当前位置: 首页 > news >正文

SpringBoot 知识图谱

  1. 预警:本文非常长,建议先 mark 后看,也许是最后一次写这么长的文章
  2. 说明:前面有 4 个小节关于 Spring 的基础知识,分别是:IOC 容器、JavaConfig、事件监听、SpringFactoriesLoader 详解,它们占据了本文的大部分内容,虽然它们之间可能没有太多的联系,但这些知识对于理解 Spring Boot 的核心原理至关重要,如果你对 Spring 框架烂熟于心,完全可以跳过这 4 个小节。正是因为这个系列的文章是由这些看似不相关的知识点组成,因此取名知识清单。

目录

#一、抛砖引玉:探索 Spring IoC 容器

#1.1、Spring IoC 容器

#1.2、Spring 容器扩展机制

#二、夯实基础:JavaConfig 与常见 Annotation

#2.1、JavaConfig

#2.2、@ComponentScan

#2.3、@Import

#2.4、@Conditional

#2.5、@ConfigurationProperties 与@EnableConfigurationProperties

#三、削铁如泥:SpringFactoriesLoader 详解

#四、另一件武器:Spring 容器的事件监听机制

#Spring 容器内的事件监听机制

#五、出神入化:揭秘自动配置原理

#六、启动引导:Spring Boot 应用启动的秘密

#6.1 SpringApplication 初始化

#6.2 Spring Boot 启动流程


 

在过去两三年的 Spring 生态圈,最让人兴奋的莫过于 Spring Boot 框架。或许从命名上就能看出这个框架的设计初衷:快速的启动 Spring 应用。因而 Spring Boot 应用本质上就是一个基于 Spring 框架的应用,它是 Spring 对“约定优先于配置”理念的最佳实践产物,它能够帮助开发者更快速高效地构建基于 Spring 生态圈的应用。

那 Spring Boot 有何魔法?自动配置起步依赖Actuator命令行界面(CLI) 是 Spring Boot 最重要的 4 大核心特性,其中 CLI 是 Spring Boot 的可选特性,虽然它功能强大,但也引入了一套不太常规的开发模型,因而这个系列的文章仅关注其它 3 种特性。如文章标题,本文是这个系列的第一部分,将为你打开 Spring Boot 的大门,重点为你剖析其启动流程以及自动配置实现原理。要掌握这部分核心内容,理解一些 Spring 框架的基础知识,将会让你事半功倍。

#一、抛砖引玉:探索 Spring IoC 容器

如果有看过SpringApplication.run()方法的源码,Spring Boot 冗长无比的启动流程一定会让你抓狂,透过现象看本质,SpringApplication 只是将一个典型的 Spring 应用的启动流程进行了扩展,因此,透彻理解 Spring 容器是打开 Spring Boot 大门的一把钥匙。

#1.1、Spring IoC 容器

可以把 Spring IoC 容器比作一间餐馆,当你来到餐馆,通常会直接招呼服务员:点菜!至于菜的原料是什么?如何用原料把菜做出来?可能你根本就不关心。IoC 容器也是一样,你只需要告诉它需要某个 bean,它就把对应的实例(instance)扔给你,至于这个 bean 是否依赖其他组件,怎样完成它的初始化,根本就不需要你关心。

作为餐馆,想要做出菜肴,得知道菜的原料和菜谱,同样地,IoC 容器想要管理各个业务对象以及它们之间的依赖关系,需要通过某种途径来记录和管理这些信息。BeanDefinition对象就承担了这个责任:容器中的每一个 bean 都会有一个对应的 BeanDefinition 实例,该实例负责保存 bean 对象的所有必要信息,包括 bean 对象的 class 类型、是否是抽象类、构造方法和参数、其它属性等等。当客户端向容器请求相应对象时,容器就会通过这些信息为客户端返回一个完整可用的 bean 实例。

原材料已经准备好(把 BeanDefinition 看着原料),开始做菜吧,等等,你还需要一份菜谱,BeanDefinitionRegistryBeanFactory就是这份菜谱,BeanDefinitionRegistry 抽象出 bean 的注册逻辑,而 BeanFactory 则抽象出了 bean 的管理逻辑,而各个 BeanFactory 的实现类就具体承担了 bean 的注册以及管理工作。它们之间的关系就如下图:

 BeanFactory、BeanDefinitionRegistry 关系图(来自:Spring 揭秘)

DefaultListableBeanFactory作为一个比较通用的 BeanFactory 实现,它同时也实现了 BeanDefinitionRegistry 接口,因此它就承担了 Bean 的注册管理工作。从图中也可以看出,BeanFactory 接口中主要包含 getBean、containBean、getType、getAliases 等管理 bean 的方法,而 BeanDefinitionRegistry 接口则包含 registerBeanDefinition、removeBeanDefinition、getBeanDefinition 等注册管理 BeanDefinition 的方法。

下面通过一段简单的代码来模拟 BeanFactory 底层是如何工作的:

// 默认容器实现
DefaultListableBeanFactory beanRegistry = new DefaultListableBeanFactory();
// 根据业务对象构造相应的BeanDefinition
AbstractBeanDefinition definition = new RootBeanDefinition(Business.class,true);
// 将bean定义注册到容器中
beanRegistry.registerBeanDefinition("beanName",definition);
// 如果有多个bean,还可以指定各个bean之间的依赖关系
// ........// 然后可以从容器中获取这个bean的实例
// 注意:这里的beanRegistry其实实现了BeanFactory接口,所以可以强转,
// 单纯的BeanDefinitionRegistry是无法强制转换到BeanFactory类型的
BeanFactory container = (BeanFactory)beanRegistry;
Business business = (Business)container.getBean("beanName");

这段代码仅为了说明 BeanFactory 底层的大致工作流程,实际情况会更加复杂,比如 bean 之间的依赖关系可能定义在外部配置文件(XML/Properties)中、也可能是注解方式。Spring IoC 容器的整个工作流程大致可以分为两个阶段:

①、容器启动阶段

容器启动时,会通过某种途径加载Configuration MetaData。除了代码方式比较直接外,在大部分情况下,容器需要依赖某些工具类,比如:BeanDefinitionReader,BeanDefinitionReader 会对加载的Configuration MetaData进行解析和分析,并将分析后的信息组装为相应的 BeanDefinition,最后把这些保存了 bean 定义的 BeanDefinition,注册到相应的 BeanDefinitionRegistry,这样容器的启动工作就完成了。这个阶段主要完成一些准备性工作,更侧重于 bean 对象管理信息的收集,当然一些验证性或者辅助性的工作也在这一阶段完成。

来看一个简单的例子吧,过往,所有的 bean 都定义在 XML 配置文件中,下面的代码将模拟 BeanFactory 如何从配置文件中加载 bean 的定义以及依赖关系:

// 通常为BeanDefinitionRegistry的实现类,这里以DeFaultListabeBeanFactory为例
BeanDefinitionRegistry beanRegistry = new DefaultListableBeanFactory();
// XmlBeanDefinitionReader实现了BeanDefinitionReader接口,用于解析XML文件
XmlBeanDefinitionReader beanDefinitionReader = new XmlBeanDefinitionReaderImpl(beanRegistry);
// 加载配置文件
beanDefinitionReader.loadBeanDefinitions("classpath:spring-bean.xml");// 从容器中获取bean实例
BeanFactory container = (BeanFactory)beanRegistry;
Business business = (Business)container.getBean("beanName");

②、Bean 的实例化阶段

经过第一阶段,所有 bean 定义都通过 BeanDefinition 的方式注册到 BeanDefinitionRegistry 中,当某个请求通过容器的 getBean 方法请求某个对象,或者因为依赖关系容器需要隐式的调用 getBean 时,就会触发第二阶段的活动:容器会首先检查所请求的对象之前是否已经实例化完成。如果没有,则会根据注册的 BeanDefinition 所提供的信息实例化被请求对象,并为其注入依赖。当该对象装配完毕后,容器会立即将其返回给请求方法使用。

BeanFactory 只是 Spring IoC 容器的一种实现,如果没有特殊指定,它采用采用延迟初始化策略:只有当访问容器中的某个对象时,才对该对象进行初始化和依赖注入操作。而在实际场景下,我们更多的使用另外一种类型的容器:ApplicationContext,它构建在 BeanFactory 之上,属于更高级的容器,除了具有 BeanFactory 的所有能力之外,还提供对事件监听机制以及国际化的支持等。它管理的 bean,在容器启动时全部完成初始化和依赖注入操作。

#1.2、Spring 容器扩展机制

IoC 容器负责管理容器中所有 bean 的生命周期,而在 bean 生命周期的不同阶段,Spring 提供了不同的扩展点来改变 bean 的命运。在容器的启动阶段,BeanFactoryPostProcessor允许我们在容器实例化相应对象之前,对注册到容器的 BeanDefinition 所保存的信息做一些额外的操作,比如修改 bean 定义的某些属性或者增加其他信息等。

如果要自定义扩展类,通常需要实现org.springframework.beans.factory.config.BeanFactoryPostProcessor接口,与此同时,因为容器中可能有多个 BeanFactoryPostProcessor,可能还需要实现org.springframework.core.Ordered接口,以保证 BeanFactoryPostProcessor 按照顺序执行。Spring 提供了为数不多的 BeanFactoryPostProcessor 实现,我们以PropertyPlaceholderConfigurer来说明其大致的工作流程。

在 Spring 项目的 XML 配置文件中,经常可以看到许多配置项的值使用占位符,而将占位符所代表的值单独配置到独立的 properties 文件,这样可以将散落在不同 XML 文件中的配置集中管理,而且也方便运维根据不同的环境进行配置不同的值。这个非常实用的功能就是由 PropertyPlaceholderConfigurer 负责实现的。

根据前文,当 BeanFactory 在第一阶段加载完所有配置信息时,BeanFactory 中保存的对象的属性还是以占位符方式存在的,比如${jdbc.mysql.url}。当 PropertyPlaceholderConfigurer 作为 BeanFactoryPostProcessor 被应用时,它会使用 properties 配置文件中的值来替换相应的 BeanDefinition 中占位符所表示的属性值。当需要实例化 bean 时,bean 定义中的属性值就已经被替换成我们配置的值。当然其实现比上面描述的要复杂一些,这里仅说明其大致工作原理,更详细的实现可以参考其源码。

与之相似的,还有BeanPostProcessor,其存在于对象实例化阶段。跟 BeanFactoryPostProcessor 类似,它会处理容器内所有符合条件并且已经实例化后的对象。简单的对比,BeanFactoryPostProcessor 处理 bean 的定义,而 BeanPostProcessor 则处理 bean 完成实例化后的对象。BeanPostProcessor 定义了两个接口:

public interface BeanPostProcessor {// 前置处理Object postProcessBeforeInitialization(Object bean, String beanName) throws BeansException;// 后置处理Object postProcessAfterInitialization(Object bean, String beanName) throws BeansException;
}

为了理解这两个方法执行的时机,简单的了解下 bean 的整个生命周期:

![img](data:image/svg+xml;utf8,<?xml version="1.0"?>) Bean 的实例化过程(来自:Spring 揭秘)

postProcessBeforeInitialization()方法与postProcessAfterInitialization()分别对应图中前置处理和后置处理两个步骤将执行的方法。这两个方法中都传入了 bean 对象实例的引用,为扩展容器的对象实例化过程提供了很大便利,在这儿几乎可以对传入的实例执行任何操作。注解、AOP 等功能的实现均大量使用了BeanPostProcessor,比如有一个自定义注解,你完全可以实现 BeanPostProcessor 的接口,在其中判断 bean 对象的脑袋上是否有该注解,如果有,你可以对这个 bean 实例执行任何操作,想想是不是非常的简单?

再来看一个更常见的例子,在 Spring 中经常能够看到各种各样的 Aware 接口,其作用就是在对象实例化完成以后将 Aware 接口定义中规定的依赖注入到当前实例中。比如最常见的ApplicationContextAware接口,实现了这个接口的类都可以获取到一个 ApplicationContext 对象。当容器中每个对象的实例化过程走到 BeanPostProcessor 前置处理这一步时,容器会检测到之前注册到容器的 ApplicationContextAwareProcessor,然后就会调用其 postProcessBeforeInitialization()方法,检查并设置 Aware 相关依赖。看看代码吧,是不是很简单:

// 代码来自:org.springframework.context.support.ApplicationContextAwareProcessor
// 其postProcessBeforeInitialization方法调用了invokeAwareInterfaces方法
private void invokeAwareInterfaces(Object bean) {if (bean instanceof EnvironmentAware) {((EnvironmentAware) bean).setEnvironment(this.applicationContext.getEnvironment());}if (bean instanceof ApplicationContextAware) {((ApplicationContextAware) bean).setApplicationContext(this.applicationContext);}// ......
}

最后总结一下,本小节内容和你一起回顾了 Spring 容器的部分核心内容,限于篇幅不能写更多,但理解这部分内容,足以让您轻松理解 Spring Boot 的启动原理,如果在后续的学习过程中遇到一些晦涩难懂的知识,再回过头来看看 Spring 的核心知识,也许有意想不到的效果。也许 Spring Boot 的中文资料很少,但 Spring 的中文资料和书籍有太多太多,总有东西能给你启发。

#二、夯实基础:JavaConfig 与常见 Annotation

#2.1、JavaConfig

我们知道bean是 Spring IOC 中非常核心的概念,Spring 容器负责 bean 的生命周期的管理。在最初,Spring 使用 XML 配置文件的方式来描述 bean 的定义以及相互间的依赖关系,但随着 Spring 的发展,越来越多的人对这种方式表示不满,因为 Spring 项目的所有业务类均以 bean 的形式配置在 XML 文件中,造成了大量的 XML 文件,使项目变得复杂且难以管理。

后来,基于纯 Java Annotation 依赖注入框架Guice出世,其性能明显优于采用 XML 方式的 Spring,甚至有部分人认为,Guice可以完全取代 Spring(Guice仅是一个轻量级 IOC 框架,取代 Spring 还差的挺远)。正是这样的危机感,促使 Spring 及社区推出并持续完善了JavaConfig子项目,它基于 Java 代码和 Annotation 注解来描述 bean 之间的依赖绑定关系。比如,下面是使用 XML 配置方式来描述 bean 的定义:

相关文章:

SpringBoot 知识图谱

预警:本文非常长,建议先 mark 后看,也许是最后一次写这么长的文章说明:前面有 4 个小节关于 Spring 的基础知识,分别是:IOC 容器、JavaConfig、事件监听、SpringFactoriesLoader 详解,它们占据了本文的大部分内容,虽然它们之间可能没有太多的联系,但这些知识对于理解 …...

智谱开源新一代GLM模型,全面布局AI智能体生态

2024年4月15日&#xff0c;智谱在中关村论坛上正式发布了全球首个集深度研究与实际操作能力于一体的AI智能体——AutoGLM沉思。这一革命性技术的发布标志着智谱在AGI&#xff08;通用人工智能&#xff09;领域的又一次重要突破。智谱的最新模型不仅推动了AI智能体技术的升级&am…...

一文读懂Python之numpy模块(34)

一、模块简介 numpy是Python语言中做科学计算的基础库&#xff0c;重在于数值计算&#xff0c;有一个强大的N维数组对象Array&#xff0c;同时NumPy 提供了大量的库函数和操作&#xff0c;可以帮助程序员轻松地进行Array数值计算。 numpy在数据分析和机器学习领域被广泛使用。…...

Lora 微调自定义device_map

Lora 微调自定义device_map 首先查看模型权重参数配置model.safetensors.index.json 查看多少解码器 这里的layer可以理解为解码器层,后面有qkv,bais,layernomal等 # 显卡数量 num_gpus = 5 # 总层数 num_layers = 28layers_per_gpu = num_layers // num...

二叉树的顺序结构及实现

一.二叉树的顺序结构 二.堆的概念及结构 三.堆的实现 一.二叉树的顺序结构 普通的二叉树是不适合用数组来存储的&#xff0c;因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆 ( 一种二叉树 ) 使用顺序结构的数组来存储。 二.堆的概念…...

python生成项目依赖文件requirements.txt

文章目录 通过pip freeze去生成通过pipreqs去生成 通过pip freeze去生成 pip freeze > requirements.txt会将整个python的Interceptor的环境下lib包下所有的依赖都生成到这个文件当中&#xff0c;取决于我们使用的python的版本下所有的安装包。不建议使用这种方式&#xff…...

Cribl 对Windows-xml log 进行 -flatten-03

The Flatten Function Description​ The Flatten Function is used to flatten fields out of a nested structure. Lets flatten the _raw JSON object, to further reduce the events size before we send it to the intended destination(s). Steps – Adding a Flatten…...

Java优雅实现判空方法

在 Java 开发中&#xff0c;频繁的 if (obj ! null) 判空代码会导致代码冗余、可读性差&#xff0c;且容易遗漏判空导致 NullPointerException。以下从 语言特性、设计模式、工具类 和 编码规范 四个维度&#xff0c;结合实际案例&#xff0c;详解如何优雅处理空值问题。 一、…...

leetcode 1035. Uncrossed Lines

题目描述 本题本质上就是求nums1和nums2的最长公共子序列的长度。因此本题本质上与第1143题一模一样。 代码&#xff1a; class Solution { public:int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {//本题等价于求nums1和nums2的最长公…...

windows上部署本地知识库(RAG)ollama + docker + ragflow方案

一、部署ollama 如何部署本地部署ollama参照我另一篇博客:Windows安装ollama部署本地大模型_ollama 在哪里运行的大模型-CSDN博客 二、部署docker 1、下载docker: 下载地址: Docker: Accelerated Container Application Development 2、winds(winds11)安装或者更新ws…...

多Agent框架及协作机制详解

文章目录 一、多智能体系统介绍1.1 多智能体系统定义1.2 多智能体协作1.3 协作类型1.4 协作策略1.5 通信结构1.6 协调与编排 1.3 多智能体与单智能体对比1.4 应用场景 二、多Agent开发框架AutoGenMetaGPTLangGraphSwarmCrewAI 三、多智能体协作方式3.1 MetaGPT&#xff1a;SOP驱…...

Cribl 对Windows-xml log 进行 -Removing filed-06

Removing Fields Description​ The Eval Function can be used to add or remove fields. In this example we will remove the extracted fields while preserving _raw, _time,index,source, sourcetype. Steps - Adding an Eval Function...

Linux 常用指令用户手册

Linux 常用指令用户手册 适合新手入门 & 日常速查 目录 基础操作文件与目录管理权限与所有权文本处理压缩与解压系统监控网络操作进程管理实用小技巧 1. 基础操作 1.1 查看系统信息 # 查看内核版本 uname -a# 查看系统发行版信息&#xff08;适用于 Debian/Ubuntu&…...

Java EE(20)——线程安全——ThreadLocal

1.前言 在面的线程安全相关的博文中&#xff0c;解决线程安全问题的方法主要使用synchronized和volatile两个关键字。引发线程安全问题的根本原因是多个线程同时对共享变量进行写操作&#xff0c;而上述两个关键字并没有改变"多个线程写同一个变量"这个情况。以sync…...

树莓派超全系列教程文档--(36)树莓派条件过滤器设置

树莓派条件过滤器设置 条件过滤器[all] 过滤器型号过滤器[none] 过滤器[tryboot] 过滤器[EDID*] 过滤器序列号过滤器GPIO过滤器组合条件过滤器 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 条件过滤器 当将单个 SD 卡&#xff08;或卡图像&am…...

Vue3核心源码解析

/packages/complier-core 定位​​&#xff1a;​​编译时核心​​&#xff0c;处理 Vue 模板的编译逻辑。​​核心功能​​&#xff1a; ​​模板解析​​&#xff1a;将 .vue 文件的模板语法&#xff08;HTML-like&#xff09;解析为 ​​抽象语法树 (AST)​​。​​转换优化…...

JavaScript解密实战指南:从基础到进阶技巧

JavaScript加密技术广泛应用于数据保护、反爬虫和代码混淆&#xff0c;但掌握解密方法能帮助开发者突破技术壁垒。本文结合爬虫实战与安全分析场景&#xff0c;系统梳理JS解密的核心方法与工具。 一、基础解密方法 1. Base64解码 适用于简单编码场景&#xff0c;如Cookie加密…...

指针(2)

1.数组名的理解 使用指针访问数组的内容时&#xff0c;有这样的代码&#xff1a; int arr[10]{1,2,3,4,5,6,7,8,9,10}int * p&arr[0]; &arr[0] 的方式拿到了数组的第一个元素的地址&#xff0c;但是其实数组名本来就是地址&#xff0c;而且还是首元素的地址&#xf…...

Android开发中广播(Broadcast)技术详解

在 Android 开发中&#xff0c;广播&#xff08;Broadcast&#xff09; 是一种广泛使用的组件通信机制&#xff0c;它允许应用程序在不直接交互的情况下传递消息。本文将详细讲解 Android 广播的基本概念、类型、发送与接收流程、使用场景及注意事项&#xff0c;并结合具体的代…...

Python网络爬虫设计(三)

目录 一、需要登录的爬虫 二、pyppeteer与requests库结合 1、cookie和session 三、其他 1、绝对网址和相对网址 2、sleep函数 一、需要登录的爬虫 在众多种类的页面中&#xff0c;不同的页面有不同的功能&#xff0c;有的是进行展示的&#xff0c;而有的则是登录类的。在…...

【深度学习—李宏毅教程笔记】各式各样的 Attention

目录 一、普通 Self-Attention 的痛点 二、对 Self-Attention 的优化方式 1、Local Attention / Truncated Attention 2、Stride Attention 3、Global Attention 4、知名的 Self-Attention 的变形的应用 &#xff08;1&#xff09;Longformer &#xff08;2&#xff09…...

leetcode 1143. Longest Common Subsequence

目录 题目描述 第一步&#xff0c;明确并理解dp数组及下标的含义 第二步&#xff0c;分析明确并理解递推公式 第三步&#xff0c;理解dp数组如何初始化 第四步&#xff0c;理解遍历顺序 代码 题目描述 这道题和第718题的区别就是&#xff0c;本题求的是最长公共子序列的长…...

Unity C\# 实战:从零开始为游戏添加背景音乐与音效 (AudioSource/AudioClip/AudioMixer 详解)

Langchain系列文章目录 01-玩转LangChain&#xff1a;从模型调用到Prompt模板与输出解析的完整指南 02-玩转 LangChain Memory 模块&#xff1a;四种记忆类型详解及应用场景全覆盖 03-全面掌握 LangChain&#xff1a;从核心链条构建到动态任务分配的实战指南 04-玩转 LangChai…...

【代码解读】开源模型 minimind之pretrain

minimind原模型地址: https://github.com/jingyaogong/minimind 本文解读下开源模型minimind的预训练代码 train_pretrain.py&#xff0c;解释以代码注释的形式添加 1. 参数配置代码 parser argparse.ArgumentParser(description"MiniMind Pretraining") parser.ad…...

wordpress独立站的产品详情页添加WhatsApp链接按钮

在WordPress外贸独立站的产品展示页添加WhatsApp链接按钮&#xff0c;可以帮助客户更方便地与你联系。以下是实现这一功能的步骤&#xff1a; 方法一&#xff1a;使用HTML代码添加按钮 编辑产品展示页 进入WordPress后台&#xff0c;找到需要添加WhatsApp按钮的产品展示页。…...

从入门到精通汇编语言 第五章(流程转移与子程序)

参考教程&#xff1a;通俗易懂的汇编语言&#xff08;王爽老师的书&#xff09;_哔哩哔哩_bilibili 一、“转移”概述 1、转移的概念 &#xff08;1&#xff09;般情况下指令是顺序地逐条执行的&#xff0c;而在实际中&#xff0c;常需要改变程序的执行流程&#xff0c;这就…...

Redis下载

目录 安装包 1、使用.msi方式安装 2.使用zip方式安装【推荐方式】 添加环境变量 配置后台运行 启动&#xff1a; 1.startup.cmd的文件 2.cmd窗口运行 3.linux源码安装 &#xff08;1&#xff09;准备安装环境 &#xff08;2&#xff09;上传安装文件 &#xff08;3&…...

硬件工程师笔记——电子器件汇总大全

目录 1、电阻 工作原理 欧姆定律 电阻的物理本质 一、限制电流 二、分压作用 三、消耗电能&#xff08;将电能转化为热能&#xff09; 2、压敏电阻 伏安特性 1. 过压保护 2. 电压调节 3. 浪涌吸收 4. 消噪与消火花 5. 高频应用 3、电容 工作原理 &#xff08;…...

第一章,HCIA复习

抽象语言---->电信号抽象语言---编码 编码------二进制 二进制----电信号 OSI参考模型 TCP/IP模型&#xff08;4参考5对等&#xff09; 应用层&#xff1a;程序的编译过程&#xff1b;人机交互的接口。 表示层&#xff1a;数据格式化--->二进制 会话层&#xff1a;维护网…...

在 Debian 12 中恢复被删除的 smb.conf 配置文件

https://forum.ubuntu.com.cn/viewtopic.php?t494763 本文结合ai输出&#xff0c;内容中可能有些错误&#xff0c;但确实解决了我的问题&#xff0c;我采取保留完整输出的方式摘录。 在 Debian 12 中恢复被删除的 smb.conf 配置文件&#xff0c;需结合 dpkg 和 ucf&#xff08…...

Java开发软件

Main.java // 主类&#xff0c;用于测试学生管理系统 public class Main { public static void main(String[] args) { StudentManagementSystem sms new StudentManagementSystem(); // 添加学生 sms.addStudent(new Student(1, "Alice", 20)…...

SSRF学习

靶场 fofa搜&#xff1a;“重庆橙子科技”&#xff0c;里面找SSRF。 SSRF基础知识 绕过127限制 要查看127.0.0.1/flag.php&#xff0c;但是127被过滤。 绕过方法&#xff1a;使用不同的进制表示127.0.0.1即可。 二进制&#xff1a;01111111.00000000.00000000.00000001 八…...

使用virtualbox的HostOnly建立共享网络-实现虚拟机上网

目录 环境描述解决方案具体步骤1.新建一个virtual host-only ethernet adapter2.设置windows的wifi信号网络共享3.确认winows宿主网络信息3.1.wifi适配器的信息3.2.虚拟网卡的信息3.3.确认virtualbox中虚拟网卡的ip地址 4.虚拟机网卡设置5.虚拟机网络设置5.1.本地连接设置5.2.u…...

RNN的理解

对于RNN的理解 import torch import torch.nn as nn import torch.nn.functional as F# 手动实现一个简单的RNN class RNN(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(RNN, self).__init__()# 定义权重矩阵和偏置项self.hidden_size hidden…...

Transformers是一种基于自注意力机制的神经网络模型

概述与发展历程 背景介绍 Transformers是一种基于自注意力机制的神经网络模型&#xff0c;最早由Google团队在2017年的论文《Attention Is All You Need》中提出。该模型旨在解决传统循环神经网络&#xff08;RNNs&#xff09;在处理长距离依赖关系时的低效性问题&#xff0c…...

leetcode0078. 子集-medium

1 题目&#xff1a;子集 官方标定难度&#xff1a;中 给你一个整数数组 nums &#xff0c;数组中的元素 互不相同 。返回该数组所有可能的子集&#xff08;幂集&#xff09;。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 示例 1&#xff1a; 输入&#xff1…...

C++编程 希尔排序

步骤&#xff1a; 1.先选定一个小于N的整数gap作为第一增量&#xff0c;然后将所有距离为gap的元素分在同一组&#xff0c;并对每一组的元素进行直接插入排序。然后再取一个比第一增量小的整数作为第二增量&#xff0c;重复上述操作… 2.当增量的大小减到1时&#xff0c;就相当…...

网络操作系统与应用服务器

1.通过PTR实现IP地址到主机域名的映射 2.在windows中,可以使用事件查看器来游览日志文件 3.IMAP即交互式邮件存取协议,邮件客户端可以使用其同步服务器和客户端之间的邮件列表 4.DHCP Discover ->DHCP Offer->DHCP Request->DHCP Ack 5.在DNS的资源记录中,类型A表…...

不确定与非单调推理的模糊推理

模糊推理是利用模糊性知识进行的一种不确定性推理。 模糊推理与前面讨论的不确定性推理的概率方法、可信度方法、D-S理论有着实质性的区别。前面那几种不确定性推理的理论基础是概率论,它所研究的事件本身有明确而确定的含义,只是由于发生的条件不充分,使得在条件与事件之间…...

Vite打包原理: Tree-shaking在Vue3项目中的实际效果

Vite打包原理: Tree-shaking在Vue3项目中的实际效果 随着前端开发技术的不断进步&#xff0c;Vue框架在国内外都备受青睐。而在Vue3项目中&#xff0c;Vite作为一款新型的构建工具&#xff0c;其支持的Tree-shaking技术成为了开发者关注的焦点之一。那么&#xff0c;Vite中Tree…...

LangChain4j语言模型选型指南:主流模型能力全景对比

LangChain4j语言模型选型指南&#xff1a;主流模型能力全景对比 前言 在大语言模型应用开发中&#xff0c;选择合适的底层模型提供商是架构设计的关键决策。LangChain4j作为Java生态的重要AI框架&#xff0c;其支持的20模型提供商各有独特的优势场景。本文通过功能矩阵深度解…...

聚宽策略----国九条后中小板微盘小改,年化135.40%

最近在研究的聚宽策略&#xff0c;一般技术分析的我直接转qmt了&#xff0c;财务因子有一点麻烦&#xff0c;我直接利用我开发强大的服务器系统&#xff0c;直接读取信号&#xff0c;最近在优化一下系统&#xff0c;最近在开发对接bigquant的交易系统&#xff0c;完成了api数据…...

FreeRTOS中断管理

中断优先级 任何中断的优先级都大于任务&#xff01; 在我们的操作系统&#xff0c;中断同样是具有优先级的&#xff0c;并且我们也可以设置它的优先级&#xff0c;但是他的优先级并不是从 0 ~ 5 &#xff0c;默认情况下它是从 5 ~ 15 , 0 ~ 4 这5个中断优先级不是FreeRTOS控…...

键入网址到网页显示,期间发生了什么?

文章目录 2.键入网址到网页显示&#xff0c;期间发生了什么&#xff1f;2.1真实地址查询DNS&#xff1a;2.2**协议栈&#xff1a;**上半部分是负责收发数据的TCP和UDP协议&#xff0c;下面一半是用IP协议控制网络包收发操作&#xff0c;在互联网上传数据时&#xff0c;数据会倍…...

代理模式(Proxy Pattern)

文章目录 1. 概述1.1 基本概念1.2 为什么需要代理模式1.3 代理模式的四个角色2. 代理模式的类型2.1 静态代理2.2 JDK动态代理2.3 CGLIB动态代理3. 代理模式的UML类图和基本实现3.1 UML类图3.2 基本实现3.2.1 静态代理基本实现3.2.2 JDK动态代理基本实现3.2.3 CGLIB动态代理基本…...

9.QT-显示类控件|Label|显示不同格式的文本|显示图片|文本对齐|自动换行|缩进|边距|设置伙伴(C++)

Label QLabel 可以⽤来显⽰⽂本和图⽚ 属性说明textQLabel中的⽂本textFormat⽂本的格式.• Qt::PlainText 纯⽂本• Qt::RichText 富⽂本(⽀持html标签)• Qt::MarkdownText markdown格式• Qt::AutoText 根据⽂本内容⾃动决定⽂本格式pixmapQLabel 内部包含的图⽚.scaledCo…...

Python多任务编程:进程全面详解与实战指南

1. 进程基础概念 1.1 什么是进程&#xff1f; 进程(Process)是指正在执行的程序&#xff0c;是程序执行过程中的一次指令、数据集等的集合。简单来说&#xff0c;进程就是程序的一次执行过程&#xff0c;它是一个动态的概念。 想象你打开电脑上的音乐播放器听歌&#xff0c;…...

【英语语法】词法---副词

目录 副词1. 副词的核心功能2. 副词的分类(1) 按意义分类(2) 按形式分类 3. 副词的构成(1) 形容词变副词的规则(2) 不规则变化 4. 副词的位置(1) 修饰动词时的位置(2) 多个副词的排列顺序 5. 副词的比较级与最高级(1) 规则变化&#xff08;同形容词&#xff09;(2) 不规则变化(…...

51c大模型~合集119

我自己的原文哦~ https://blog.51cto.com/whaosoft/13852062 #264页智能体综述 MetaGPT等20家顶尖机构、47位学者参与 近期&#xff0c;大模型智能体&#xff08;Agent&#xff09;的相关话题爆火 —— 不论是 Anthropic 抢先 MCP 范式的快速普及&#xff0c;还是 OpenAI…...

Day3:个人中心页面布局前端项目uniapp壁纸实战

接下来我们来弄一下个人中心页面布局user.vue <template><view class"userLayout"><view class"userInfo"><view class"avatar"><image src"../../static/Kx.jpg" mode"aspectFill"></im…...