当前位置: 首页 > news >正文

从三次方程到复平面:复数概念的奇妙演进(三)

注:本文为 “复数 | 历史 / 演进” 相关文章

因 csdn 篇幅限制分篇连载,此为第三篇。

生料,不同的文章不同的点。

机翻,未校。


Complex Numbers

History:

  1. Complex numbers were first introduced by G. Cardano (1501-1576) in his Ars Magna, chapter 37 (published 1545) as a tool for finding (real!) roots of a cubic equation: x 3 + a x + b = 0 x^3 + ax + b = 0 x3+ax+b=0.
    复数最早由 G. 卡丹(1501-1576)在其《大术》第 37 章(1545 年出版)中引入,作为求解三次方程 x 3 + a x + b = 0 x^3 + ax + b = 0 x3+ax+b=0 的实根的工具。
    However, he had serious misgivings about such expressions (e.g. 5 + − 15 5 + \sqrt {-15} 5+15 ). He referred to thinking about them as “mental torture”.
    然而,他对这些表达式(例如 5 + − 15 5 + \sqrt {-15} 5+15 )感到非常困惑,甚至称思考它们是 “精神折磨”。

  2. R. Bombelli (1572): In his three books on Algebra, he introduced the symbol i i i and established rules for calculating in C \mathbb {C} C.
    R. 邦贝利(1572):在他的三本代数书中,他引入了符号 i i i,并建立了在复数域 C \mathbb {C} C 中的计算规则。

  3. A. Girard (1629): called a + − b a + \sqrt {-b} a+b “solutions impossibles”.
    A. 吉拉德(1629):称 a + − b a + \sqrt {-b} a+b 为 “不可能的解”。

  4. R. Descartes (1637): called them “imaginary numbers”.
    R. 笛卡尔(1637):称它们为 “虚数”。

  5. After Descartes, many leading mathematicians made free use of complex numbers: Bernoulli, Moivre, Euler, . . . , Argand, Gauss, . . .
    在笛卡尔之后,许多著名数学家开始广泛使用复数:伯努利、德摩弗、欧拉、……、阿尔冈、高斯、……

  6. The term “complex number” seems to have originated with C. F. Gauss (1831).
    “复数” 这一术语似乎是由 C. F. 高斯(1831)首次提出的。


Discovery of Complex numbers

复数的发现

YangYi Zhao*

SaintMary’s High School, Manhasset, United States

*Corresponding author:y.zhao23@saintmaryshs.org

Abstract

摘要

A branch of mathematical analysis called complex analysis studies the functions of complex numbers. It is also sometimes referred to as the theory of functions of a complex variable. Complex analysis has been used extensively in mathematics, physics, and engineering over the years, particularly in the areas of algebraic geometry, fluid dynamics, quantum mechanics, and other related fields. It dates back to the 16th century, when Italian mathematicians Girolamo Cardano and Raphael Bombelli first noticed complex numbers while attempting to solve a particular algebra, and was later developed by Cauchy and Riemann in the 19th century. The development of complex numbers has a lengthy history. Mathematicians have advanced the discipline of mathematics significantly after thousands of years of development. During this time, mathematicians also found a great deal of previously unknown mathematical information and proved formulae and phenomena that had previously been impossible to verify. And it covers complex numbers as well as some of the mathematics related to them. In this paper, the complete discovery of complex numbers from cubic equation to topology of complex numbers is detailedly revealed.

数学分析的一个分支 —— 复分析,研究复数的函数。它有时也被称为复变函数论。多年来,复分析在数学、物理学和工程学中有着广泛的应用,尤其是在代数几何、流体动力学、量子力学及其他相关领域。它的起源可以追溯到 16 世纪,当时意大利数学家吉罗拉莫・卡尔达诺(Girolamo Cardano)和拉斐尔・邦贝利(Raphael Bombelli)在试图求解一个特定的代数问题时首次注意到了复数,后来在 19 世纪,柯西(Cauchy)和黎曼(Riemann)对其进行了进一步发展。复数的发展有着漫长的历史。经过数千年的发展,数学家们在数学学科上取得了显著的进步。在此期间,数学家们还发现了大量以前未知的数学知识,并证明了以前无法验证的公式和现象。它涵盖了复数以及一些与之相关的数学知识。在本文中,详细揭示了从三次方程到复数拓扑的复数完整发现历程。

Keywords:

Complex numbers, cubic equation, complex set and topolgy.

关键词:复数;三次方程;复集与拓扑

1. Introduction

引言

The history of Complex Number goes back a long way. After thousands of years of development, mathematicians have made great progress in the study of mathematics. Mathematicians also discovered a lot of undiscovered mathematical knowledge during this period, and successively proved the formulas and phenomena that could not be proved before. And that includes complex numbers and some of the mathematics associated with complex numbers. So what is a complex number? When were complex numbers discovered and proved to exist? The square root of a negative number cannot, under normal circumstances, be specified by the definition of a square root. It wasn’t until around 300 years ago that this inquiry received an answer [1-15]. These numbers appear often in the study of mathematical fields, whether or not they make sense in everyday life.

复数的历史源远流长。经过数千年的发展,数学家们在数学研究方面取得了巨大的进展。在此期间,数学家们还发现了许多未被发现的数学知识,并相继证明了以前无法证明的公式和现象。这其中就包括复数以及一些与复数相关的数学知识。那么,什么是复数呢?复数是何时被发现并被证明存在的呢?在正常情况下,负数的平方根无法根据平方根的定义来确定。直到大约 300 年前,这个问题才得到解答 [1 - 15]。这些数在数学领域的研究中经常出现,无论它们在日常生活中是否有意义。

Mathematicians examine complex numbers along the way. Research in fields like function roots, Cartesian coordinate systems, and intermediate algebraic equations is strengthened by starting with delayed consensus, showing the existence of complex systems, and concluding with the proof of complex numbers. Complex analysis is being studied by an increasing number of individuals since it is universally acknowledged as a mathematical reality. As a result, the field of complex analysis was created to investigate complex numbers. It is therefore obvious that the creation of complex numbers, made possible by the extension of rigorous proof, gave rise to new and enlarging viewpoints from which to approach the many fields of mathematics.

数学家们一直在研究复数。从达成共识较晚的情况出发,证明复数系统的存在,再到证明复数的存在,这一系列过程加强了在函数根、笛卡尔坐标系和中级代数方程等领域的研究。由于复数被普遍认为是一种数学事实,越来越多的人开始研究复分析。因此,复分析领域应运而生,用于研究复数。显然,通过严格证明的拓展使得复数得以创立,这为研究数学的众多领域带来了新的、更广阔的视角。

Italian cubic equations include the oldest references to imaginary numbers. Nicolo Tartaglia must be noted in this situation. Because of his linguistic difficulties as a youngster as a result of the murder in his community, he is a math prodigy and an intriguing figure who is frequently referred to as “the stammerer.” One of his most notable contributions was the invention of a “secret” technique for resolving a certain kind of cubic problem. Despite being absolutely exemplary in style, Tartaglia’s approach to algebra was revolutionary. Instead than using numerical examples, this strategy relies on abstract reasoning to answer the frequently asked question, “Does this work for any number?” In order to depict his scenario, Tartaglia created numerous equations using the Diophantine approach [115].

意大利的三次方程中最早提及了虚数。在这方面,尼科洛・塔尔塔利亚(Nicolo Tartaglia)值得关注。由于他小时候所在社区发生的谋杀案,他存在语言障碍,但他是一位数学天才,也是一个引人注目的人物,常被称为 “口吃者”。他最显著的贡献之一是发明了一种解决特定类型三次方程问题的 “秘密” 方法。塔尔塔利亚的代数方法在风格上堪称典范,同时具有革命性。这种方法不使用数值例子,而是依靠抽象推理来回答 “这个方法对任意数都适用吗?” 这一常见问题。为了描述他的情况,塔尔塔利亚使用丢番图方法创建了许多方程 [115]。

2. Main works

主要研究成果

2.1 Cubic equation and birth of complex numbers

三次方程与复数的诞生

Italian cubic equations include the oldest references to imaginary numbers. Nicolo Tartaglia must be noted in this situation. Because of his linguistic difficulties as a youngster as a result of the murder in his community, he is a math prodigy and an intriguing figure who is frequently referred to as “the stammerer.” One of his most notable contributions was the invention of a “secret” technique for resolving a certain kind of cubic problem. Despite being absolutely exemplary in style, Tartaglia’s approach to algebra was revolutionary. Instead than using numerical examples, this strategy relies on abstract reasoning to answer the frequently asked question, “Does this work for any number?” In order to depict his scenario, Tartaglia created numerous equations using the Diophantine method. In 1539, Tartaglia secretly revealed these procedures and formulas to his buddy, the Italian mathematician Girolamo Cardano. Cardano, however, violated Tartaglia’s confidence by releasing this strategy in his own book Ars Magna. So, with the release of Ars Magna, Tartaglia’s approach began to lose its memory. As a result, the innovation became known as Cardano’s triple depression cure.

意大利的三次方程中最早提及了虚数。在这方面,尼科洛・塔尔塔利亚(Nicolo Tartaglia)值得关注。由于他小时候所在社区发生的谋杀案,他出现了语言障碍,但他是一位数学天才,也是一个引人注目的人物,常被称为 “口吃者”。他最显著的贡献之一是发明了一种解决特定类型三次方程问题的 “秘密” 方法。塔尔塔利亚的代数方法在风格上堪称典范,同时具有革命性。这种方法不使用数值例子,而是依靠抽象推理来回答 “这个方法对任意数都适用吗?” 这一常见问题。为了描述他的情况,塔尔塔利亚使用丢番图方法创建了许多方程。1539 年,塔尔塔利亚将这些步骤和公式秘密透露给了他的朋友,意大利数学家吉罗拉莫・卡尔达诺(Girolamo Cardano)。然而,卡尔达诺在自己的著作《大术》(Ars Magna)中公布了这一方法,辜负了塔尔塔利亚的信任。因此,随着《大术》的出版,塔尔塔利亚的方法开始被人遗忘。结果,这项创新被称为卡尔达诺的三次降次解法。

One of the most ruthless mathematicians in history is said to be Cardano. There is a good reason why he is frequently referred to as the bad guy. He applied the Tartaglia technique. He devised a formula for the answer and included it in his own book, Ars Magna. When Cardano published the book, he almost rudely praised the Italian mathematician Ferro, saying he had also developed a crude form to solve the depression cube. While he actually got these ideas from Tartaglia, Cardano didn’t give the credit to Tartaglia but chose to take it himself. In other words, Cardano stole the fame and credit that belonged to Tartaglia. When Tartaglia won the Mathematical Contest at the University of Bologna in 1535, he left a huge legacy in the history of mathematics, in which he showed the general algebraic formula for solving cubic equations, which at the time had been considered inappropriate. Possible, as it requires understanding the square root of negative numbers. In the competition, he defeated Scipione del Ferro, who coincidentally came up with a partial solution to the cubic problem earlier than Tartaglia. While del Ferro’s solution predates Tartaglia’s, it is more limited in content. Tartaglia is considered the first general solution. In the competitive and brutal environment of 16th - century Italy, Tartaglia even encoded his solution in poetry in an attempt to make it harder for other mathematicians to steal it [1-15].

据说卡尔达诺是历史上最无情的数学家之一。他常被视为坏人是有充分理由的。他应用了塔尔塔利亚的方法,设计出了答案的公式,并将其收录在自己的《大术》一书中。卡尔达诺在出版这本书时,几乎是无礼地称赞意大利数学家费罗(Ferro),称费罗也开发出了一种求解降次三次方程的粗略形式。实际上,他的这些想法来自塔尔塔利亚,但卡尔达诺没有将功劳归于塔尔塔利亚,而是据为己有。换句话说,卡尔达诺窃取了属于塔尔塔利亚的声誉和功劳。1535 年,塔尔塔利亚在博洛尼亚大学的数学竞赛中获胜,他在数学史上留下了巨大的遗产,他展示了求解三次方程的一般代数公式,而这个公式在当时被认为是不合适的。这是可能的,因为它需要理解负数的平方根。在比赛中,他击败了希皮奥内・德尔・费罗(Scipione del Ferro),巧合的是,费罗比塔尔塔利亚更早提出了三次方程问题的部分解法。虽然费罗的解法比塔尔塔利亚的更早,但内容上更有限。塔尔塔利亚被认为是第一个给出通用解法的人。在 16 世纪竞争激烈且残酷的意大利环境中,塔尔塔利亚甚至将他的解法编成诗歌,试图让其他数学家更难窃取 [1 - 15]。

Rafael Bombelli, a famous Renaissance European engineer. He was also a brilliant mathematician. He was the first to put forward the concept of complex numbers. His book Algebra, published in 1572, discussed the square root of negative numbers. The book had a wide influence in Europe [1-15].

拉斐尔・邦贝利(Rafael Bombelli)是文艺复兴时期欧洲著名的工程师,同时也是一位杰出的数学家。他第一个提出了复数的概念。他在 1572 年出版的《代数学》(Algebra)一书中讨论了负数的平方根。这本书在欧洲产生了广泛的影响 [1 - 15]。

Bombelli believed that the quantities appearing in Cardano’s method were real. This is also a potential for new discovery for mathematics, not just a symbol of partially ineffective scholarship. Because he was the first to have this idea, he basically built it from scratch, so he decided to rename the content. Because symbolic notation was not widely used at the time to convey mathematics, especially since Pombelli’s notation for imaginary numbers had not yet been created. Thus, at the time this method of representing mathematical expressions of the unknown by using the Bombelli language would be very different from the symbolic notation used today.

邦贝利认为,卡尔达诺方法中出现的量是真实存在的。这对数学来说是一个新发现的潜力,而不仅仅是部分无用学术的象征。因为他是第一个有这种想法的人,基本上是从零开始构建,所以他决定重新命名这些内容。由于当时符号表示法在数学表达中还没有广泛使用,尤其是庞贝利(Pombelli)的虚数符号还未发明。因此,当时用邦贝利的语言来表示未知量的数学表达式的方法与今天使用的符号表示法有很大不同。

Bombelli tackles the cube’s irreducible situation before obtaining the complex number’s cube root. Additionally, he created his own technique for resolving cubic problems. He bravely acknowledges the reality of negative square roots, or in other words he assumes that there are negative numbers in square roots. So Bombelli pioneered a new approach. Bombelli’s method nicely marks the beginning of the plural. The claim is that Bombelli stopped calling them numbers. Instead, he sees them as “a new kind of connected radical.” Bombelli considers the development of research on triple irreducible instances. Consequently, a cubic has three actual roots. He begins by demonstrating how Cardano’s formula is irreducible according to Tartaglia and Cardano since it makes it difficult to identify these roots. He then filled in a gap in his study by demonstrating how a combination of fictitious roots may result in a real number. That is, to think differently and creatively. This experiment also supports Cardano’s methodology. Here is Bombelli’s explanation of how real numbers are created from complex numbers. x 3 = 15 x + 4 x^{3}=15 x+4 x3=15x+4 , x = − 121 ± 2 3 x=\sqrt [3]{\sqrt {-121} \pm 2} x=3121 ±2 x = 2 ± − 121 3 x=\sqrt [3]{2 \pm \sqrt {-121}} x=32±121

邦贝利在求复数的立方根之前,先处理了三次方程的不可约情形。此外,他还创造了自己的求解三次方程问题的方法。他勇敢地承认了负平方根的存在,换句话说,他假设平方根中存在负数。因此,邦贝利开创了一种新方法。邦贝利的方法很好地标志着复数研究的开端。据说邦贝利不再把它们称为数,而是将其视为 “一种新的相关根式”。邦贝利考虑了三次不可约情形的研究发展。因此,一个三次方程有三个实根。他首先证明了根据塔尔塔利亚和卡尔达诺的理论,卡尔达诺公式是不可约的,因为它很难确定这些根。然后,他通过证明虚根的组合如何能得到一个实数,填补了自己研究中的一个空白。也就是说,他以不同寻常且富有创造性的方式思考。这个实验也支持了卡尔达诺的方法。以下是邦贝利对如何从复数得到实数的解释。 x 3 = 15 x + 4 x^{3}=15x + 4 x3=15x+4 x = − 121 ± 2 3 x=\sqrt [3]{\sqrt {-121}\pm2} x=3121 ±2 x = 2 ± − 121 3 x=\sqrt [3]{2\pm\sqrt {-121}} x=32±121

Where there should be three roots, only one exists, according to Bombelli, and none of these roots. Bombelli started his own mathematical studies in 1560. He really demonstrated how to modify the fictitious phrase provided by Cardano technology to generate a real number. Here is an illustration from the source that shows how actual value can be drawn out. The two expressions in the next equations, according to Bombelli, merely change in sign. He initially applied his creative interpretation to these formulae by using the numbers A and B. As he puts it, there doesn’t appear to be much of a difference between the two phrases on the surface alone - there is just one different sign. In common notation, there are 2 + − 121 3 = a + b − 1 \sqrt [3]{2+\sqrt {-121}}=a+b \sqrt {-1} 32+121 =a+b1 ; 2 − − 121 3 = a − b − 1 \sqrt [3]{2-\sqrt {-121}}=a-b \sqrt {-1} 32121 =ab1 . Now, check the first expression above. 2 + − 121 = ( a + b − 1 ) 3 = a 3 + 3 a 2 b − 1 + 3 a b 2 ( − 1 ) 2 + b 3 ( − 1 ) 3 = a ( a 2 − 3 b 2 ) + b ( 3 a 2 − b 2 ) − 1 2+\sqrt {-121}=(a+b \sqrt {-1})^{3}=a^{3}+3 a^{2} b \sqrt {-1}+3 a b^{2}(\sqrt {-1})^{2}+b^{3}(\sqrt {-1})^{3}=a (a^{2}-3 b^{2})+b (3 a^{2}-b^{2}) \sqrt {-1} 2+121 =(a+b1 )3=a3+3a2b1 +3ab2(1 )2+b3(1 )3=a(a23b2)+b(3a2b2)1 . And then it can compute the solution that satisfies these two equations, u = 2 u = 2 u=2, v = 1 v = 1 v=1. When these amounts are added to the a and b equations above, The equation can be written as 2 + − 121 3 = 2 + − 1 \sqrt [3]{2+\sqrt {-121}}=2+\sqrt {-1} 32+121 =2+1 ; 2 − − 121 3 = 2 − − 1 \sqrt [3]{2-\sqrt {-121}}=2-\sqrt {-1} 32121 =21 . Because the unintentionally revealed real numbers are likewise complicated, Bombelli’s notion is incredibly original and startling. In essence, Bombelli provided more empirical support for the idea that any real number may be expressed as a complex number. A mathematical innovation in this area is Bombelli’s theory. The organizational definition of the set of real numbers and the close connection between the set of real numbers and imaginary numbers provide significant depth to the development of set theory. Bombelli also gave later mathematicians a fresh perspective on how to approach this area of mathematics if they want to pursue it further.

按照邦贝利的说法,本应有三个根,但实际上只存在一个根,而且这些根都并非普通意义上的根。邦贝利在 1560 年开始了自己的数学研究。他切实地展示了如何修改卡尔达诺方法中给出的虚数表达式来得到一个实数。这里有一个源自他研究的例子,展示了如何得出实际值。邦贝利认为,下面方程中的两个表达式仅仅是符号不同。他最初用 A 和 B 这两个数对这些公式进行了创造性的解释。正如他所说,仅从表面上看,这两个表达式似乎没有太大区别 —— 只是符号不同。用常见的符号表示,有 2 + − 121 3 = a + b − 1 \sqrt [3]{2+\sqrt {-121}}=a + b\sqrt {-1} 32+121 =a+b1 2 − − 121 3 = a − b − 1 \sqrt [3]{2-\sqrt {-121}}=a - b\sqrt {-1} 32121 =ab1 。现在,来看上面的第一个表达式。 2 + − 121 = ( a + b − 1 ) 3 = a 3 + 3 a 2 b − 1 + 3 a b 2 ( − 1 ) 2 + b 3 ( − 1 ) 3 = a ( a 2 − 3 b 2 ) + b ( 3 a 2 − b 2 ) − 1 2+\sqrt {-121}=(a + b\sqrt {-1})^{3}=a^{3}+3a^{2} b\sqrt {-1}+3ab^{2}(\sqrt {-1})^{2}+b^{3}(\sqrt {-1})^{3}=a (a^{2}-3b^{2})+b (3a^{2}-b^{2})\sqrt {-1} 2+121 =(a+b1 )3=a3+3a2b1 +3ab2(1 )2+b3(1 )3=a(a23b2)+b(3a2b2)1 。然后可以计算出满足这两个方程的解, u = 2 u = 2 u=2 v = 1 v = 1 v=1 。将这些值代入上面关于 a 和 b 的方程中,该方程可写为 2 + − 121 3 = 2 + − 1 \sqrt [3]{2+\sqrt {-121}}=2+\sqrt {-1} 32+121 =2+1 2 − − 121 3 = 2 − − 1 \sqrt [3]{2-\sqrt {-121}}=2-\sqrt {-1} 32121 =21 。由于无意之中揭示出的实数同样复杂,邦贝利的观点极具创新性和震撼性。从本质上讲,邦贝利为任何实数都可以表示为复数这一观点提供了更多的实证支持。邦贝利的理论是该领域的一项数学创新。实数集的组织定义以及实数集与虚数集之间的紧密联系为集合论的发展提供了重要的深度。邦贝利还为后来想要进一步深入研究这一数学领域的数学家们提供了全新的研究视角。

Bombelli’s research is the foundation of algebra, and he is considered the founder of new algebra. This is a great achievement, because Bombelli first recognized imaginary numbers, and was able to let those mathematicians in later generations understand and see algebra from a new perspective. As those mathematicians know. Later, this view was also confirmed and accepted, because his bold argument was more like a more concrete proof idea. Simply put, he takes something that is currently known to exist and shows why there is a misunderstanding of it, rather than formulating rules from calculations. His research and discovery of complex numbers also provided mathematicians with the opportunity to expand the thinking of cubic functions and study algebra from new aspects [1-15].

邦贝利的研究是代数学的基础,他被视为新代数学的奠基人。这是一项伟大的成就,因为邦贝利率先认识到了虚数,并且能够让后世的数学家从新的视角去理解和看待代数学。正如那些数学家所了解的那样。后来,这一观点也得到了证实和认可,因为他大胆的论证更像是一种更为具体的证明思路。简单来说,他从人们已知存在的事物出发,解释为何会对其存在误解,而不是通过计算来制定规则。他对复数的研究和发现也为数学家们提供了拓展三次函数思维、从新的角度研究代数学的机会 [1-15]。

2.2 Complex number and the complex plane.

复数与复平面

Complex numbers are defined as the set of C : = { a + i b : a , b ∈ all real number } C:=\{a + ib: a, b \in \text {all real number}\} C:={a+ib:a,ball real number}, where i = − 1 i = \sqrt {-1} i=1 (that is, i 2 = − 1 i^{2}=-1 i2=1). For z = x + i y ∈ C z=x + iy \in C z=x+iyC, the real part is Re ( z ) : = x \text {Re}(z):=x Re(z):=x. And the imaginary part is Im ( z ) : = y \text {Im}(z):=y Im(z):=y. The absolute value is ∣ z ∣ : = ( x 2 + y 2 ) 1 2 |z|:=(x^{2}+y^{2})^{\frac {1}{2}} z:=(x2+y2)21. For the operations on C C C, C C C admits the operations of Additions: ( x 1 + i y 1 ) + ( x 2 + i y 2 ) = ( x 1 + x 2 ) + i ( y 1 + y 2 ) (x_1 + iy_1)+(x_2 + iy_2)=(x_1 + x_2)+i (y_1 + y_2) (x1+iy1)+(x2+iy2)=(x1+x2)+i(y1+y2); Multiplication: ( x 1 + i y 1 ) × ( x 2 + i y 2 ) = ( x 1 x 2 − y 1 y 2 ) + i ( x 1 y 2 + x 2 y 1 ) (x_1 + iy_1)\times (x_2 + iy_2)=(x_1x_2 - y_1y_2)+i (x_1y_2 + x_2y_1) (x1+iy1)×(x2+iy2)=(x1x2y1y2)+i(x1y2+x2y1); Complex conjugation: x + i y ‾ = x − i y \overline {x + iy}=x - iy x+iy=xiy.

复数被定义为集合 C : = { a + i b : a , b ∈ 所有实数 } C:=\{a + ib: a, b \in \text {所有实数}\} C:={a+ib:a,b所有实数},其中 i = − 1 i = \sqrt {-1} i=1 (即 i 2 = − 1 i^{2}=-1 i2=1)。对于 z = x + i y ∈ C z=x + iy \in C z=x+iyC,其实部定义为 Re ( z ) : = x \text {Re}(z):=x Re(z):=x,虚部定义为 Im ( z ) : = y \text {Im}(z):=y Im(z):=y,绝对值定义为 ∣ z ∣ : = ( x 2 + y 2 ) 1 2 |z|:=(x^{2}+y^{2})^{\frac {1}{2}} z:=(x2+y2)21。在集合 C C C 上,定义了以下运算:加法: ( x 1 + i y 1 ) + ( x 2 + i y 2 ) = ( x 1 + x 2 ) + i ( y 1 + y 2 ) (x_1 + iy_1)+(x_2 + iy_2)=(x_1 + x_2)+i (y_1 + y_2) (x1+iy1)+(x2+iy2)=(x1+x2)+i(y1+y2);乘法: ( x 1 + i y 1 ) × ( x 2 + i y 2 ) = ( x 1 x 2 − y 1 y 2 ) + i ( x 1 y 2 + x 2 y 1 ) (x_1 + iy_1)\times (x_2 + iy_2)=(x_1x_2 - y_1y_2)+i (x_1y_2 + x_2y_1) (x1+iy1)×(x2+iy2)=(x1x2y1y2)+i(x1y2+x2y1);复共轭: x + i y ‾ = x − i y \overline {x + iy}=x - iy x+iy=xiy

Addition and multiplication are simply the natural extensions of the corresponding operations on all real numbers along with the rule that i 2 = − 1 i^{2}=-1 i2=1. Furthermore, these operations make C C C a field: addition and multiplication are associative, commutative, admit identities (0 and 1, respectively), recognize inverses − z -z z and 1 z \frac {1}{z} z1 (for z ≠ 0 z\neq0 z=0), and satisfy the distributive laws that exercise these factual persuasion. One also has h + k ‾ = h ‾ + k ‾ \overline {h + k}=\overline {h}+\overline {k} h+k=h+k, h k ‾ = h ‾ × k ‾ \overline {hk}=\overline {h}\times\overline {k} hk=h×k and Re ( h ) = 1 2 ( h + h ‾ ) \text {Re}(h)=\frac {1}{2}(h+\overline {h}) Re(h)=21(h+h); Im ( h ) = 1 2 i ( h − h ‾ ) \text {Im}(h)=\frac {1}{2i}(h-\overline {h}) Im(h)=2i1(hh); ∣ h ∣ = ( h × h ‾ ) 1 2 |h|=(h\times\overline {h})^{\frac {1}{2}} h=(h×h)21. For all h , w ∈ C h, w \in C h,wC. The last identity shows ∣ h ∣ = 0 |h| = 0 h=0 if and only if h = 0 h = 0 h=0. This can also derived the tag “conjugating the denominator”: 1 h = h ‾ ∣ h ∣ 2 \frac {1}{h}=\frac {\overline {h}}{|h|^{2}} h1=h2h (after checking h ≠ 0 h\neq0 h=0), for example, 1 s + i t = 1 s + i t × s − i t s − i t = s − i t s 2 + t 2 = s + i t ‾ ∣ s + i t ∣ 2 \frac {1}{s+it}=\frac {1}{s+it}\times\frac {s - it}{s - it}=\frac {s - it}{s^{2}+t^{2}}=\frac {\overline {s+it}}{|s+it|^{2}} s+it1=s+it1×sitsit=s2+t2sit=s+it2s+it. Using the above identities, it shows ∣ h k ∣ 2 = ( h k ) × ( h k ‾ ) = h k h ‾ × k ‾ = ∣ h ∣ 2 × ∣ k ∣ 2 → ∣ h k ∣ = ∣ h ∣ ∣ k ∣ |hk|^{2}=(hk)\times (\overline {hk})=h k\overline {h}\times\overline {k}=|h|^{2}\times|k|^{2}\to|hk|=|h||k| hk2=(hk)×(hk)=hkh×k=h2×k2hk=h∣∣k.

加法和乘法是实数相应运算的自然扩展,并遵循 i 2 = − 1 i^{2}=-1 i2=1 这一规则。此外,这些运算使得 C C C 构成一个域:加法和乘法满足结合律、交换律,存在单位元(分别为 0 和 1),存在逆元 − z -z z(对应加法)和 1 z \frac {1}{z} z1 z ≠ 0 z\neq0 z=0 时,对应乘法),并且满足分配律。对于所有 h , w ∈ C h, w \in C h,wC,还有 h + k ‾ = h ‾ + k ‾ \overline {h + k}=\overline {h}+\overline {k} h+k=h+k h k ‾ = h ‾ × k ‾ \overline {hk}=\overline {h}\times\overline {k} hk=h×k Re ( h ) = 1 2 ( h + h ‾ ) \text {Re}(h)=\frac {1}{2}(h+\overline {h}) Re(h)=21(h+h) Im ( h ) = 1 2 i ( h − h ‾ ) \text {Im}(h)=\frac {1}{2i}(h-\overline {h}) Im(h)=2i1(hh) ∣ h ∣ = ( h × h ‾ ) 1 2 |h|=(h\times\overline {h})^{\frac {1}{2}} h=(h×h)21 。最后这个等式表明, ∣ h ∣ = 0 |h| = 0 h=0 当且仅当 h = 0 h = 0 h=0。由此还可以推导出 “分母有理化” 的方法: 1 h = h ‾ ∣ h ∣ 2 \frac {1}{h}=\frac {\overline {h}}{|h|^{2}} h1=h2h(需检验 h ≠ 0 h\neq0 h=0),例如, 1 s + i t = 1 s + i t × s − i t s − i t = s − i t s 2 + t 2 = s + i t ‾ ∣ s + i t ∣ 2 \frac {1}{s+it}=\frac {1}{s+it}\times\frac {s - it}{s - it}=\frac {s - it}{s^{2}+t^{2}}=\frac {\overline {s+it}}{|s+it|^{2}} s+it1=s+it1×sitsit=s2+t2sit=s+it2s+it。利用上述等式,可以得到 ∣ h k ∣ 2 = ( h k ) × ( h k ‾ ) = h k h ‾ × k ‾ = ∣ h ∣ 2 × ∣ k ∣ 2 |hk|^{2}=(hk)\times (\overline {hk})=h k\overline {h}\times\overline {k}=|h|^{2}\times|k|^{2} hk2=(hk)×(hk)=hkh×k=h2×k2,进而得出 ∣ h k ∣ = ∣ h ∣ ∣ k ∣ |hk|=|h||k| hk=h∣∣k

Also, h ∈ C h \in C hC is real if and only if h ‾ = h \overline {h}=h h=h, and h h h is imaginary if and only if h ‾ = − h \overline {h}=-h h=h. Let α = a + b i \alpha=a + bi α=a+bi be a complex number, α ‾ = a − b i \overline {\alpha}=a - bi α=abi is called the conjugate of α \alpha α, and α α ‾ = a 2 + b 2 = ∣ α ∣ 2 \alpha\overline {\alpha}=a^{2}+b^{2}=|\alpha|^{2} αα=a2+b2=α2. Let α \alpha α, β \beta β be complex numbers, then α β ‾ = α ‾ β ‾ \overline {\alpha\beta}=\overline {\alpha}\overline {\beta} αβ=αβ, α + β ‾ = α ‾ + β ‾ \overline {\alpha+\beta}=\overline {\alpha}+\overline {\beta} α+β=α+β, α ‾ ‾ = α \overline {\overline {\alpha}}=\alpha α=α. What is Visualizing C C C? C C C should be visualized as a coordinate plane with the square of all real numbers, where a point a = p + i q a=p+iq a=p+iq is plotted as the pair ( p , q ) (p,q) (p,q). In this case, the coordinate plane is referred to as the complex plane, and the x x x-axis and y y y-axis are referred to as the real and imaginary axes, respectively. Using the square of all real integers as the distance formula, it is known that ∣ z ∣ |z| z is the distance from z z z to 0 on the complex plane. More generally, ∣ z − w ∣ |z - w| zw is the distance from z z z to w w w.

此外, h ∈ C h \in C hC 为实数当且仅当 h ‾ = h \overline {h}=h h=h h h h 为虚数当且仅当 h ‾ = − h \overline {h}=-h h=h。设 α = a + b i \alpha=a + bi α=a+bi 为一个复数, α ‾ = a − b i \overline {\alpha}=a - bi α=abi 称为 α \alpha α 的共轭复数,且 α α ‾ = a 2 + b 2 = ∣ α ∣ 2 \alpha\overline {\alpha}=a^{2}+b^{2}=|\alpha|^{2} αα=a2+b2=α2。设 α \alpha α β \beta β 为复数,则 α β ‾ = α ‾ β ‾ \overline {\alpha\beta}=\overline {\alpha}\overline {\beta} αβ=αβ α + β ‾ = α ‾ + β ‾ \overline {\alpha+\beta}=\overline {\alpha}+\overline {\beta} α+β=α+β α ‾ ‾ = α \overline {\overline {\alpha}}=\alpha α=α。如何直观理解集合 C C C 呢?可以将 C C C 看作是一个以所有实数的平方为基础的坐标平面,其中点 a = p + i q a=p+iq a=p+iq 被表示为坐标对 ( p , q ) (p,q) (p,q) 。在这种情况下,该坐标平面被称为复平面, x x x 轴和 y y y 轴分别被称为实轴和虚轴。根据以所有实数的平方定义的距离公式可知, ∣ z ∣ |z| z 是复平面上 z z z 到 0 的距离。更一般地, ∣ z − w ∣ |z - w| zw 是复平面上 z z z w w w 的距离。

Note that addition matches vector space addition on full real squares and can therefore be visualized in this way. To visualize the multiplication, recall for the first time that every point in the square of all real numbers can be described by polar coordinates and converted to C C C: for any z ∈ C ∖ { 0 } z \in C\setminus\{0\} zC{0}, ∣ z ∣ z ∣ ∣ = ∣ z ∣ × ∣ 1 ∣ z ∣ ∣ = ∣ z ∣ × 1 ∣ z ∣ = 1 |\frac {z}{|z|}|=|z|\times|\frac {1}{|z|}|=|z|\times\frac {1}{|z|}=1 zz=z×z1=z×z1=1. Thus there exists θ ∈ all real number \theta\in\text {all real number} θall real number so that z ∣ z ∣ = cos ⁡ θ + i sin ⁡ θ \frac {z}{|z|}=\cos\theta + i\sin\theta zz=cosθ+isinθ. If we write e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta}=\cos\theta + i\sin\theta eiθ=cosθ+isinθ, the definition of absolute value of complex number is given as for a given complex number α = α 1 + i α 2 ( α 1 , α 2 ∈ R ) \alpha=\alpha_1 + i\alpha_2 (\alpha_1,\alpha_2\in R) α=α1+iα2(α1,α2R), ∣ α ∣ = α 1 2 + α 2 2 |\alpha|=\sqrt {\alpha_1^{2}+\alpha_2^{2}} α=α12+α22 . This notation will be justified by discussion of power series in sections above, then z = ∣ z ∣ e i θ z = |z|e^{i\theta} z=zeiθ.

注意,复数的加法与全实平方空间上的向量加法一致,因此可以从向量加法的角度直观理解。为了直观理解复数乘法,首先要知道所有实数平方空间中的每一个点都可以用极坐标表示,并转换到复数域:对于任意 z ∈ C ∖ { 0 } z \in C\setminus\{0\} zC{0} ∣ z ∣ z ∣ ∣ = ∣ z ∣ × ∣ 1 ∣ z ∣ ∣ = ∣ z ∣ × 1 ∣ z ∣ = 1 |\frac {z}{|z|}|=|z|\times|\frac {1}{|z|}|=|z|\times\frac {1}{|z|}=1 zz=z×z1=z×z1=1。因此,存在 θ ∈ 所有实数 \theta\in\text {所有实数} θ所有实数,使得 z ∣ z ∣ = cos ⁡ θ + i sin ⁡ θ \frac {z}{|z|}=\cos\theta + i\sin\theta zz=cosθ+isinθ。如果我们记 e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta}=\cos\theta + i\sin\theta eiθ=cosθ+isinθ,对于给定的复数 α = α 1 + i α 2 ( α 1 , α 2 ∈ R ) \alpha=\alpha_1 + i\alpha_2 (\alpha_1,\alpha_2\in R) α=α1+iα2(α1,α2R),其绝对值定义为 ∣ α ∣ = α 1 2 + α 2 2 |\alpha|=\sqrt {\alpha_1^{2}+\alpha_2^{2}} α=α12+α22 。上述关于幂级数的讨论将证明这种表示法的合理性,此时 z = ∣ z ∣ e i θ z = |z|e^{i\theta} z=zeiθ

Define for z ∈ C z \in C zC, z = ∣ z ∣ e i θ z = |z|e^{i\theta} z=zeiθ is said to be the polar form of z z z. The angle θ ∈ all real number \theta\in\text {all real number} θall real number is said to be the argument of z z z, and is denoted arg ( z ) \text {arg}(z) arg(z). Using trigonometric identities, one can check that e i θ 1 e i θ 2 = e i ( θ 1 + θ 2 ) e^{i\theta_1} e^{i\theta_2}=e^{i (\theta_1+\theta_2)} eiθ1eiθ2=ei(θ1+θ2). Thus for z z z, w w w, z w = ∣ z ∣ e i arg ( z ) × ∣ w ∣ e i arg ( w ) = ∣ z w ∣ e i ( arg ( z ) + arg ( w ) ) zw=|z|e^{i\text {arg}(z)}\times|w|e^{i\text {arg}(w)}=|zw|e^{i (\text {arg}(z)+\text {arg}(w))} zw=zeiarg(z)×weiarg(w)=zwei(arg(z)+arg(w)). Complex conjugation x + i y ‾ = x − i y \overline {x + iy}=x - iy x+iy=xiy corresponds to reflection over the real axis. Since the absolute value corresponds to distance in the complex plane, one obtains the triangle inequality: ∣ h + k ∣ ≤ ∣ h ∣ + ∣ k ∣ |h + k|\leq|h|+|k| h+kh+k. This further implies the triangle inequality: ∣ ∣ h ∣ − ∣ k ∣ ∣ ≤ ∣ h − k ∣ ||h|-|k||\leq|h - k| ∣∣hk∣∣hk.

对于 z ∈ C z \in C zC,定义 z = ∣ z ∣ e i θ z = |z|e^{i\theta} z=zeiθ z z z 的极坐标形式。其中, θ ∈ 所有实数 \theta\in\text {所有实数} θ所有实数 称为 z z z 的辐角,记作 arg ( z ) \text {arg}(z) arg(z)。利用三角函数恒等式可以验证 e i θ 1 e i θ 2 = e i ( θ 1 + θ 2 ) e^{i\theta_1} e^{i\theta_2}=e^{i (\theta_1+\theta_2)} eiθ1eiθ2=ei(θ1+θ2) 。因此,对于 z z z w w w,有 z w = ∣ z ∣ e i arg ( z ) × ∣ w ∣ e i arg ( w ) = ∣ z w ∣ e i ( arg ( z ) + arg ( w ) ) zw=|z|e^{i\text {arg}(z)}\times|w|e^{i\text {arg}(w)}=|zw|e^{i (\text {arg}(z)+\text {arg}(w))} zw=zeiarg(z)×weiarg(w)=zwei(arg(z)+arg(w))。复共轭 x + i y ‾ = x − i y \overline {x + iy}=x - iy x+iy=xiy 对应于关于实轴的反射。由于绝对值在复平面中表示距离,由此可得三角不等式: ∣ h + k ∣ ≤ ∣ h ∣ + ∣ k ∣ |h + k|\leq|h|+|k| h+kh+k。这进一步推出另一个三角不等式: ∣ ∣ h ∣ − ∣ k ∣ ∣ ≤ ∣ h − k ∣ ||h|-|k||\leq|h - k| ∣∣hk∣∣hk

Indeed, from the triangle inequality we have ∣ h ∣ − ∣ k ∣ ≤ ∣ h − k ∣ |h|-|k|\leq|h - k| hkhk. Also, ∣ k ∣ = ∣ k − h + h ∣ ≤ ∣ k − h ∣ + ∣ h ∣ |k|=|k - h+h|\leq|k - h|+|h| k=kh+hkh+h, so that − ( ∣ h ∣ − ∣ k ∣ ) = ∣ k ∣ − ∣ h ∣ ≤ ∣ k − h ∣ = ∣ h − k ∣ -(|h|-|k|)=|k|-|h|\leq|k - h|=|h - k| (hk)=khkh=hk. Hence it can get solutions ∣ R e ( h ) ∣ ≤ ∣ h ∣ |Re (h)|\leq|h| Re(h)h and ∣ I m ( h ) ∣ ≤ ∣ h ∣ |Im (h)|\leq|h| Im(h)h.

确实,由三角不等式可得 ∣ h ∣ − ∣ k ∣ ≤ ∣ h − k ∣ |h| - |k| \leq |h - k| hkhk。同时, ∣ k ∣ = ∣ k − h + h ∣ ≤ ∣ k − h ∣ + ∣ h ∣ |k| = |k - h + h| \leq |k - h| + |h| k=kh+hkh+h,所以 − ( ∣ h ∣ − ∣ k ∣ ) = ∣ k ∣ − ∣ h ∣ ≤ ∣ k − h ∣ = ∣ h − k ∣ -(|h| - |k|) = |k| - |h| \leq |k - h| = |h - k| (hk)=khkh=hk。由此可得 ∣ R e ( h ) ∣ ≤ ∣ h ∣ |Re (h)| \leq |h| Re(h)h ∣ I m ( h ) ∣ ≤ ∣ h ∣ |Im (h)| \leq |h| Im(h)h

The definition of the convergence is a sequence ( z n ) n ∈ ω ∈ C (z_{n})_{n \in \omega} \in C (zn)nωC converges to ω ∈ C \omega \in C ωC if lim ⁡ n → ∞ ∣ z n − ω ∣ = 0 \lim _{n \to \infty} | z_{n}-\omega |=0 limnznω=0, in which case it shows lim ⁡ n → ∞ z n = ω \lim _{n \to \infty} z_{n}=\omega limnzn=ω and call ω \omega ω the limit of the sequence. More explicitly, ( z n ) n ∈ ω (z_{n})_{n \in \omega} (zn)nω converges to ω \omega ω if ∀ ε > 0 \forall \varepsilon>0 ε>0; ∃ N ∈ N \exists N \in \mathbb {N} NN, so that ∀ n ≥ N , ∣ z n − ω ∣ < ε \forall_{n \geq N},|z_{n}-\omega|<\varepsilon nN,znω<ε.

收敛的定义是:对于复数序列 ( z n ) n ∈ ω ∈ C (z_{n})_{n \in \omega} \in C (zn)nωC,如果 lim ⁡ n → ∞ ∣ z n − ω ∣ = 0 \lim _{n \to \infty} | z_{n}-\omega |=0 limnznω=0,则称该序列收敛于 ω ∈ C \omega \in C ωC ,此时记 lim ⁡ n → ∞ z n = ω \lim _{n \to \infty} z_{n}=\omega limnzn=ω,并称 ω \omega ω 为该序列的极限。更明确地说,如果对于任意 ε > 0 \varepsilon>0 ε>0,存在 N ∈ N N \in \mathbb {N} NN,使得对于所有 n ≥ N n \geq N nN,都有 ∣ z n − ω ∣ < ε |z_{n}-\omega|<\varepsilon znω<ε,那么 ( z n ) n ∈ ω (z_{n})_{n \in \omega} (zn)nω 收敛于 ω \omega ω

Since ∣ R e ( z ) ∣ , ∣ I m ( z ) ∣ ≤ ∣ z ∣ = ( R e ( z ) 2 + I m ( z ) 2 ) 1 2 |Re (z)|,|Im (z)| \leq|z|=(Re (z)^{2}+Im (z)^{2})^{\frac {1}{2}} Re(z),Im(z)z=(Re(z)2+Im(z)2)21, one has lim ⁡ n → ∞ z n = ω ↔ lim ⁡ n → ∞ R e ( z n ) = ω \lim _{n \to \infty} z_{n}=\omega \leftrightarrow \lim _{n \to \infty} Re (z_{n})=\omega limnzn=ωlimnRe(zn)=ω and lim ⁡ n → ∞ I m ( z n ) = ω \lim _{n \to \infty} Im (z_{n})=\omega limnIm(zn)=ω. Thus this notion of convergence agrees with the usual one on the square of all real number. The other definition is ( z n ) n ∈ ω < C (z_{n})_{n \in \omega}<C (zn)nω<C is a Cauchy sequence if ∀ ε > 0 ∃ N ∈ N \forall_{\varepsilon>0} \exists N \in \mathbb {N} ε>0NN So that ∀ n , m ≥ 0 \forall n, m \geq 0 n,m0 are has ∣ z n − z m ∣ < ε |z_{n}-z_{m}|<\varepsilon znzm<ε. To put it another way, the terms in a Cauchy sequence finally get as near as they are willing to. Cauchy sequences are those that gradually approach both the limit and one another. It turns out the converge is true: C C C is complete: all Cauchy sequences converge. This illustrates that all real number is complete, so the real and imaginary parts converge to some x , y ∈ x, y \in x,y all real number, respectively. Define ω : = x + i y \omega :=x + iy ω:=x+iy, then lim ⁡ n → ∞ ∣ z n − ω ∣ = lim ⁡ n → ∞ ( ( R e ( z n ) − x ) 2 + ( I m ( z n ) − y ) 2 ) 1 2 = 0 \lim _{n \to \infty}|z_{n}-\omega|=\lim _{n \to \infty}((Re (z_{n})-x)^{2}+(Im (z_{n})-y)^{2})^{\frac {1}{2}}=0 limnznω=limn((Re(zn)x)2+(Im(zn)y)2)21=0.

由于 ∣ R e ( z ) ∣ , ∣ I m ( z ) ∣ ≤ ∣ z ∣ = ( R e ( z ) 2 + I m ( z ) 2 ) 1 2 |Re (z)|,|Im (z)| \leq|z|=(Re (z)^{2}+Im (z)^{2})^{\frac {1}{2}} Re(z),Im(z)z=(Re(z)2+Im(z)2)21,所以 lim ⁡ n → ∞ z n = ω \lim _{n \to \infty} z_{n}=\omega limnzn=ω 等价于 lim ⁡ n → ∞ R e ( z n ) = ω \lim _{n \to \infty} Re (z_{n})=\omega limnRe(zn)=ω lim ⁡ n → ∞ I m ( z n ) = ω \lim _{n \to \infty} Im (z_{n})=\omega limnIm(zn)=ω。因此,这种收敛的概念与所有实数平方空间上通常的收敛概念是一致的。另一个定义是:如果对于任意 ε > 0 \varepsilon>0 ε>0,存在 N ∈ N N \in \mathbb {N} NN,使得对于所有 n , m ≥ 0 n, m \geq 0 n,m0,都有 ∣ z n − z m ∣ < ε |z_{n}-z_{m}|<\varepsilon znzm<ε,那么序列 ( z n ) n ∈ ω ∈ C (z_{n})_{n \in \omega} \in C (zn)nωC 是一个柯西序列。换句话说,柯西序列中的项最终会变得任意接近。柯西序列是那些逐渐趋近于极限且彼此之间也逐渐趋近的序列。事实证明收敛性成立: C C C 是完备的,即所有柯西序列都收敛。这表明所有实数都是完备的,所以实部和虚部分别收敛到某个 x , y ∈ x, y \in x,y 所有实数。定义 ω : = x + i y \omega :=x + iy ω:=x+iy,那么 lim ⁡ n → ∞ ∣ z n − ω ∣ = lim ⁡ n → ∞ ( ( R e ( z n ) − x ) 2 + ( I m ( z n ) − y ) 2 ) 1 2 = 0 \lim _{n \to \infty}|z_{n}-\omega|=\lim _{n \to \infty}((Re (z_{n})-x)^{2}+(Im (z_{n})-y)^{2})^{\frac {1}{2}}=0 limnznω=limn((Re(zn)x)2+(Im(zn)y)2)21=0

Thus ( z n ) n ∈ N (z_{n})_{n \in \mathbb {N}} (zn)nN converges to ω \omega ω.

因此,序列 ( z n ) n ∈ N (z_{n})_{n \in \mathbb {N}} (zn)nN 收敛于 ω \omega ω

2.3 Complex sets and Topology

复集与拓扑

Complex sets and Topology establish some notation and terminology for subsets C C C.

复集与拓扑为复数集 C C C 的子集建立了一些符号和术语。

Define for z 0 ∈ C z_{0} \in C z0C and r > 0 r>0 r>0 the open disc of radius r r r centered at z 0 z_{0} z0 is D r ( z 0 ) : = { z ∈ C : ∣ z − z 0 ∣ < r } \mathbb {D}_{r}(z_{0}):=\{z \in C: |z - z_{0}|<r\} Dr(z0):={zC:zz0<r}. The closed disc of radius r r r centered at z 0 z_{0} z0 is D ‾ r ( z 0 ) : = { z ∈ C : ∣ z − z 0 ∣ ≤ r } \overline {\mathbb {D}}_{r}(z_{0}):=\{z \in C:|z - z_{0}| \leq r\} Dr(z0):={zC:zz0r}. The circle of radius r r r centered at z 0 z_{0} z0 is C r ( z 0 ) : = { z ∈ C : ∣ z − z 0 ∣ = r } C_{r}(z_{0}):=\{z \in C:|z - z_{0}|=r\} Cr(z0):={zC:zz0=r}. Finally, it can be reserved the following notation for the unit disc all real number ∶= D : = D 1 ( 0 ) = { Z ∈ C : ∣ z ∣ < 1 } \mathbb {D}:=\mathbb {D}_{1}(0)=\{Z \in C:|z|<1\} D:=D1(0)={ZC:z<1}

对于 z 0 ∈ C z_{0} \in C z0C r > 0 r > 0 r>0,定义以 z 0 z_{0} z0 为圆心、 r r r 为半径的开圆盘为 D r ( z 0 ) : = { z ∈ C : ∣ z − z 0 ∣ < r } \mathbb {D}_{r}(z_{0}):=\{z \in C: |z - z_{0}|<r\} Dr(z0):={zC:zz0<r}。以 z 0 z_{0} z0 为圆心、 r r r 为半径的闭圆盘为 D ‾ r ( z 0 ) : = { z ∈ C : ∣ z − z 0 ∣ ≤ r } \overline {\mathbb {D}}_{r}(z_{0}):=\{z \in C:|z - z_{0}| \leq r\} Dr(z0):={zC:zz0r}。以 z 0 z_{0} z0 为圆心、 r r r 为半径的圆为 C r ( z 0 ) : = { z ∈ C : ∣ z − z 0 ∣ = r } C_{r}(z_{0}):=\{z \in C:|z - z_{0}|=r\} Cr(z0):={zC:zz0=r}。最后,对于单位圆盘保留以下符号: D : = D 1 ( 0 ) = { Z ∈ C : ∣ z ∣ < 1 } \mathbb {D}:=\mathbb {D}_{1}(0)=\{Z \in C:|z|<1\} D:=D1(0)={ZC:z<1}

Let’s discuss the topological characteristics of complex numbers now. These characteristics are only a translation from the square of all real numbers to complex numbers since the complex plane may be associated with the square of all real numbers and includes certain notations of distance and convergence.

现在来讨论复数的拓扑特征。由于复平面可以与所有实数的平方空间相关联,并且包含了一些距离和收敛的概念,所以这些特征只是从所有实数的平方空间到复数的一种转换。

The absolute value of a complex number satisfies the following properties. If α , β \alpha, \beta α,β are complex numbers, then ∣ α β ∣ = ∣ α ∣ × ∣ β ∣ |\alpha \beta|=|\alpha|\times|\beta| αβ=α×β; ∣ α + β ∣ ≤ ∣ α ∣ + ∣ β ∣ |\alpha+\beta| \leq|\alpha|+|\beta| α+βα+β (triangle inequality). Let θ , φ \theta, \varphi θ,φ be complex numbers, then e i ( θ + φ ) = e i θ e i φ e^{i (\theta+\varphi)}=e^{i \theta} e^{i \varphi} ei(θ+φ)=eiθeiφ. Let α , β \alpha,\beta α,β be complex numbers, then e α + β = e α e β e^{\alpha+\beta}=e^{\alpha} e^{\beta} eα+β=eαeβ. The expression r e i θ r e^{i \theta} reiθ is called the polar form of the complex number x + i y x + iy x+iy. The number θ \theta θ is called the angle, or argument of z z z, and we write: θ = arg ⁡ z \theta=\arg z θ=argz. Let α ∈ S \alpha \in S αS, we say that f f f is continuous at z 0 z_{0} z0 if lim ⁡ z → z 0 f ( z ) = f ( z 0 ) = w 0 \lim _{z \to z_{0}} f (z)=f (z_{0})=w_{0} limzz0f(z)=f(z0)=w0. More explicit: For any ε > 0 \varepsilon>0 ε>0 there exists δ = δ ( ε ) \delta=\delta (\varepsilon) δ=δ(ε) such that. If ∣ z − z 0 ∣ < δ ( ε ) |z - z_{0}|<\delta (\varepsilon) zz0<δ(ε), then ∣ f ( z ) − f ( z 0 ) ∣ < ε |f (z)-f (z_{0})|< \varepsilon f(z)f(z0)<ε. We say that f f f is differentiable at z 0 z_{0} z0 if lim ⁡ z → z 0 f ( z ) − f ( z 0 ) z − z 0 \lim _{z \to z_{0}} \frac {f (z)-f (z_{0})}{z - z_{0}} limzz0zz0f(z)f(z0) exists. We denote the limit by f ′ ( z 0 ) f'(z_{0}) f(z0). More explicit: For any ε > 0 \varepsilon>0 ε>0 there exists δ = δ ( ε ) \delta=\delta (\varepsilon) δ=δ(ε) such that. If 0 < ∣ z − z 0 ∣ < δ ( ε ) 0<|z - z_{0}|<\delta (\varepsilon) 0<zz0<δ(ε), then ∣ f ( z ) − f ( z 0 ) z − z 0 − f ′ ( z 0 ) ∣ < ε |\frac {f (z)-f (z_{0})}{z - z_{0}}-f'(z_{0})|<\varepsilon zz0f(z)f(z0)f(z0)<ε. Let S ⊆ C S \subseteq C SC subset, if a point α \alpha α (not necessarily contained in S S S) such that ∀ D ( α , − ) \forall D (\alpha, -) D(α,) centered at α \alpha α contained both points of S S S and points are not in S S S.

复数的绝对值满足以下性质。如果 α , β \alpha, \beta α,β 是复数,那么 ∣ α β ∣ = ∣ α ∣ × ∣ β ∣ |\alpha \beta|=|\alpha|\times|\beta| αβ=α×β ∣ α + β ∣ ≤ ∣ α ∣ + ∣ β ∣ |\alpha+\beta| \leq|\alpha|+|\beta| α+βα+β(三角不等式)。设 θ , φ \theta, \varphi θ,φ 是复数,则 e i ( θ + φ ) = e i θ e i φ e^{i (\theta+\varphi)}=e^{i \theta} e^{i \varphi} ei(θ+φ)=eiθeiφ。设 α , β \alpha,\beta α,β 是复数,则 e α + β = e α e β e^{\alpha+\beta}=e^{\alpha} e^{\beta} eα+β=eαeβ。表达式 r e i θ r e^{i \theta} reiθ 称为复数 x + i y x + iy x+iy 的极坐标形式。 θ \theta θ 称为 z z z 的辐角,记作 θ = arg ⁡ z \theta=\arg z θ=argz。设 α ∈ S \alpha \in S αS,如果 lim ⁡ z → z 0 f ( z ) = f ( z 0 ) = w 0 \lim _{z \to z_{0}} f (z)=f (z_{0})=w_{0} limzz0f(z)=f(z0)=w0,则称 f f f z 0 z_{0} z0 处连续。更明确地说:对于任意 ε > 0 \varepsilon>0 ε>0,存在 δ = δ ( ε ) \delta=\delta (\varepsilon) δ=δ(ε),使得如果 ∣ z − z 0 ∣ < δ ( ε ) |z - z_{0}|<\delta (\varepsilon) zz0<δ(ε),那么 ∣ f ( z ) − f ( z 0 ) ∣ < ε |f (z)-f (z_{0})|< \varepsilon f(z)f(z0)<ε。如果 lim ⁡ z → z 0 f ( z ) − f ( z 0 ) z − z 0 \lim _{z \to z_{0}} \frac {f (z)-f (z_{0})}{z - z_{0}} limzz0zz0f(z)f(z0) 存在,则称 f f f z 0 z_{0} z0 处可微,我们将这个极限记为 f ′ ( z 0 ) f'(z_{0}) f(z0)。更明确地说:对于任意 ε > 0 \varepsilon>0 ε>0,存在 δ = δ ( ε ) \delta=\delta (\varepsilon) δ=δ(ε),使得如果 0 < ∣ z − z 0 ∣ < δ ( ε ) 0<|z - z_{0}|<\delta (\varepsilon) 0<zz0<δ(ε),那么 ∣ f ( z ) − f ( z 0 ) z − z 0 − f ′ ( z 0 ) ∣ < ε |\frac {f (z)-f (z_{0})}{z - z_{0}}-f'(z_{0})|<\varepsilon zz0f(z)f(z0)f(z0)<ε。设 S ⊆ C S \subseteq C SC 是一个子集,如果存在一点 α \alpha α(不一定包含在 S S S 中),使得以 α \alpha α 为中心的任意 D ( α , − ) D (\alpha, -) D(α,) 既包含 S S S 中的点,也包含不在 S S S 中的点。

Let U ⊆ C U \subseteq C UC subset, U U U is called open if for ∀ α ∈ U \forall \alpha \in U αU, there exists r ∈ R + r \in \mathbb {R}^{+} rR+ and such that D ( α , r ) ⊆ U D (\alpha, r) \subseteq U D(α,r)U. Let U ⊆ C U \subseteq C UC subset is called closed subsets if Cl ( U ) \text {Cl}(U) Cl(U) is open in C C C. Or Let U ⊆ C U \subseteq C UC subset is called closed if U U U contains all its boundary points. Let α ⊆ C \alpha \subseteq C αC is called an interior point of S S S if ∃ D ( α , r ) \exists D (\alpha, r) D(α,r) with r ∈ R + r \in \mathbb {R}^{+} rR+ and D ( α , r ) ⊆ S D (\alpha, r) \subseteq S D(α,r)S. At last, in order to prove power of complex numbers, two questions solved by complex numbers techniques are given.

U ⊆ C U \subseteq C UC 是一个子集,如果对于任意 α ∈ U \alpha \in U αU,存在 r ∈ R + r \in \mathbb {R}^{+} rR+,使得 D ( α , r ) ⊆ U D (\alpha, r) \subseteq U D(α,r)U,则称 U U U 是开集。设 U ⊆ C U \subseteq C UC 是一个子集,如果 Cl ( U ) \text {Cl}(U) Cl(U) U U U 的闭包)在 C C C 中是开集,则称 U U U 是闭集。或者说,如果 U U U 包含其所有边界点,则称 U U U 是闭集。设 α ⊆ C \alpha \subseteq C αC,如果存在 r ∈ R + r \in \mathbb {R}^{+} rR+ D ( α , r ) D (\alpha, r) D(α,r),使得 D ( α , r ) ⊆ S D (\alpha, r) \subseteq S D(α,r)S,则称 α \alpha α S S S 的内点。最后,为了证明复数的作用,给出了两个用复数技术解决的问题。

Take z = 1 z = 1 z=1 and n ∈ Z + n \in \mathbb {Z}^{+} nZ+ fixed, there are exactly n n n different numbers such that w n = z = 1 w^{n}=z = 1 wn=z=1.

Prove: Let θ = 2 π n \theta=\frac {2 \pi}{n} θ=n2π, w 1 = 1 × e i 2 π n = e i θ w_{1}=1\times e^{i \frac {2 \pi}{n}}=e^{i \theta} w1=1×ein2π=eiθ, w 2 = 1 × e i 4 π n = e 2 i θ w_{2}=1\times e^{i \frac {4 \pi}{n}}=e^{2i \theta} w2=1×ein4π=e2iθ, …, w n = 1 × e i 2 π = 1 w_{n}=1\times e^{i 2 \pi}=1 wn=1×ei2π=1 are all satisfy w i n = 1 w_{i}^{n}=1 win=1 for i = 1 , ⋯ , n i = 1,\cdots,n i=1,,n.

Let n n n be a prime number. Then ( 1 + 2 cos ⁡ 2 π n ) ( 1 + 2 cos ⁡ 4 π n ) ( 1 + 2 cos ⁡ 6 π n ) ⋯ ( 1 + 2 cos ⁡ 2 k π n ) = 3 (1 + 2\cos\frac {2 \pi}{n})(1 + 2\cos\frac {4 \pi}{n})(1 + 2\cos\frac {6 \pi}{n})\cdots (1 + 2\cos\frac {2k \pi}{n}) = 3 (1+2cosn2π)(1+2cosn4π)(1+2cosn6π)(1+2cosn2)=3.

Let W = e 2 π i n W = e^{\frac {2 \pi i}{n}} W=en2πi, that is W n = 1 W^{n}=1 Wn=1, W − n 2 = e − π i = − 1 W^{-\frac {n}{2}}=e^{-\pi i}=-1 W2n=eπi=1, 2 cos ⁡ 2 k π n = W k + W − k 2\cos\frac {2k \pi}{n}=W^{k}+W^{-k} 2cosn2=Wk+Wk.

∏ k = 1 n ( 1 + 2 cos ⁡ 2 k π n ) = ∏ k = 1 n ( 1 + W k + W − k ) = ∏ k = 1 n W − k ( W 2 k + W k + 1 ) = W − n ( n + 1 ) 2 × 3 ∏ k = 1 n − 1 1 − W 3 k 1 − W k = ( − 1 ) n + 1 × 3 ∏ k = 1 n − 1 1 − W 3 k 1 − W k \prod_{k = 1}^{n}(1 + 2\cos\frac {2k \pi}{n})=\prod_{k = 1}^{n}(1 + W^{k}+W^{-k})=\prod_{k = 1}^{n} W^{-k}(W^{2k}+W^{k}+1)=W^{-\frac {n (n + 1)}{2}}\times3\prod_{k = 1}^{n - 1}\frac {1 - W^{3k}}{1 - W^{k}}=(-1)^{n + 1}\times3\prod_{k = 1}^{n - 1}\frac {1 - W^{3k}}{1 - W^{k}} k=1n(1+2cosn2)=k=1n(1+Wk+Wk)=k=1nWk(W2k+Wk+1)=W2n(n+1)×3k=1n11Wk1W3k=(1)n+1×3k=1n11Wk1W3k.

Take n = 5 n = 5 n=5 as an example to illustrate an elegant identity. ( − 1 ) n + 1 × 3 ∏ k = 1 n − 1 1 − W 3 k 1 − W k = ( − 1 ) 6 × 3 ∏ k = 1 4 1 − W 3 k 1 − W k (-1)^{n + 1}\times3\prod_{k = 1}^{n - 1}\frac {1 - W^{3k}}{1 - W^{k}}=(-1)^{6}\times3\prod_{k = 1}^{4}\frac {1 - W^{3k}}{1 - W^{k}} (1)n+1×3k=1n11Wk1W3k=(1)6×3k=141Wk1W3k.

z = 1 z = 1 z=1 且固定 n ∈ Z + n\in\mathbb {Z}^{+} nZ+(正整数集),恰好有 n n n 个不同的数 w w w 满足 w n = z = 1 w^{n}=z = 1 wn=z=1

证明:令 θ = 2 π n \theta=\frac {2\pi}{n} θ=n2π w 1 = 1 × e i 2 π n = e i θ w_1 = 1\times e^{i\frac {2\pi}{n}} = e^{i\theta} w1=1×ein2π=eiθ w 2 = 1 × e i 4 π n = e 2 i θ w_2 = 1\times e^{i\frac {4\pi}{n}} = e^{2i\theta} w2=1×ein4π=e2iθ,……, w n = 1 × e i 2 π = 1 w_n = 1\times e^{i2\pi}=1 wn=1×ei2π=1,对于 i = 1 , ⋯ , n i = 1,\cdots,n i=1,,n,都有 w i n = 1 w_{i}^{n}=1 win=1

n n n 为质数,那么 ( 1 + 2 cos ⁡ 2 π n ) ( 1 + 2 cos ⁡ 4 π n ) ( 1 + 2 cos ⁡ 6 π n ) ⋯ ( 1 + 2 cos ⁡ 2 k π n ) = 3 (1 + 2\cos\frac {2\pi}{n})(1 + 2\cos\frac {4\pi}{n})(1 + 2\cos\frac {6\pi}{n})\cdots (1 + 2\cos\frac {2k\pi}{n}) = 3 (1+2cosn2π)(1+2cosn4π)(1+2cosn6π)(1+2cosn2)=3

W = e 2 π i n W = e^{\frac {2\pi i}{n}} W=en2πi,即 W n = 1 W^{n}=1 Wn=1 W − n 2 = e − π i = − 1 W^{-\frac {n}{2}} = e^{-\pi i}=-1 W2n=eπi=1 2 cos ⁡ 2 k π n = W k + W − k 2\cos\frac {2k\pi}{n}=W^{k}+W^{-k} 2cosn2=Wk+Wk

∏ k = 1 n ( 1 + 2 cos ⁡ 2 k π n ) = ∏ k = 1 n ( 1 + W k + W − k ) = ∏ k = 1 n W − k ( W 2 k + W k + 1 ) = W − n ( n + 1 ) 2 × 3 ∏ k = 1 n − 1 1 − W 3 k 1 − W k = ( − 1 ) n + 1 × 3 ∏ k = 1 n − 1 1 − W 3 k 1 − W k \prod_{k = 1}^{n}(1 + 2\cos\frac {2k\pi}{n})=\prod_{k = 1}^{n}(1 + W^{k}+W^{-k})=\prod_{k = 1}^{n} W^{-k}(W^{2k}+W^{k}+1)=W^{-\frac {n (n + 1)}{2}}\times3\prod_{k = 1}^{n - 1}\frac {1 - W^{3k}}{1 - W^{k}}=(-1)^{n + 1}\times3\prod_{k = 1}^{n - 1}\frac {1 - W^{3k}}{1 - W^{k}} k=1n(1+2cosn2)=k=1n(1+Wk+Wk)=k=1nWk(W2k+Wk+1)=W2n(n+1)×3k=1n11Wk1W3k=(1)n+1×3k=1n11Wk1W3k

n = 5 n = 5 n=5 为例来阐释一个优美的恒等式。 ( − 1 ) n + 1 × 3 ∏ k = 1 n − 1 1 − W 3 k 1 − W k = ( − 1 ) 6 × 3 ∏ k = 1 4 1 − W 3 k 1 − W k (-1)^{n + 1}\times3\prod_{k = 1}^{n - 1}\frac {1 - W^{3k}}{1 - W^{k}}=(-1)^{6}\times3\prod_{k = 1}^{4}\frac {1 - W^{3k}}{1 - W^{k}} (1)n+1×3k=1n11Wk1W3k=(1)6×3k=141Wk1W3k

3. Summary

总结

Complex analysis is a subfield of mathematical analysis that focuses on the operations of complex numbers. The theory of functions of a complex variable is another name for it. In particular, algebraic geometry, fluid dynamics, quantum mechanics, and other related sciences have made substantial use of complex analysis in mathematics, physics, and engineering over the years. Girolamo Cardano and Raphael Bombelli, two Italian mathematicians, initially recognized complex numbers while attempting to solve a particular algebra in the 16th century, while Cauchy and Riemann further improved it in the 19th century. Complex numbers have a long history of development. After thousands of years of growth, mathematicians have made enormous advancements in the field. In addition, a considerable lot of previously undiscovered mathematical knowledge was discovered during this time, and previously unprovable formulas and phenomena were proved. Additionally, some of the mathematics associated with complex numbers and their use are covered. This paper presents a comprehensive account of the discovery of complex numbers, including everything from the cubic equation to their topology.

复分析是数学分析的一个子领域,主要研究复数的运算。它也被称为复变函数论。多年来,复分析在数学、物理学和工程学领域有着广泛应用,尤其在代数几何、流体动力学、量子力学等相关学科中发挥了重要作用。16 世纪,意大利数学家吉罗拉莫・卡尔达诺和拉斐尔・邦贝利在求解特定代数问题时首次发现了复数,19 世纪柯西和黎曼进一步推动了复数理论的发展。复数的发展历程源远流长,经过数千年的演进,数学家们在该领域取得了巨大的进步。在此期间,大量此前未知的数学知识被发掘出来,许多曾经无法证明的公式和现象也得到了论证。本文还涵盖了一些与复数相关的数学知识及其应用。全面阐述了复数的发现过程,包括从三次方程到复数拓扑的各个方面。

References

[1] Liu Shenghua, Pan Jifu, Zheng Jiyun, complex change function [M]. Changchun: Jilin Education Press,1988.

[2] Zhong Yuquan, complex function Theory (second edition) [M]. Beijing: Higher Education Press, 1988.

[3] L V Alforth, complex analysis [M]. Shanghai: Shanghai Science Press, 1984.

[4] Tan Xiaohong, Wu Shengjian complex change function concise tutorial [M]. Beijing: Peking University Press, 2006.

[5] Jerrld E Maislen, Basic complex analysis [M]. Freeman W H and Company, 1973.

[6] A Simple Proof of the Fundamental Cauchy-Goursat Theorem, Eliakim Hastings Moore, American Mathematical Society.

[7] Complex variables and applications / James Ward Brown, Ruel V. Churchill.—9th ed. 1221 Avenue of the Americas, New York, NY 10020.

[8] Matrices, Faculty of Mathematics Centre for Education in Waterloo, Ontario N2L 3G1.

[9] Integration along curves, VED V. DATAR.

[10] The Cauchy–Riemann Equations, Joel Feldman, 2012.

[11] Cauchy’s integral formula, Jeremy Orlof.

[12] Taylor’s Theorem and Applications, James S. Cook, November 11, 2018, For Math 132 Online.

[13] Taylor & Laurent theorem, Chandan kumar Department of physics S N Sinha College Jehanabad Introduction.

[14] Complex Analysis, Elias M. Stein and Rami Shakarchi, published by Princeton University Press and copyrighted, © 2003.

[15] A Formal Proof of Cauchy’s Residue Theorem, Wenda Li and Lawrence C. Paulson Computer Laboratory, University of Cambridge.


via:

  • Complex Numbers History
    https://mast.queensu.ca/~math211/M211OH/M211OH33.pdf

  • Discovery of Complex numbers
    https://www.researchgate.net/publication/369471825_Discovery_of_Complex_numbers


  • 从三次方程到复平面:复数概念的奇妙演进(一)-CSDN博客
    https://blog.csdn.net/u013669912/article/details/147179204

  • 从三次方程到复平面:复数概念的奇妙演进(二)-CSDN博客
    https://blog.csdn.net/u013669912/article/details/147194451

  • 从三次方程到复平面:复数概念的奇妙演进(四)-CSDN博客
    https://blog.csdn.net/u013669912/article/details/147193576

相关文章:

从三次方程到复平面:复数概念的奇妙演进(三)

注&#xff1a;本文为 “复数 | 历史 / 演进” 相关文章。 因 csdn 篇幅限制分篇连载&#xff0c;此为第三篇。 生料&#xff0c;不同的文章不同的点。 机翻&#xff0c;未校。 Complex Numbers History: Complex numbers were first introduced by G. Cardano (1501-1576)…...

2025年七星棋牌跨平台完整源码解析(200+地方子游戏+APP+H5+小程序支持,附服务器镜像导入思路)

目前市面上成熟的棋牌游戏源码很多&#xff0c;但能做到平台全覆盖、地方玩法丰富、交付方式标准化的系统却不多。今天这套七星棋牌2023完整源码具备安卓/iOS/H5/微信小程序端四端互通能力&#xff0c;附带200多款地方子游戏&#xff0c;还配备了后台管理与自动热更系统&#x…...

从三次方程到复平面:复数概念的奇妙演进(四)

注&#xff1a;本文为 “复数 | 历史 / 演进” 相关文章合辑。 因 csdn 篇幅限制分篇连载&#xff0c;此为第四篇。 生料&#xff0c;不同的文章不同的点。 机翻&#xff0c;未校。 Complex number and its discovery history 复数及其发现历史 Wenhao Chen, †, Dazheng …...

UE5角色状态机中跳跃落地移动衔接问题

UE5系列文章目录 文章目录 UE5系列文章目录前言一、状态机设置二、主要蓝图 前言 先说说遇到的问题&#xff0c;在我按空格键跳跃落地以后&#xff0c;角色落地再按WSAD键移动就出现了画面中角色抽搐的情况 一、状态机设置 在Unreal Engine 5中创建角色时&#xff0c;处理跳…...

25软考中级*高项网课+历年真题+笔记+电子书+刷题【计算机软考】

两个月逆袭25年软考程序员&#xff1f;这份高效备考指南请收好 25软考中级*高项网课download &#x1f4c2; 软考中级科目备考资料介绍 ✅ 【01】2025 年软件测评师 聚焦软件测试全流程&#xff0c;涵盖 需求分析、测试设计、用例编写、缺陷管理 等核心技能。 &#x1f4d8; 备…...

C++STL——容器-list(含模拟实现,即底层原理)(含迭代器失效问题)(所有你不理解的问题,这里都有解答,最详细)

目录 1.迭代器的分类 2.list的使用 2.1 list的构造 2.2 list iterator 2.3 list capacity 2.4 list element access ​编辑 2.5 list modifiers ​编辑2.5.1 list插入和删除 2.5.2 insert /erase 2.5.3 resize/swap/clear ​编辑 2.6 list的一些其他接口…...

Linux系统编程之虚拟内存

概述 计算机内存是临时存储数据的地方&#xff0c;它比硬盘快得多&#xff0c;但容量有限。现代操作系统通过虚拟内存技术&#xff0c;使得每个进程都感觉自己独占整个地址空间&#xff0c;这不仅提高了安全性&#xff0c;也简化了内存管理。 物理内存&#xff1a;实际安装在计…...

笔试专题(八)

文章目录 平方数&#xff08;数学&#xff09;题解代码 DNA序列&#xff08;固定长度的滑动窗口&#xff09;题解代码 压缩字符串 &#xff08;双指针 模拟&#xff09;题解代码 chika和蜜柑 &#xff08;top k问题 排序 pair&#xff09;题解代码 平方数&#xff08;数学&a…...

Linux:基础IO---软硬链接动静态库前置知识

序&#xff1a;上一个章节&#xff0c;我从硬件出发&#xff0c;由宏观到微观&#xff0c;由具体到抽象&#xff0c;围绕研究对象未被打开的文件来讲解&#xff0c;操作系统是如何对一个大块的磁盘进行管理的&#xff0c;从而引进inode的概念&#xff0c;加深了对文件的理解&am…...

Arm CPU安全通告:基于TrustZone的Cortex-M系统面临多重故障注入攻击

安全之安全(security)博客目录导读 目录 一、概述 二、致谢 三、参考文献​​​​​​Black Hat USA 2022 | Briefings Schedule 四、版本历史 一、概述 Arm注意到BlackHat 2022大会官网发布的演讲摘要《糟糕..&#xff01;我又一次故障注入成功了&#xff01;——如何突…...

测试第二课-------自动化测试

作者前言 &#x1f382; ✨✨✨✨✨✨&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f382; ​&#x1f382; 作者介绍&#xff1a; &#x1f382;&#x1f382; &#x1f382; &#x1f389;&#x1f389;&#x1f389…...

深入探索Linux开发工具:Vim与Yum

目录 引言 Vim&#xff1a;强大的文本编辑利器 Vim的基本概念 Vim的基本操作 Vim正常模式命令集 Vim末行模式命令集 Vim的配置 使用插件拓展Vim功能 Yum&#xff1a;便捷的Linux软件包管理器 注意事项 结语 引言 在Linux的世界里&#xff0c;高效的开发工具是提升生…...

玩转ChatGPT:使用深入研究功能梳理思路

一、写在前面 前我尝试用ChatGPT的Deep Research&#xff08;深入研究&#xff09;功能来梳理文献&#xff0c;效果相当不错。最近&#xff0c;谷歌的Gemini 2.5 Pro也推出了类似功能&#xff0c;从网络测评来看&#xff0c;其表现与ChatGPT不相上下&#xff0c;而且还可以免费…...

UE5蓝图实现打开和关闭界面、退出

Button_Back 和Button_Exit是创建的两个按钮事件。 1.Create Widget 创建界面&#xff08;打开界面&#xff09; 2.Add to Viewport 添加到视图 3.remove form Parent&#xff0c;Target&#xff1a;self 从父节点移除当前界面&#xff08;关闭界面&#xff09; 4.Quit Game 退…...

实现vlan间的通信

这是第一种方法&#xff08;更推荐第三种&#xff09; PC1划分为vlan10&#xff0c;PC2划分为vlan20&#xff0c;实现PC1和PC2之间通信很简单&#xff0c;我们只需将网关都设置好&#xff0c;将交换机的0/0/1、0/0/3设置成vlan10&#xff0c;0/0/2、0/0/4设置成vlan20&#xf…...

Linux上位机开发实践(opencv算法硬件加速)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 图像处理里面&#xff0c;opencv基本是一个标准模块。但是由于图像处理的特点&#xff0c;如果所有的算法都是cpu来做的话&#xff0c;效率会很低。…...

智慧社区数据可视化中枢平台——Axure全场景交互式大屏解决方案

在数字化治理的时代浪潮中&#xff0c;社区管理正面临数据碎片化、响应滞后、决策盲区等核心挑战。如何将分散的安防、环境、能源、民生服务等数据整合为可操作的智慧洞察&#xff1f;如何让冰冷的数字转化为社区管理者手中的决策利器&#xff1f;Axure智慧社区可视化大屏原型模…...

动态路由, RIP路由协议,RIPv1,RIPv2

动态路由 1、回顾 路由&#xff1a;从源主机到目标主机的过程 源主机发送数据给目标主机&#xff0c;源主机会查看自身的路由信息 如果目标主机是自己同网段&#xff0c;源主机查看的是直连路由 如果目标主机和自己不同网段&#xff0c;源主机查看的是静态路由、动态路由、默…...

C++:STL的常用容器(string/vector/deque/stack/queue/list/set/multiset/map/multimap)

程序员Amin &#x1f648;作者简介&#xff1a;练习时长两年半&#xff0c;全栈up主 &#x1f649;个人主页&#xff1a;程序员Amin &#x1f64a; P   S : 点赞是免费的&#xff0c;却可以让写博客的作者开心好久好久&#x1f60e; &#x1f4da;系列专栏&#xff1a;Java全…...

【unity游戏开发入门到精通——UGUI】Canvas画布组件

注意&#xff1a;考虑到UGUI的内容比较多&#xff0c;我将UGUI的内容分开&#xff0c;并全部整合放在【unity游戏开发——UGUI】专栏里&#xff0c;感兴趣的小伙伴可以前往逐一查看学习。 文章目录 一、Canvas画布组件1、Canvas组件用来干啥2、场景中可以有多个Canvas对象 二、…...

MyBatis 中 Mapper 传递参数的多种方法

# MyBatis Mapper 传递参数的多种方法及其优势 在使用 MyBatis 进行数据库操作时&#xff0c;Mapper 接口的参数传递是一个非常基础但又十分重要的部分。不同的参数传递方式适用于不同的场景&#xff0c;合理选择可以大大提高代码的可读性和维护性。本文将详细介绍几种常见的 …...

学习海康VisionMaster之平行线计算

一&#xff1a;进一步学习了 今天学习下VisionMaster中的平行线计算&#xff0c;这个是拟合直线的扩展应用&#xff0c;针对需要计算平行线的应用场合&#xff0c;可以方便的生成对应的另外一条平行线 二&#xff1a;开始学习 1&#xff1a;什么是平行线计算&#xff1f; 如果…...

MyBatis Mapper 传递参数的多种方法

1. 使用顺序传参法(不推荐) 方法描述 直接通过位置来引用参数,例如 ( arg0 arg1 … ) 或者 (param1, param2…)。 示例代码 List<User> selectUsers(String name, Integer age); <...

探索 Vue 3 响应式系统:原理与实践

Vue 3 响应式系统凭借 Proxy 的优势&#xff0c;提供更强大、灵活的响应式方案。理解其原理与 API&#xff0c;能写出更高效、可维护的 Vue 应用。不断探索其细节&#xff0c;是进阶 Vue 开发的关键。 探索 Vue 3 响应式系统&#xff1a;原理与实践 Vue 3 的响应式系统是其核…...

【LeetCode 热题100】二叉树构造题精讲:前序 + 中序建树 有序数组构造 BST(力扣105 / 108)(Go语言版)

&#x1f331; 二叉树构造题精讲&#xff1a;前序 中序建树 & 有序数组构造 BST 本文围绕二叉树的两类构造类题目展开解析&#xff1a; 从前序与中序遍历序列构造二叉树 将有序数组转换为二叉搜索树 我们将从「已知遍历构造树」和「平衡构造 BST」两个角度&#xff0c;拆…...

开源语音文本自动对齐模型:Llama-OuteTTS-1.0-1B

OuteTTS 1.0 介绍与使用指南 1. 重要采样考虑 重复惩罚机制&#xff1a;OuteTTS 1.0 要求对最近的64个token应用重复惩罚&#xff0c;而不是对整个上下文窗口。对整个上下文窗口进行惩罚会导致输出质量下降。推荐工具&#xff1a;llama.cpp 和 EXL2 提供了可靠的输出质量&…...

基于SpringBoot的电影订票系统(源码+数据库+万字文档+ppt)

504基于SpringBoot的电影订票系统&#xff0c;系统包含两种角色&#xff1a;管理员、用户主要功能如下。 【用户功能】 首页&#xff1a;浏览系统电影动态。 资讯信息&#xff1a;获取有关电影行业的新闻和资讯。 电影信息&#xff1a;查看电影的详细信息和排片情况。 公告信…...

基于SpringBoot汽车零件商城系统设计和实现(源码+文档+部署讲解)

技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文…...

Python数据可视化:从脚本到海报级图表

Python数据可视化:从脚本到海报级图表 引言 在数据分析和科学计算领域,Python 是一种强大且灵活的工具。本文将带您了解如何使用 Python 进行数据可视化,从简单的脚本到生成高质量的海报级图表。我们将重点介绍如何使用 Matplotlib 库来创建、保存和优化图表,以便在各种场…...

使用Java截取MP4文件图片的技术指南

在多媒体处理中&#xff0c;从视频文件中截取图片是一个常见的需求。本文将详细介绍如何使用Java结合FFmpeg实现从MP4文件中截取图片的功能。我们将通过几种不同的方法来实现这一目标&#xff0c;包括直接调用FFmpeg命令行工具、使用JavaCV库以及使用JAVE库。 环境准备 在开始…...

C++(初阶)(十一)——list

十一&#xff0c;list 带头循环双向链表。 遍历方式&#xff1a;迭代器&#xff0c;不再支持operate[]&#xff0c;operate[]适用于底层是数组的结构。 remove删除值&#xff0c;如果有多个相同的值&#xff0c;都会删除。 接口介绍 下面会介绍list的一些接口 构造 构造…...

leetcode 139. Word Break

这道题用动态规划解决。 class Solution { public:bool wordBreak(string s, vector<string>& wordDict) {unordered_set<string> wordSet;for(string& word:wordDict){wordSet.insert(word);}int s_len s.size();//s的下标从1开始起算&#xff0c;dp[j]…...

5.1、深度剖析 docker run 命令:原理阐释与数据持久化实践探究

5.1、深度剖析 docker run 命令:原理阐释与数据持久化实践探究 1、更换国内yum源2、更换国内docker源3、卸载旧版docker4、docker安装5、镜像加速器6、镜像下载7、docker run命令交互式启动-it非交互式后台运行其他参数8、持久化存储目录挂载数据卷挂载数据同步1、更换国内yum…...

【AI大模型】大模型RAG技术Langchain4j 核心组件深入详解

目录 一、前言 二、Langchain4j概述 2.1 Langchain4j 是什么 2.2 Langchain4j 主要特点 2.3 Langchain4j 核心组件 2.4 Langchain4j 核心优势 三、Langchanin4j组件应用实战 3.1 前置准备 3.1.1 导入如下依赖 3.1.2 获取apikey 3.1.3 获取官方文档 3.2 聊天组件 3.…...

【Flink运行时架构】重要概念

前面我们讲了Flink运行时的核心组件和提交流程&#xff0c;但有些细节需要进一步的思考&#xff0c;一个具体的作业是怎样从编写的代码转换成TaskManager可以执行的任务的呢&#xff1f;JobManager在收到提交的作业之后&#xff0c;又是如何确定总共有多少任务、需要配置多少资…...

oracle命令上下左右键无法使用如何解决?

1、问题如图 2、解决办法 (1) 安装readline yum -y install readline* &#xff08;2&#xff09;安装 rlwrap ##下载 wget http://files.cnblogs.com/files/killkill/rlwrap-0.30.tar.gz.zip ##解压 tar -xzvf rlwrap-0.30.tar.gz.zip ##编译安装 ./configure make &&…...

[文献阅读] chinese-roberta Pre-Training With Whole Word Masking for Chinese BERT

文献信息&#xff1a;Pre-Training With Whole Word Masking for Chinese BERT | IEEE Journals & Magazine | IEEE Xplore 哈工大和科大讯飞联合发表的用于中文NLP任务的基于BERT的改进模型&#xff0c;在中文NLP任务取得了最先进的性能。 摘要 原本的BERT使用随机掩蔽的…...

QML ListView 与 C++ 模型交互

在 Qt 中&#xff0c;QML 的 ListView 可以与 C 模型进行交互&#xff0c;这是实现复杂数据展示和业务逻辑的常见方式。以下是几种主要的交互方法&#xff1a; 1. 使用 QAbstractItemModel 派生类 这是最强大和灵活的方式&#xff0c;适合复杂数据结构。 C 端实现 cpp // …...

使用SSH解决在IDEA中Push出现403的问题

错误截图&#xff1a; 控制台日志&#xff1a; 12:15:34.649: [xxx] git -c core.quotepathfalse -c log.showSignaturefalse push --progress --porcelain master refs/heads/master:master fatal: unable to access https://github.com/xxx.git/: The requested URL return…...

MacOs下解决远程终端内容复制并到本地粘贴板

常常需要在服务器上捣鼓东西&#xff0c;同时需要将内容复制到本地的需求。 1-内容是在远程终端用vim打开&#xff0c;如何用vim的类似指令达到快速复制到本地呢&#xff1f; 假设待复制的内容&#xff1a; #include <iostream> #include <cstring> using names…...

修改idea/android studio等编辑器快捷注释从当前行开头的反人类行为

不知道什么时候开始&#xff0c;idea编辑的快捷注释开始从当前行开头出现了&#xff0c;显得实在是难受&#xff0c;我只想让在当前行代码的部份开始缩进两个字符开始&#xff0c;这样才会显得更舒服。不知道有没有强迫症的猴子和我一样&#xff0c;就像下面的效果&#xff1a;…...

密码加密方式

密码加密方式全面解析 密码安全是系统安全的第一道防线&#xff0c;以下是主流的密码加密技术分类和实现方式&#xff1a; 一、基础加密方式 1. 对称加密 特点&#xff1a;加密解密使用相同密钥 AES (Advanced Encryption Standard) 密钥长度&#xff1a;128/192/256位示例…...

Python10天突击--Day 2: 实现观察者模式

以下是 Python 实现观察者模式的完整方案&#xff0c;包含同步/异步支持、类型注解、线程安全等特性&#xff1a; 1. 经典观察者模式实现 from abc import ABC, abstractmethod from typing import List, Anyclass Observer(ABC):"""观察者抽象基类""…...

【C#】.NET 8适配器模式实战:用C#实现高可用系统集成与接口桥接艺术

系统集成挑战与适配器模式的价值 当需要整合不同架构或API的系统时&#xff0c;接口兼容性问题往往成为拦路虎。**适配器设计模式&#xff08;Adapter Pattern&#xff09;**通过转换接口形态&#xff0c;完美解决这种不兼容性问题。本文将通过C# .NET 8实战演示适配器模式的基…...

方案精读:51页 财政数据信息资源目录数据标准存储及大数据资产化规划方案【附全文阅读】

该方案聚焦财政数据信息资源管理,适用于财政部门工作人员、数据管理与分析人员以及关注财政大数据应用的相关人士。 方案旨在构建财政数据资源目录,推动大数据在财政领域的应用与落地。整体规划上,以 “金财工程” 应用支撑平台为基础,建立省、市、县三级目录体系,遵循相关…...

【CVE-2024-7881】ARM CPU漏洞安全通告

安全之安全(security)博客目录导读 目录 一、概述 二、CVE详情 三、受影响产品 四、修复建议 五、致谢 六、版本历史 一、概述 基于Arm架构的部分CPU中发现一个安全问题&#xff1a;非特权上下文可能触发数据内存依赖型预取引擎&#xff08;data memory-dependent pref…...

idea中提高编译速度研究

探索过程&#xff1a; 有三种情况&#xff1a; 第一种&#xff1a; idea中用eclipse编译器编译springboot项目&#xff0c;然后debug启动Application报错找不到类。 有待继续研究。 第二种&#xff1a; idea中用javac编译器编译springboot项目&#xff0c;重新构建用时&a…...

基于Yocto构建Ubuntu 24.04 ARM64 Qt工具链

以下是基于Yocto构建Ubuntu 24.04 ARM64 Qt工具链的完整方案&#xff0c;综合多篇技术文档整理而成&#xff1a; 一、系统环境准备 Ubuntu基础系统‌ 建议选择Ubuntu 24.04 LTS服务器版或桌面版&#xff0c;需满足至少300GB磁盘空间和16GB内存‌ 若使用ARM64架构主机可直接运…...

如何使用阿里云邮件推送免费群发邮件

最近一直想利用自己的阿里云账号开一个邮件推送服务&#xff0c;同时还可以用python来实现邮件群发&#xff0c;之前没有成功&#xff0c;今天又尝试了一次终于成功了&#xff0c;现将过程记录如下&#xff0c;也便于网友们少走弯路。 一、申请阿里云账号 阿里云注册可以用淘…...

利用 Genspark 和 AI IDE 一键配置 Java 开发环境

以下是以 CSDN 博客风格撰写的文章&#xff0c;基于你提到的“利用 Genspark 和 AI IDE 实现 Java 环境一键配置”的流程。文章结构清晰&#xff0c;内容详实&#xff0c;符合 CSDN 技术博客的常见风格&#xff0c;包含标题、简介、目录、正文、代码示例和总结。 利用 Genspark…...