供的简单的访问网页的类 //我们可以通过该类上传和下载一些资源 //在使用http是&#xff0c;默认的请求类型是get&#xff0c;如果想要用post上传需要配合WWWFrom类使用 //它主要支持的协议&#xff1a; //…...

利用课程编辑器创新教学,提升竞争力​

&#xff08;一&#xff09;快速创建优质教学内容​ 对于教育机构来说&#xff0c;教学内容的质量是吸引学员的关键因素之一。而课程编辑器就像是一位得力的助手&#xff0c;帮助教师快速创建出优质的教学内容。课程编辑器通常具有简洁易用的界面&#xff0c;教师即使没有专业的…...

spark与hadoop的区别

一.概述 二.处理速度 三.编程模型 四&#xff1a;实时性处理 五.spark内置模块 六.spark的运行模式...

【项目日记(三)】

目录 SERVER服务器模块实现&#xff1a; 1、Buffer模块&#xff1a;缓冲区模块 2、套接字Socket类实现&#xff1a; 3、事件管理Channel类实现&#xff1a; 4、 描述符事件监控Poller类实现&#xff1a; 5、定时任务管理TimerWheel类实现&#xff1a; eventfd 6、Reac…...

【图片转PDF工具】如何批量将文件夹里的图片以文件夹为单位批量合并PDF文档,基于WPF实现步骤及总结

应用场景 在实际工作和生活中,我们可能会遇到需要将一个文件夹内的多张图片合并成一个 PDF 文档的情况。例如,设计师可能会将一个项目的所有设计稿图片整理在一个文件夹中,然后合并成一个 PDF 方便交付给客户;摄影师可能会将一次拍摄的所有照片按拍摄主题存放在不同文件夹…...

深度解析算法之位运算

33.常见位运算 1.基础位运算 << 左移操作符 > >右移操作符号 ~取反 &按位与&#xff1a;有0就是0 |按位或&#xff1a;有1就是1 ^按位异或&#xff1a;相同为0&#xff0c;不用的话就是1 /无进位相加 0 1 0 0 1 1 0 1 0 按位与结果 0 1 1 按位或结果 0 0 1 …...

深入探索Qt异步编程--从信号槽到Future

概述 在现代软件开发中,应用程序的响应速度和用户体验是至关重要的。尤其是在图形用户界面(GUI)应用中,长时间运行的任务如果直接在主线程执行会导致界面冻结,严重影响用户体验。 Qt提供了一系列工具和技术来帮助开发者实现异步编程,从而避免这些问题。本文将深入探讨Qt…...

【KWDB 创作者计划】_本地化部署与使用KWDB 深度实践

引言 KWDB 是一款面向 AIoT 场景的分布式多模数据库&#xff0c;由开放原子开源基金会孵化及运营。它能在同一实例同时建立时序库和关系库&#xff0c;融合处理多模数据&#xff0c;具备强大的数据处理能力&#xff0c;可实现千万级设备接入、百万级数据秒级写入、亿级数据秒级…...

基于XC7V690T的在轨抗单粒子翻转系统设计

本文介绍一种基于XC7V690T 的在轨抗单粒子翻转系统架构;其硬件架构主要由XC7V690TSRAM 型FPGA芯片、AX500反熔丝型FPGA 芯片以及多片FLASH 组成;软件架构主要包括AX500反熔丝型FPGA对XC7V690T进行配置管理及监控管理,对XC7V690T进行在轨重构管理,XC7V690T通过调用内部SEMIP核实…...

机器学习 Day13 Boosting集成学习方法: Adaboosting和GBDT

大多数优化算法可以分解为三个主要部分&#xff1a; 模型函数&#xff1a;如何组合特征进行预测&#xff08;如线性加法&#xff09; 损失函数&#xff1a;衡量预测与真实值的差距&#xff08;如交叉熵、平方损失&#xff09; 优化方法&#xff1a;如何最小化损失函数&#x…...

Floyd算法求解最短路径问题——从零开始的图论讲解(3)

目录 前言 Djikstra算法的缺陷 为什么无法解决负权图 模拟流程 什么是Floyd算法 Floyd算法的核心思想 状态表示 状态转移方程 边界设置 代码实现 逻辑解释 举例说明 Floyd算法的特点 结尾 前言 这是笔者图论系列的第三篇博客 第一篇: 图的概念,图的存储,图的…...

spark和hadoop的区别与联系

区别 1. 数据处理模型 Hadoop&#xff1a;主要依赖 MapReduce 模型&#xff0c;计算分 Map&#xff08;映射&#xff09;和 Reduce&#xff08;归约&#xff09;两个阶段&#xff0c;中间结果常需写入磁盘&#xff0c;磁盘 I/O 操作频繁&#xff0c;数据处理速度相对受限&#…...

XMLXXE 安全无回显方案OOB 盲注DTD 外部实体黑白盒挖掘

# 详细点&#xff1a; XML 被设计为传输和存储数据&#xff0c; XML 文档结构包括 XML 声明、 DTD 文档类型定义&#xff08;可 选&#xff09;、文档元素&#xff0c;其焦点是数据的内容&#xff0c;其把数据从 HTML 分离&#xff0c;是独立于软件和硬件的 信息传输…...

C# .NET如何自动实现依赖注入(DI)

为解决重复性的工作&#xff0c;自动实现依赖注入&#xff08;DI&#xff09; 示例代码如下 namespace DialysisSOPSystem.Infrastructure {public static class ServiceCollectionExtensions{/// <summary>/// 批量注入服务/// </summary>/// <param name&qu…...

FastGPT Docker Compose本地部署与硅基流动免费AI接口集成指南

本文参考&#xff1a;https://doc.tryfastgpt.ai/docs/development/ 一、背景与技术优势 FastGPT是基于LLM的知识库问答系统&#xff0c;支持自定义数据训练与多模型接入。硅基流动&#xff08;SiliconFlow&#xff09;作为AI基础设施平台&#xff0c;提供高性能大模型推理引…...

AI对话高效输入指令攻略(三):使用大忌——“AI味”

免责声明&#xff1a; 1.本文所提供的所有 AI 使用示例及提示词&#xff0c;仅用于学术写作技巧交流与 AI 功能探索测试&#xff0c;无任何唆使或鼓励利用 AI 抄袭作业、学术造假的意图。 2.文章中提及的内容旨在帮助读者提升与 AI 交互的能力&#xff0c;合理运用 AI 辅助学…...

算法 | 成长优化算法(Growth Optimizer,GO)原理,公式,应用,算法改进研究综述,matlab代码

===================================================== github:https://github.com/MichaelBeechan CSDN:https://blog.csdn.net/u011344545 ===================================================== 成长优化算法 一、算法原理二、核心公式三、应用领域四、算法改进研究五…...

生产环境问题排查:日志分析与性能瓶颈定位(一)

引言 在当今数字化时代&#xff0c;各类应用系统如潮水般涌现&#xff0c;支撑着我们生活和工作的方方面面。从日常使用的电商平台、社交网络&#xff0c;到企业内部复杂的业务系统&#xff0c;它们的稳定运行和高效性能至关重要。而在生产环境中&#xff0c;日志分析与性能瓶…...

go语言的八股文

1.go语言触发异常的场景有哪些 运行时错误 1.空指针解引用&#xff1a;尝试访问一个未初始化的指针指向的内存&#xff0c;会导致程序崩溃并触发异常。 2.数组越界访问&#xff1a;试图访问数组中不存在的索引&#xff0c;比如数组长度为5&#xff0c;却尝试访问索引为10的元素…...

Office文件内容提取 | 获取Word文件内容 |Javascript提取PDF文字内容 |PPT文档文字内容提取

关于Office系列文件文字内容的提取 本文主要通过接口的方式获取Office文件和PDF、OFD文件的文字内容。适用于需要获取Word、OFD、PDF、PPT等文件内容的提取实现。例如在线文字统计以及论文文字内容的提取。 一、提取Word及WPS文档的文字内容。 支持以下文件格式&#xff1a; …...

组态软件工业化自动领域的可视化配置利器

组态软件是工业自动化领域的可视化配置利器&#xff0c;在工业生产中发挥着至关重要的作用&#xff0c;以下从定义、特点、功能、应用场景、市场现状及发展趋势等方面进行详细介绍&#xff1a; 定义 组态软件&#xff0c;又称组态监控系统软件&#xff0c;是用于数据采集和过程…...

Ansys electronics安装多版本simulink打开s-function冲突解决方法

安装了Ansys Electronics 2022 R1和2024 R1&#xff0c;想通过simplorer和simulink中的S-function进行联合仿真&#xff0c;结果注册表一直是2024 R1&#xff0c;修改方法如下&#xff1a; 1. WINR打开cmd&#xff0c;注意要用管理员权限打开 2. 输入 "D:\ANSYS\AnsysE…...

ubuntu--安装双系统

教程 BIOS设置 启动盘生成和ubuntu安装 boot option #1设置USB为第一启动项 rufus下载 官网&#xff1a; 链接 点击“链接”下面的按钮&#xff0c;即可下载。(注意查看自己的电脑是x64还是x84) 网盘下载&#xff1a; 链接...

快速搭建 Cpolar 内网穿透(Mac 系统)

1、Cpolar快速入门教程&#xff08;官方&#xff09; 链接地址&#xff1a;Cpolar 快速入门 2、官方教程详解 本地安装homebrew /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"这个是从 git 上拉取的&#x…...