当前位置: 首页 > news >正文

CFS 调度器两种调度类型普通调度 和 组调度

在 Linux 的 CFS(Completely Fair Scheduler) 调度器中,确实存在两种调度类型:普通调度组调度。这两种调度类型分别适用于不同的场景,并通过三个关键维度(权重、抢占优先级、最大配额)来影响程序对 CPU 资源的使用。以下是对这些概念的详细解析:


1. 普通调度与组调度

(1)普通调度
  • 普通调度是指直接针对单个任务(进程或线程)进行调度。
  • 不涉及 cgroup(Control Group),即没有将任务分组管理。
  • 适合简单的应用场景,比如运行独立的任务。
(2)组调度
  • 组调度是基于 cgroup 的调度方式,允许多个任务被组织到一个组中,并以组为单位分配 CPU 资源。
  • 这种方式特别适合需要资源隔离或按组分配资源的场景,例如容器化环境(如 Docker、Kubernetes)。
  • 在 cgroup 中,可以定义组级别的资源限制和优先级,从而实现更精细的资源管理。

2. 影响 CPU 资源使用的三个维度

在 CFS 调度器中,无论使用普通调度还是组调度,都会通过以下三个维度来影响任务对 CPU 资源的使用:

(1)权重(CPU Weight)
  • 含义
    权重决定了任务或组在 CPU 时间分配中的比例。权重越高,任务获得的 CPU 时间越多。
  • 实现机制
    • 在普通调度中,权重由任务的 nice 值 决定,范围为 -20(最高优先级,权重最高)到 +19(最低优先级,权重最低)。
    • 在组调度中,权重由 cgroup 的 cpu.weight 参数控制,范围为 1 到 10000,默认值为 100。
  • 示例
    如果有两个任务,A 的权重为 200,B 的权重为 100,则 A 获得的 CPU 时间是 B 的两倍。
(2)抢占优先级(CPU Latency)
  • 含义
    抢占优先级决定了任务之间的响应时间,或者说调度器允许任务等待的最大延迟。
  • 实现机制
    • 在 CFS 中,调度器会根据任务的历史行为动态调整其抢占优先级。
    • 对于 I/O 密集型任务(如文件读写),调度器会优先让它们运行,因为它们通常会快速释放 CPU。
    • 对于 CPU 密集型任务(如计算密集型任务),调度器会让它们运行更长时间,减少上下文切换的开销。
  • 影响
    • 较低的 CPU Latency 表示调度器会更频繁地切换任务,从而提高响应速度。
    • 较高的 CPU Latency 表示调度器会让任务运行更长时间,减少上下文切换,但可能会降低响应速度。
(3)最大配额(CPU Quota)
  • 含义
    最大配额限制了任务或组在一定时间周期内可以使用的最大 CPU 时间。
  • 实现机制
    • 在普通调度中,最大配额通常不直接设置,而是通过系统的整体负载动态调整。
    • 在组调度中,最大配额由 cgroup 的 cpu.cfs_quota_uscpu.cfs_period_us 参数控制:
      • cpu.cfs_quota_us:指定一个周期内任务或组最多可以使用的微秒数。
      • cpu.cfs_period_us:指定时间周期的长度(默认为 100ms)。
    • 示例:
      • 如果 cpu.cfs_quota_us = 50000cpu.cfs_period_us = 100000,则该任务或组每 100ms 最多可以使用 50ms 的 CPU 时间。
  • 用途
    • 用于限制任务或组的 CPU 使用量,防止某个任务或组占用过多资源。
    • 在容器化环境中,最大配额常用于保证不同容器之间的资源公平性。

3. 总结对比

维度描述适用场景
权重(CPU Weight)决定任务或组在 CPU 时间分配中的比例,权重越高,分配的 CPU 时间越多。需要按比例分配资源的场景,如多个容器共享 CPU。
抢占优先级(CPU Latency)决定任务之间的响应时间,动态调整任务的运行时间,优先响应 I/O 密集型任务。需要平衡响应速度和系统效率的场景,如桌面系统。
最大配额(CPU Quota)限制任务或组在一定时间周期内可以使用的最大 CPU 时间,防止资源过度占用。需要资源隔离或限制的场景,如容器化环境。

4. 总结

  • 普通调度
    直接针对单个任务进行调度,适合简单的应用场景。通过权重、抢占优先级和最大配额来动态分配 CPU 资源。

  • 组调度
    基于 cgroup 的调度方式,允许多个任务被组织到一个组中,并以组为单位分配 CPU 资源。通过 cgroup 的参数(如 cpu.weightcpu.cfs_quota_uscpu.cfs_period_us)来实现精细化的资源管理。

  • 三个维度

    • 权重:决定资源分配的比例。
    • 抢占优先级:决定任务的响应速度。
    • 最大配额:限制资源的使用上限。

通过这三个维度,CFS 调度器能够在多任务环境下实现高效的资源分配,同时满足不同场景的需求(如响应速度、资源隔离等)。

相关文章:

CFS 调度器两种调度类型普通调度 和 组调度

在 Linux 的 CFS(Completely Fair Scheduler) 调度器中,确实存在两种调度类型:普通调度 和 组调度。这两种调度类型分别适用于不同的场景,并通过三个关键维度(权重、抢占优先级、最大配额)来影响…...

「逻辑推理」AtCoder AT_abc401_d D - Logical Filling

前言 这次的 D 题出得很好,不仅融合了数学逻辑推理的知识,还有很多细节值得反复思考。虽然通过人数远高于 E,但是通过率甚至不到 60%,可见这些细节正是出题人的侧重点。 题目大意 给定一个长度为 N N N 的字符串 S S S&#…...

PyTorch 深度学习实战(36):混合精度训练与梯度缩放

在上一篇文章中,我们探讨了图生成模型与分子设计。本文将深入介绍混合精度训练(Mixed Precision Training)和梯度缩放(Gradient Scaling)技术,这些技术可以显著加速模型训练并减少显存占用,同时…...

【Flink运行时架构】组件构成

在Flink的运行架构中,有两大比较重要的组件:作业管理器(JobManager)和任务管理器(TaskManager)。 Flink的作业提交与任务处理时的系统如下图所示。 其中,客户端并不是处理系统的一部分&#xff…...

simpy仿真

一共5个顾客,2个服务台 import simpy import randomdef customer(env, name, service_time_mean):arrival_time env.nowprint(f{arrival_time}: {name} 到达服务台,开始排队)with server.request() as req:yield reqwait_time env.now - arrival_time…...

Docker 安装MySQL

一键启动 docker run -d \--name mysql \-p 3306:3306 \-e TZAsia/Shanghai \-e MYSQL_ROOT_PASSWORD1234 \-v /usr/local/mysql/data:/var/lib/mysql \-v /usr/local/mysql/conf:/etc/mysql/conf.d \--restart always --name mysql \mysql 检查是否启动 docker ps 本地连接测…...

【消息队列kafka_中间件】三、Kafka 打造极致高效的消息处理系统

在当今数字化时代,数据量呈爆炸式增长,实时数据处理的需求变得愈发迫切。Kafka 作为一款高性能、分布式的消息队列系统,在众多企业级应用中得到了广泛应用。然而,要充分发挥 Kafka 的潜力,实现极致高效的消息处理&…...

conda如何安装和运行jupyter

在Conda环境中安装和运行Jupyter Notebook是一项常见且实用的任务,特别是在数据科学和机器学习项目中。以下是使用Conda安装和运行Jupyter Notebook的步骤: 安装Jupyter Notebook 首先,确保你的Conda是最新的。打开终端或Anaconda Prompt&a…...

防爆平板:石油化工厂智慧转型的“中枢神经”

易燃易爆气体、高温高压环境、复杂设备集群,这些特性使得传统电子设备难以直接融入生产流程。而防爆平板的出现,不仅打破了这一技术壁垒,更通过智能化、模块化设计,逐步成为连接人、设备与数据的“中枢神经”,推动石油…...

遨游科普:三防平板可以实现哪些功能?

在现代工业与户外作业场景中,电子设备不仅要面对极端环境的考验,更要承担起高效协同生产的重任。三防平板作为“危、急、特”场景移动终端的代表性产品,其核心价值早已超越传统消费级设备的范畴,成为连接智慧生产与安全管理的重要…...

互联网三高-数据库高并发之分库分表

1 数据库概述 1.1 数据库本身的瓶颈 ① 连接数 MySQL默认最大连接数为100,允许的最大连接数为16384 ② 单表海量数据查询性能 单表最好500w左右,最大警戒线800w ③ 单数据库并发压力问题 MySQL QPS:1500左右/秒 ④ 系统磁盘IO、CPU瓶颈 1.2 数…...

Python----机器学习(基于贝叶斯的鸢尾花分类)

贝叶斯方法是一种统计推断的 方法,它利用贝叶斯定理来更新我们对事件概率的信念。这种方法在机器学习和数据 分析中得到广泛应用,特别是在分类和概率估计问题上。 一、数据集介绍 这是分类方法文献中最早使用的数据集之一,广泛用于统计和机器…...

问题 | 对于初学者来说,esp32和stm32哪个比较适合?

对于初学者选择ESP32还是STM32入门嵌入式开发,需综合考虑学习目标、兴趣方向及未来职业规划。以下是两者的对比分析及建议: 1. 适合初学者的关键因素 ESP32的优势 内置无线通信:集成Wi-Fi和蓝牙功能,无需额外模块即可开发物联网…...

org.apache.spark.SparkException: Kryo serialization failed: Buffer overflow...

Spark异常:Kryo serialization failed: Buffer overflow. 1、问题描述 SparkSQL任务报错如下: org.apache.spark.SparkException: Kryo serialization failed: Buffer overflow. Available: 0, required: xxx. To avoid this, increase spark.kryoseri…...

webpack vite

​ 1、webpack webpack打包工具(重点在于配置和使用,原理并不高优。只在开发环境应用,不在线上环境运行),压缩整合代码,让网页加载更快。 前端代码为什么要进行构建和打包? 体积更好&#x…...

论文笔记——KIMI-VL:具有增强推理能力的有效开源视觉语言模型

KIMI-VL:具有增强推理能力的有效开源视觉语言模型 原文地址:https://arxiv.org/pdf/2504.07491v1 开源地址:https://github.com/MoonshotAI/Kimi-VL 目录 简介架构概述训练方法主要功能性能基准通过长链思考增强推理应用结论 简介 视觉…...

大模型蒸馏-小模型超进化

👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家📕系列专栏:Spring原理、JUC原理、Kafka原理、分布式技术原理、数据库技术、JVM原理、AI应用🔥如果感觉…...

辅助记忆数字和唱名的小工具【仅PC端】

通过网盘分享的文件:random_music_note.exe 链接: https://pan.baidu.com/s/1Akc2gPzAcyhEfPHlbOYLXw?pwd4fua 提取码: 4fua –来自百度网盘超级会员v7的分享...

Android 知识沉淀

注解 1.枚举类型传参优化 enum WeekDay{SUNDAY, MONDAY}public static void setDay(WeekDay day){}我们已知,枚举类型是一个对象,对象占用的空间较大,有 12 个对象头对象的数据部分8 字节对齐,所以这里可以利用注解优化&#xff…...

KiActivateWaiterQueue函数和Queue->Header.WaitListHead队列等待列表的关系

第一部分&#xff1a; if (Thread->ApcState.KernelApcPending && (Thread->SpecialApcDisable 0) && (Thread->WaitIrql < APC_LEVEL)) { } else { // // Insert wait block in ob…...

代码学习总结(一)

代码学习总结&#xff08;一&#xff09; 这个系列的博客是记录下自己学习代码的历程&#xff0c;有来自平台上的&#xff0c;有来自笔试题回忆的&#xff0c;主要基于 C 语言&#xff0c;包括题目内容&#xff0c;代码实现&#xff0c;思路&#xff0c;并会注明题目难度&…...

设计模式 --- 策略模式

​策略模式&#xff08;Strategy Pattern&#xff09;是一种 ​​行为型设计模式​​&#xff0c;用于动态切换算法或策略​​&#xff0c;使得算法可以独立于客户端变化。它通过封装算法策略并使其可互换&#xff0c;提升了系统的灵活性和扩展性&#xff0c;尤其适用于需要多种…...

c++进阶之----智能指针

1.概念 在 C 中&#xff0c;智能指针是一种特殊的指针类型&#xff0c;它封装了裸指针&#xff08;raw pointer&#xff09;的行为&#xff0c;并通过 RAII&#xff08;Resource Acquisition Is Initialization&#xff0c;资源获取即初始化&#xff09;机制自动管理动态分配的…...

08-JVM 面试题-mk

1.JVM 的各部分组成 知道JVM 的好处:知道java 运行机制,排查问题的能力增加,比如内存泄漏、CPU飙高 JVM 是什么:Java Virtual Machine缩写,Java程序的运行环境(java二进制字节码的运行环境) 好处: 一次编写,到处运行自动内存管理,垃圾回收机制从图中可以看出 JVM …...

MTK7628基于原厂的mtk-openwrt-sdk-20160324-8f8e4f1e.tar.bz2 源代码包,配置成单网口模式的方法

一、配置. 在SDK工程下&#xff0c;运行make kernel_menuconfig&#xff0c;如下图所示&#xff1a; Ralink Module --->选上“One Port Only”&#xff0c;如下图所示&#xff1a; 如果P0网口实现WAN口&#xff0c;就配置成W/LLLL,否则就配置成LLLL/W. 二、修改网口的原代…...

青少年编程与数学 02-016 Python数据结构与算法 15课题、字符串匹配

青少年编程与数学 02-016 Python数据结构与算法 15课题、字符串匹配 一、字符串匹配问题的基本概念&#xff08;一&#xff09;定义&#xff08;二&#xff09;术语 二、暴力匹配算法&#xff08;Naive String Matching&#xff09;&#xff08;一&#xff09;算法逻辑&#xf…...

基础层数据从kafka读取写入hbase的优化方案

背景: 上游kafka的topic只有一个分区,所以spark在消费的时候,无论设置的executor数有多少,最终只有一个executor在执行,如果不指定executor num的话,默认是开启两个executor,有一个executor的资源是浪费的,例如下面显示的情况,其实只有一个executor是active的状态. 在消费的时…...

thingsboard3.9.1编译问题处理

问题1&#xff1a; [ERROR] Failed to execute goal org.thingsboard:gradle-maven-plugin:1.0.12:invoke (default) on project http: Execution default of goal org.thingsboard:gradle-maven-plugin:1.0.12:invoke failed: Plugin org.thingsboard:gradle-maven-plugin:1.…...

Adobe Photoshop 2025 Mac中文 Ps图像编辑

Adobe Photoshop 2025 Mac中文 Ps图像编辑 一、介绍 Adobe Photoshop 2025 Mac版集成了多种强大的图像编辑、处理和创作功能。①强化了Adobe Sensei AI的应用&#xff0c;通过智能抠图、自动修复、图像生成等功能&#xff0c;用户能够快速而精确地编辑图像。②3D编辑和动画功…...

什么是VLA

视觉-语言-动作&#xff08;VLA&#xff09;技术综述&#xff1a;迈向具身智能的未来 1. 引言 随着人工智能从单一模态感知迈向多模态交互&#xff0c;视觉-语言-动作&#xff08;Vision-Language-Action, VLA&#xff09; 技术逐渐成为连接感知、推理与物理行动的核心桥梁。V…...

数据结构:C语言版严蔚敏和解析介绍,附pdf

《数据结构&#xff1a;C语言版&#xff08;第2版&#xff09;》严蔚敏李冬梅吴伟民.pdf 《数据结构&#xff1a;C语言版》严蔚敏&#xff0c;李冬梅.pdf 《数据结构C语言第2版习题解析与实验指导》李冬梅.pdf 「《数据结构&#xff1a;C语言版&#xff08;第2版 &#xff09;》…...

C++线段树详解与实现技巧

📚 C++线段树详解与实现技巧 线段树(Segment Tree)是一种高效处理 区间查询 和 区间更新 的数据结构,时间复杂度为 O(log n)。本文结合代码实例,详解其核心原理与实现细节。 🌳 线段树结构特点 完全二叉树:使用数组存储,父子节点关系通过下标计算。区间划分:每个节…...

202527 | RabbitMQ-基础 | 队列 | Direct + Fanout + Topic 交换机 | 消息转换器

RabbitMQ RabbitMQ 架构与核心概念详解 一、整体架构图 #mermaid-svg-UTlKmvHL7RNWK6vu {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-UTlKmvHL7RNWK6vu .error-icon{fill:#552222;}#mermaid-svg-UTlKmvHL7RNWK6v…...

【学习笔记】服务器上使用 nbconvert 将 Jupyter Notebook 转换为 PDF

1. 环境准备&#xff1a;安装必要工具 在服务器终端运行以下命令&#xff0c;确保依赖已安装&#xff1a; (1) 安装 nbconvert 和 pandoc pip install nbconvert pandoc (2) 安装 LaTeX&#xff08;推荐 TeX Live&#xff09; # Ubuntu/Debian sudo apt-get update sudo a…...

List、Set集合通过Stream流求和

目录 一、泛型为Integer、Long、Double、BigDecimal求和 二、泛型为实体类 对单个属性求和 对多个属性分别分组求和 并返回聚合后的对象 多字段乘积求和&#xff08;基本数据类型&#xff09; 多字段乘积求和&#xff08;BigDecimal&#xff09; 对对象中的多个字段求和…...

微软VSCode 能否击败 Cursor 和 Windsurf?

微软是否能利用平台优势和许可限制来阻止竞争对手? AI 代码编辑器之战加剧 蓬勃发展的 AI 代码编辑领域竞争日益激烈,这个最具变革性和盈利性的新技术领域正在适应相互间的竞争。Visual Studio Code 目前是最主导的代码编辑器。 “根据 Stack Overflow 调查,Visual Studi…...

VSCode会击败Cursor和Windsurf吗?

VSCode 会击败 Cursor 和 Windsurf 吗&#xff1f;微软能不能靠自己的地盘优势和规则限制打压对手&#xff1f;答案是"能"&#xff0c;但他们真的会这么干吗&#xff1f; Cursor & Windsurf vs VSCode Copilot 大PKAI编程工具大战越来越激烈现在最火最赚钱的AI…...

机器学习(4)—— K近邻算法

文章目录 1. K近邻算法&#xff08;K-Nearest Neighbors, KNN&#xff09;原理1.1. K近邻算法是什么算法&#xff1f;1.2. 核心思想 2. K近邻算法的步骤2.1. 选择K值2.2. 计算距离2.3. 选择最近邻&#xff1a;2.4. 做出预测&#xff1a; 3. K值的选择4. 数据标准化5. 优缺点6. …...

深入解读 React 纯组件(PureComponent)

什么是纯组件&#xff1f; React 的纯组件(PureComponent)是 React.Component 的一个变体&#xff0c;它通过浅比较(shallow comparison)props 和 state 来自动实现 shouldComponentUpdate() 方法&#xff0c;从而优化性能。 核心特点 1. 自动浅比较&#xff1a; PureCompon…...

常见MQ及类MQ对比:Redis Stream、Redis Pub/Sub、RocketMQ、Kafka 和 RabbitMQ

常见MQ及类MQ对比 基于Grok调研 Redis Stream、Redis Pub/Sub、RocketMQ、Kafka 和 RabbitMQ 关键点&#xff1a; Redis Pub/Sub 适合简单实时消息&#xff0c;但不持久化&#xff0c;消息可能丢失。Redis Stream 提供持久化&#xff0c;适合需要消息历史的场景&#xff0c;但…...

202528 | RabbitMQ-高级 | 消息可靠性 | 业务幂等性 | 延迟消息

消息可靠性 RabbitMQ发送者可靠性 一、发送者重连机制 #mermaid-svg-gqr6Yr5UNZX87ZDU {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-gqr6Yr5UNZX87ZDU .error-icon{fill:#552222;}#mermaid-svg-gqr6Yr5UNZX87ZD…...

Java EE期末总结(第六章)

一、IoC 1、Bean装配流程 IOC装配流程在代码中的对应就体现在Service这个注解 依赖注入在代码中体现在 &#xff0c;比如 Resource UserService userService 二、AOP 简化流程&#xff0c;为程序员简便操作 tmd编不下去了我自己看视频都没理解md不弄了&#xff1b; 给两个…...

ASP.NET Core 性能优化:内存缓存

文章目录 前言一、什么是缓存二、内存缓存三、使用内存缓存1&#xff09;注册内存缓存服务2&#xff09;注入与基本使用3&#xff09;高级用法GetOrCreate&#xff08;避免缓存穿透&#xff09;异步方法&#xff1a;GetOrCreateAsync&#xff08;避免缓存穿透&#xff09;两种过…...

Go小技巧易错点100例(二十六)

本期分享&#xff1a; 1. string转[]byte是否会发生内存拷贝 2. Go程序获取文件的哈希值 正文&#xff1a; string转[]byte是否会发生内存拷贝 在Go语言中&#xff0c;字符串转换为字节数组&#xff08;[]byte&#xff09;确实会发生内存拷贝。这是因为在Go中&#xff0c;字…...

《算法笔记》3.5小节——入门模拟->进制转换

1022 D进制的AB #include <iostream> using namespace std; int maxn32;int main() {int z[maxn],num0,a,b,d;cin>>a>>b>>d;int resab;do{z[num]res%d;resres/d;}while(res);for (int i num-1; i >0 ; i--) {cout<<z[i];}return 0; }问题 A:…...

【MQTT-协议原理】

MQTT-协议原理 ■ MQTT-协议原理■ MQTT-服务器 称为"消息代理"&#xff08;Broker&#xff09;■ MQTT协议中的订阅、主题、会话■ 一、订阅&#xff08;Subscription&#xff09;■ 二、会话&#xff08;Session&#xff09;■ 三、主题名&#xff08;Topic Name&a…...

JWT认证服务与授权 .netCore

1.实现流程图 2.认证信息概述 Header:System.IdentityModel.Tokens.Jwt.JwtHeader Payload: System.IdentityModel.Tokens.Jwt.JwtPayload Issuer: http://localhost:7200 Audience: http://localhost:7200 Expiration: 2025/4/11 15:06:14 Claim - Type: http://schemas…...

编译原理 实验二 词法分析程序自动生成工具实验

文章目录 实验环境的准备实验实验预备知识分析案例所要做的任务实战 实验环境的准备 安装flex 安装MinGW MinGW Installation Manager页面 apply changes 下载比较耗时 只看到了一个文件&#xff0c;复制过去 配置环境变量 使用gcc -v检验是否安装完成 实验 实验预备知识…...

【C++初学】课后作业汇总复习(一)概述、输入输出、类的入门——理解封装

一、概述、输入输出、类的入门——理解封装 - 1. ab input two number output sum of a and b; #include <iostream>using namespace std;int main() {int a 0;int b 0;cin >> a >> b;cout << ab <<endl;return 0; }2.输入1~7任意一个整数&…...

数学建模:针对汽车行驶工况构建思路的延伸应用

前言&#xff1a; 汽车行驶工况构建的思简单理解为将采集的大量数据进行“去除干扰、数据处理&#xff0c;缩减至1800S的数据”&#xff0c;并可达到等效替换的目的&#xff0c;可以使在试验室快速复现&#xff1b;相应的解决思路、办法可应用在 “通过能量流采集设备大量采集…...