当前位置: 首页 > news >正文

C++:函数模板类模板


程序员Amin

🙈作者简介:练习时长两年半,全栈up主
🙉个人主页:程序员Amin
🙊 P   S : 点赞是免费的,却可以让写博客的作者开心好久好久😎
📚系列专栏:Java全栈,计算机系列(火速更新中)
💭格   言:种一棵树最好的时间是十年前,其次是现在
🏡动动小手: 点个关注不迷路,感谢宝子们一键三连

目录

  • 课程名:C++
    • 内容/作用:知识点/设计/实验/作业/练习
    • 学习:C++:函数模板&类模板
    • 1 模板
      • 1.1 模板的概念
      • 1.2 函数模板
        • 1.2.1 函数模板语法
        • 1.2.2 函数模板注意事项
        • 1.2.3 函数模板案例
        • 1.2.4 普通函数与函数模板的区别
        • 1.2.5 普通函数与函数模板的调用规则
        • 1.2.6 模板的局限性
      • 1.3 类模板
        • 1.3.1 类模板语法
        • 1.3.2 类模板与函数模板区别
        • 1.3.3 类模板中成员函数创建时机
        • 1.3.4 类模板对象做函数参数
        • 1.3.5 类模板与继承
        • 1.3.6 类模板成员函数类外实现
        • 1.3.7 类模板分文件编写
        • 1.3.8 类模板与友元
        • 1.3.9 类模板案例
    • 总结

课程名:C++

内容/作用:知识点/设计/实验/作业/练习

学习:C++:函数模板&类模板

1 模板

1.1 模板的概念

模板就是建立通用的模具,大大提高复用性

模板的特点:

  • 模板不可以直接使用,它只是一个框架
  • 模板的通用并不是万能的

1.2 函数模板

  • C++另一种编程思想称为 泛型编程 ,主要利用的技术就是模板

  • C++提供两种模板机制:函数模板类模板

1.2.1 函数模板语法

函数模板作用:

建立一个通用函数,其函数返回值类型和形参类型可以不具体制定,用一个虚拟的类型来代表。

语法:

template<typename T>
函数声明或定义

解释:

template — 声明创建模板

typename — 表面其后面的符号是一种数据类型,可以用class代替

T — 通用的数据类型,名称可以替换,通常为大写字母

示例:

//交换整型函数
void swapInt(int& a, int& b) {int temp = a;a = b;b = temp;
}//交换浮点型函数
void swapDouble(double& a, double& b) {double temp = a;a = b;b = temp;
}//利用模板提供通用的交换函数
template<typename T>
void mySwap(T& a, T& b)
{T temp = a;a = b;b = temp;
}void test01()
{int a = 10;int b = 20;//swapInt(a, b);//利用模板实现交换//1、自动类型推导mySwap(a, b);//2、显示指定类型mySwap<int>(a, b);cout << "a = " << a << endl;cout << "b = " << b << endl;}int main() {test01();system("pause");return 0;
}

总结:

  • 函数模板利用关键字 template
  • 使用函数模板有两种方式:自动类型推导、显示指定类型
  • 模板的目的是为了提高复用性,将类型参数化
1.2.2 函数模板注意事项

注意事项:

  • 自动类型推导,必须推导出一致的数据类型T,才可以使用

  • 模板必须要确定出T的数据类型,才可以使用

示例:

//利用模板提供通用的交换函数
template<class T>
void mySwap(T& a, T& b)
{T temp = a;a = b;b = temp;
}// 1、自动类型推导,必须推导出一致的数据类型T,才可以使用
void test01()
{int a = 10;int b = 20;char c = 'c';mySwap(a, b); // 正确,可以推导出一致的T//mySwap(a, c); // 错误,推导不出一致的T类型
}// 2、模板必须要确定出T的数据类型,才可以使用
template<class T>
void func()
{cout << "func 调用" << endl;
}void test02()
{//func(); //错误,模板不能独立使用,必须确定出T的类型func<int>(); //利用显示指定类型的方式,给T一个类型,才可以使用该模板
}int main() {test01();test02();system("pause");return 0;
}

总结:

  • 使用模板时必须确定出通用数据类型T,并且能够推导出一致的类型
1.2.3 函数模板案例

案例描述:

  • 利用函数模板封装一个排序的函数,可以对不同数据类型数组进行排序
  • 排序规则从大到小,排序算法为选择排序
  • 分别利用char数组int数组进行测试

示例:

//交换的函数模板
template<typename T>
void mySwap(T &a, T&b)
{T temp = a;a = b;b = temp;
}template<class T> // 也可以替换成typename
//利用选择排序,进行对数组从大到小的排序
void mySort(T arr[], int len)
{for (int i = 0; i < len; i++){int max = i; //最大数的下标for (int j = i + 1; j < len; j++){if (arr[max] < arr[j]){max = j;}}if (max != i) //如果最大数的下标不是i,交换两者{mySwap(arr[max], arr[i]);}}
}
template<typename T>
void printArray(T arr[], int len) {for (int i = 0; i < len; i++) {cout << arr[i] << " ";}cout << endl;
}
void test01()
{//测试char数组char charArr[] = "bdcfeagh";int num = sizeof(charArr) / sizeof(char);mySort(charArr, num);printArray(charArr, num);
}void test02()
{//测试int数组int intArr[] = { 7, 5, 8, 1, 3, 9, 2, 4, 6 };int num = sizeof(intArr) / sizeof(int);mySort(intArr, num);printArray(intArr, num);
}int main() {test01();test02();system("pause");return 0;
}

总结:模板可以提高代码复用,需要熟练掌握

1.2.4 普通函数与函数模板的区别

普通函数与函数模板区别:

  • 普通函数调用时可以发生自动类型转换(隐式类型转换)
  • 函数模板调用时,如果利用自动类型推导,不会发生隐式类型转换
  • 如果利用显示指定类型的方式,可以发生隐式类型转换

示例:

//普通函数
int myAdd01(int a, int b)
{return a + b;
}//函数模板
template<class T>
T myAdd02(T a, T b)  
{return a + b;
}//使用函数模板时,如果用自动类型推导,不会发生自动类型转换,即隐式类型转换
void test01()
{int a = 10;int b = 20;char c = 'c';cout << myAdd01(a, c) << endl; //正确,将char类型的'c'隐式转换为int类型  'c' 对应 ASCII码 99//myAdd02(a, c); // 报错,使用自动类型推导时,不会发生隐式类型转换myAdd02<int>(a, c); //正确,如果用显示指定类型,可以发生隐式类型转换
}int main() {test01();system("pause");return 0;
}

总结:建议使用显示指定类型的方式,调用函数模板,因为可以自己确定通用类型T

1.2.5 普通函数与函数模板的调用规则

调用规则如下:

  1. 如果函数模板和普通函数都可以实现,优先调用普通函数
  2. 可以通过空模板参数列表来强制调用函数模板
  3. 函数模板也可以发生重载
  4. 如果函数模板可以产生更好的匹配,优先调用函数模板

示例:

//普通函数与函数模板调用规则
void myPrint(int a, int b)
{cout << "调用的普通函数" << endl;
}template<typename T>
void myPrint(T a, T b) 
{ cout << "调用的模板" << endl;
}template<typename T>
void myPrint(T a, T b, T c) 
{ cout << "调用重载的模板" << endl; 
}void test01()
{//1、如果函数模板和普通函数都可以实现,优先调用普通函数// 注意 如果告诉编译器  普通函数是有的,但只是声明没有实现,或者不在当前文件内实现,就会报错找不到int a = 10;int b = 20;myPrint(a, b); //调用普通函数//2、可以通过空模板参数列表来强制调用函数模板myPrint<>(a, b); //调用函数模板//3、函数模板也可以发生重载int c = 30;myPrint(a, b, c); //调用重载的函数模板//4、 如果函数模板可以产生更好的匹配,优先调用函数模板char c1 = 'a';char c2 = 'b';myPrint(c1, c2); //调用函数模板
}int main() {test01();system("pause");return 0;
}

总结:既然提供了函数模板,最好就不要提供普通函数,否则容易出现二义性

1.2.6 模板的局限性

局限性:

  • 模板的通用性并不是万能的

例如:

	template<class T>void f(T a, T b){ a = b;}

在上述代码中提供的赋值操作,如果传入的a和b是一个数组,就无法实现了

再例如:

	template<class T>void f(T a, T b){ if(a > b) { ... }}

在上述代码中,如果T的数据类型传入的是像Person这样的自定义数据类型,也无法正常运行

因此C++为了解决这种问题,提供模板的重载,可以为这些特定的类型提供具体化的模板

示例:

#include<iostream>
using namespace std;#include <string>class Person
{
public:Person(string name, int age){this->m_Name = name;this->m_Age = age;}string m_Name;int m_Age;
};//普通函数模板
template<class T>
bool myCompare(T& a, T& b)
{if (a == b){return true;}else{return false;}
}//具体化,显示具体化的原型和定意思以template<>开头,并通过名称来指出类型
//具体化优先于常规模板
template<> bool myCompare(Person &p1, Person &p2)
{if ( p1.m_Name  == p2.m_Name && p1.m_Age == p2.m_Age){return true;}else{return false;}
}void test01()
{int a = 10;int b = 20;//内置数据类型可以直接使用通用的函数模板bool ret = myCompare(a, b);if (ret){cout << "a == b " << endl;}else{cout << "a != b " << endl;}
}void test02()
{Person p1("Tom", 10);Person p2("Tom", 10);//自定义数据类型,不会调用普通的函数模板//可以创建具体化的Person数据类型的模板,用于特殊处理这个类型bool ret = myCompare(p1, p2);if (ret){cout << "p1 == p2 " << endl;}else{cout << "p1 != p2 " << endl;}
}int main() {test01();test02();system("pause");return 0;
}

总结:

  • 利用具体化的模板,可以解决自定义类型的通用化
  • 学习模板并不是为了写模板,而是在STL能够运用系统提供的模板

1.3 类模板

1.3.1 类模板语法

类模板作用:

  • 建立一个通用类,类中的成员 数据类型可以不具体制定,用一个虚拟的类型来代表。

语法:

template<typename T>
类

解释:

template — 声明创建模板

typename — 表面其后面的符号是一种数据类型,可以用class代替

T — 通用的数据类型,名称可以替换,通常为大写字母

示例:

#include <string>
//类模板
template<class NameType, class AgeType> 
class Person
{
public:Person(NameType name, AgeType age){this->mName = name;this->mAge = age;}void showPerson(){cout << "name: " << this->mName << " age: " << this->mAge << endl;}
public:NameType mName;AgeType mAge;
};void test01()
{// 指定NameType 为string类型,AgeType 为 int类型Person<string, int>P1("孙悟空", 999);P1.showPerson();
}int main() {test01();system("pause");return 0;
}

总结:类模板和函数模板语法相似,在声明模板template后面加类,此类称为类模板

1.3.2 类模板与函数模板区别

类模板与函数模板区别主要有两点:

  1. 类模板没有自动类型推导的使用方式
  2. 类模板在模板参数列表中可以有默认参数

示例:

#include <string>
//类模板
template<class NameType, class AgeType = int> 
class Person
{
public:Person(NameType name, AgeType age){this->mName = name;this->mAge = age;}void showPerson(){cout << "name: " << this->mName << " age: " << this->mAge << endl;}
public:NameType mName;AgeType mAge;
};//1、类模板没有自动类型推导的使用方式
void test01()
{// Person p("孙悟空", 1000); // 错误 类模板使用时候,不可以用自动类型推导Person <string ,int>p("孙悟空", 1000); //必须使用显示指定类型的方式,使用类模板p.showPerson();
}//2、类模板在模板参数列表中可以有默认参数
void test02()
{Person <string> p("猪八戒", 999); //类模板中的模板参数列表 可以指定默认参数p.showPerson();
}int main() {test01();test02();system("pause");return 0;
}

总结:

  • 类模板使用只能用显示指定类型方式
  • 类模板中的模板参数列表可以有默认参数
1.3.3 类模板中成员函数创建时机

类模板中成员函数和普通类中成员函数创建时机是有区别的:

  • 普通类中的成员函数一开始就可以创建
  • 类模板中的成员函数在调用时才创建

示例:

class Person1
{
public:void showPerson1(){cout << "Person1 show" << endl;}
};class Person2
{
public:void showPerson2(){cout << "Person2 show" << endl;}
};template<class T>
class MyClass
{
public:T obj;//类模板中的成员函数,并不是一开始就创建的,而是在模板调用时再生成void fun1() { obj.showPerson1(); }void fun2() { obj.showPerson2(); }};void test01()
{MyClass<Person1> m;m.fun1();//m.fun2();//编译会出错,说明函数调用才会去创建成员函数
}int main() {test01();system("pause");return 0;
}

总结:类模板中的成员函数并不是一开始就创建的,在调用时才去创建

1.3.4 类模板对象做函数参数

学习目标:

  • 类模板实例化出的对象,向函数传参的方式

一共有三种传入方式:

  1. 指定传入的类型 — 直接显示对象的数据类型
  2. 参数模板化 — 将对象中的参数变为模板进行传递
  3. 整个类模板化 — 将这个对象类型 模板化进行传递

示例:

#include <string>
//类模板
template<class NameType, class AgeType = int> 
class Person
{
public:Person(NameType name, AgeType age){this->mName = name;this->mAge = age;}void showPerson(){cout << "name: " << this->mName << " age: " << this->mAge << endl;}
public:NameType mName;AgeType mAge;
};//1、指定传入的类型
void printPerson1(Person<string, int> &p) 
{p.showPerson();
}
void test01()
{Person <string, int >p("孙悟空", 100);printPerson1(p);
}//2、参数模板化
template <class T1, class T2>
void printPerson2(Person<T1, T2>&p)
{p.showPerson();cout << "T1的类型为: " << typeid(T1).name() << endl;cout << "T2的类型为: " << typeid(T2).name() << endl;
}
void test02()
{Person <string, int >p("猪八戒", 90);printPerson2(p);
}//3、整个类模板化
template<class T>
void printPerson3(T & p)
{cout << "T的类型为: " << typeid(T).name() << endl;p.showPerson();}
void test03()
{Person <string, int >p("唐僧", 30);printPerson3(p);
}int main() {test01();test02();test03();system("pause");return 0;
}

总结:

  • 通过类模板创建的对象,可以有三种方式向函数中进行传参
  • 使用比较广泛是第一种:指定传入的类型
1.3.5 类模板与继承

当类模板碰到继承时,需要注意一下几点:

  • 当子类继承的父类是一个类模板时,子类在声明的时候,要指定出父类中T的类型
  • 如果不指定,编译器无法给子类分配内存
  • 如果想灵活指定出父类中T的类型,子类也需变为类模板

示例:

template<class T>
class Base
{T m;
};//class Son:public Base  //错误,c++编译需要给子类分配内存,必须知道父类中T的类型才可以向下继承
class Son :public Base<int> //必须指定一个类型
{
};
void test01()
{Son c;
}//类模板继承类模板 ,可以用T2指定父类中的T类型
template<class T1, class T2>
class Son2 :public Base<T2>
{
public:Son2(){cout << typeid(T1).name() << endl;cout << typeid(T2).name() << endl;}
};void test02()
{Son2<int, char> child1;
}int main() {test01();test02();system("pause");return 0;
}

总结:如果父类是类模板,子类需要指定出父类中T的数据类型

1.3.6 类模板成员函数类外实现

学习目标:能够掌握类模板中的成员函数类外实现

示例:

#include <string>//类模板中成员函数类外实现
template<class T1, class T2>
class Person {
public://成员函数类内声明Person(T1 name, T2 age);void showPerson();public:T1 m_Name;T2 m_Age;
};//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {this->m_Name = name;this->m_Age = age;
}//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}void test01()
{Person<string, int> p("Tom", 20);p.showPerson();
}int main() {test01();system("pause");return 0;
}

总结:类模板中成员函数类外实现时,需要加上模板参数列表

1.3.7 类模板分文件编写

学习目标:

  • 掌握类模板成员函数分文件编写产生的问题以及解决方式

问题:

  • 类模板中成员函数创建时机是在调用阶段,导致分文件编写时链接不到

解决:

  • 解决方式1:直接包含.cpp源文件
  • 解决方式2:将声明和实现写到同一个文件中,并更改后缀名为.hpp,hpp是约定的名称,并不是强制

示例:

person.hpp中代码:

#pragma once
#include <iostream>
using namespace std;
#include <string>template<class T1, class T2>
class Person {
public:Person(T1 name, T2 age);void showPerson();
public:T1 m_Name;T2 m_Age;
};//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {this->m_Name = name;this->m_Age = age;
}//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}

类模板分文件编写.cpp中代码

#include<iostream>
using namespace std;//#include "person.h"
#include "person.cpp" //解决方式1,包含cpp源文件//解决方式2,将声明和实现写到一起,文件后缀名改为.hpp
#include "person.hpp"
void test01()
{Person<string, int> p("Tom", 10);p.showPerson();
}int main() {test01();system("pause");return 0;
}

总结:主流的解决方式是第二种,将类模板成员函数写到一起,并将后缀名改为.hpp

1.3.8 类模板与友元

学习目标:

  • 掌握类模板配合友元函数的类内和类外实现

全局函数类内实现 - 直接在类内声明友元即可

全局函数类外实现 - 需要提前让编译器知道全局函数的存在

示例:

#include <string>//2、全局函数配合友元  类外实现 - 先做函数模板声明,下方在做函数模板定义,在做友元
template<class T1, class T2> class Person;//如果声明了函数模板,可以将实现写到后面,否则需要将实现体写到类的前面让编译器提前看到
//template<class T1, class T2> void printPerson2(Person<T1, T2> & p); template<class T1, class T2>
void printPerson2(Person<T1, T2> & p)
{cout << "类外实现 ---- 姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;
}template<class T1, class T2>
class Person
{//1、全局函数配合友元   类内实现friend void printPerson(Person<T1, T2> & p){cout << "姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;}//全局函数配合友元  类外实现friend void printPerson2<>(Person<T1, T2> & p);public:Person(T1 name, T2 age){this->m_Name = name;this->m_Age = age;}private:T1 m_Name;T2 m_Age;};//1、全局函数在类内实现
void test01()
{Person <string, int >p("Tom", 20);printPerson(p);
}//2、全局函数在类外实现
void test02()
{Person <string, int >p("Jerry", 30);printPerson2(p);
}int main() {//test01();test02();system("pause");return 0;
}

总结:建议全局函数做类内实现,用法简单,而且编译器可以直接识别

1.3.9 类模板案例

案例描述: 实现一个通用的数组类,要求如下:

  • 可以对内置数据类型以及自定义数据类型的数据进行存储
  • 将数组中的数据存储到堆区
  • 构造函数中可以传入数组的容量
  • 提供对应的拷贝构造函数以及operator=防止浅拷贝问题
  • 提供尾插法和尾删法对数组中的数据进行增加和删除
  • 可以通过下标的方式访问数组中的元素
  • 可以获取数组中当前元素个数和数组的容量

示例:

myArray.hpp中代码

#pragma once
#include <iostream>
using namespace std;template<class T>
class MyArray
{
public://构造函数MyArray(int capacity){this->m_Capacity = capacity;this->m_Size = 0;pAddress = new T[this->m_Capacity];}//拷贝构造MyArray(const MyArray & arr){this->m_Capacity = arr.m_Capacity;this->m_Size = arr.m_Size;this->pAddress = new T[this->m_Capacity];for (int i = 0; i < this->m_Size; i++){//如果T为对象,而且还包含指针,必须需要重载 = 操作符,因为这个等号不是 构造 而是赋值,// 普通类型可以直接= 但是指针类型需要深拷贝this->pAddress[i] = arr.pAddress[i];}}//重载= 操作符  防止浅拷贝问题MyArray& operator=(const MyArray& myarray) {if (this->pAddress != NULL) {delete[] this->pAddress;this->m_Capacity = 0;this->m_Size = 0;}this->m_Capacity = myarray.m_Capacity;this->m_Size = myarray.m_Size;this->pAddress = new T[this->m_Capacity];for (int i = 0; i < this->m_Size; i++) {this->pAddress[i] = myarray[i];}return *this;}//重载[] 操作符  arr[0]T& operator [](int index){return this->pAddress[index]; //不考虑越界,用户自己去处理}//尾插法void Push_back(const T & val){if (this->m_Capacity == this->m_Size){return;}this->pAddress[this->m_Size] = val;this->m_Size++;}//尾删法void Pop_back(){if (this->m_Size == 0){return;}this->m_Size--;}//获取数组容量int getCapacity(){return this->m_Capacity;}//获取数组大小int	getSize(){return this->m_Size;}//析构~MyArray(){if (this->pAddress != NULL){delete[] this->pAddress;this->pAddress = NULL;this->m_Capacity = 0;this->m_Size = 0;}}private:T * pAddress;  //指向一个堆空间,这个空间存储真正的数据int m_Capacity; //容量int m_Size;   // 大小
};

类模板案例—数组类封装.cpp中

#include "myArray.hpp"
#include <string>void printIntArray(MyArray<int>& arr) {for (int i = 0; i < arr.getSize(); i++) {cout << arr[i] << " ";}cout << endl;
}//测试内置数据类型
void test01()
{MyArray<int> array1(10);for (int i = 0; i < 10; i++){array1.Push_back(i);}cout << "array1打印输出:" << endl;printIntArray(array1);cout << "array1的大小:" << array1.getSize() << endl;cout << "array1的容量:" << array1.getCapacity() << endl;cout << "--------------------------" << endl;MyArray<int> array2(array1);array2.Pop_back();cout << "array2打印输出:" << endl;printIntArray(array2);cout << "array2的大小:" << array2.getSize() << endl;cout << "array2的容量:" << array2.getCapacity() << endl;
}//测试自定义数据类型
class Person {
public:Person() {} Person(string name, int age) {this->m_Name = name;this->m_Age = age;}
public:string m_Name;int m_Age;
};void printPersonArray(MyArray<Person>& personArr)
{for (int i = 0; i < personArr.getSize(); i++) {cout << "姓名:" << personArr[i].m_Name << " 年龄: " << personArr[i].m_Age << endl;}}void test02()
{//创建数组MyArray<Person> pArray(10);Person p1("孙悟空", 30);Person p2("韩信", 20);Person p3("妲己", 18);Person p4("王昭君", 15);Person p5("赵云", 24);//插入数据pArray.Push_back(p1);pArray.Push_back(p2);pArray.Push_back(p3);pArray.Push_back(p4);pArray.Push_back(p5);printPersonArray(pArray);cout << "pArray的大小:" << pArray.getSize() << endl;cout << "pArray的容量:" << pArray.getCapacity() << endl;}int main() {//test01();test02();system("pause");return 0;
}

总结:

能够利用所学知识点实现通用的数组

总结

   感谢小伙伴们一键三连,咱们下期文章再见~


往期精选

第1集:C++初识:Hello, World!
第2集:C++:数据类型
第3集:C++:算术运算符
第4集:C++:程序流程结构
第5集:C++:数组(一维数组&二维数组)
第6集:C++:函数
第7集:C++:指针
第8集:C++:结构体

更多精彩内容,进入主页查看!

往 期 专 栏
Java全栈开发
数据结构与算法
计算机组成原理
操作系统
数据库系统
物联网控制原理与技术

相关文章:

C++:函数模板类模板

程序员Amin &#x1f648;作者简介&#xff1a;练习时长两年半&#xff0c;全栈up主 &#x1f649;个人主页&#xff1a;程序员Amin &#x1f64a; P   S : 点赞是免费的&#xff0c;却可以让写博客的作者开心好久好久&#x1f60e; &#x1f4da;系列专栏&#xff1a;Java全…...

第18章:基于Global Context Vision Transformers(GCTx_unet)网络实现的oct图像中的黄斑水肿和裂孔分割

1. 网络概述 GCTx-UNET是基于传统UNet架构的改进版本&#xff0c;主要引入了以下几个关键创新&#xff1a; GCT模块&#xff1a;全局上下文变换器(Global Context Transformer)模块 多尺度特征融合&#xff1a;增强的特征提取能力 改进的跳跃连接&#xff1a;优化编码器与解…...

深入理解 Spring 的 MethodParameter 类

MethodParameter 是 Spring 框架中一个非常重要的类&#xff0c;它封装了方法参数&#xff08;或返回类型&#xff09;的元数据信息。这个类在 Spring MVC、AOP、数据绑定等多个模块中都有广泛应用。 核心功能 MethodParameter 主要提供以下功能&#xff1a; 获取参数类型信息…...

Docker部署HivisionIDPhotos1分钟生成标准尺寸证件照实操指南

文章目录 前言1. 安装Docker2. 本地部署HivisionIDPhotos3. 简单使用介绍4. 公网远程访问制作照片4.1 内网穿透工具安装4.2 创建远程连接公网地址 5. 配置固定公网地址 前言 相信大部分人办驾照、护照或者工作证时都得跑去照相馆&#xff0c;不仅费时还担心个人信息泄露。好消…...

python多线程+异步编程让你的程序运行更快

多线程简介 多线程是Python中实现并发编程的重要方式之一&#xff0c;它允许程序在同一时间内执行多个任务。在某些环境中使用多线程可以加快我们代码的执行速度&#xff0c;例如我们通过爬虫获得了一个图片的url数组&#xff0c;但是如果我们一个一个存储很明显会非常缓慢&…...

HDCP(五)

HDCP 2.2 测试用例设计详解 基于HDCP 2.2 CTS v1.1规范及协议核心机制&#xff0c;以下从正常流程与异常场景两大方向拆解测试用例设计要点&#xff0c;覆盖认证、密钥管理、拓扑验证等关键环节&#xff1a; 1. 正常流程测试 1.1 单设备认证 • 测试目标&#xff1a;验证源设…...

datagrip如何连接数据库

datagrip连接数据库的步骤 2025版本 想要链接数据库是需要一个jar包的&#xff0c;所以将上面进行删除之后&#xff0c;需要下载一个jar包 那么这个时候需要链接上传一个mysql链接的jar包 选择核心驱动类 上述操作完成之后&#xff0c;然后点击apply再点击ok即可 如下图说明my…...

Spring Boot 自动配置与启动原理全解析

下面分两部分系统讲解&#xff1a; 第一部分&#xff1a;Spring Boot 自动配置原理&#xff08;核心是自动装配&#xff09; 一、Spring Boot 的自动配置是干嘛的&#xff1f; 传统 Spring 开发时&#xff0c;你要写一堆 XML 或配置类&#xff0c;非常麻烦。Spring Boot 引入…...

python 基础:句子缩写

n int(input()) for _ in range(n):words input().split()result ""for word in words:result word[0].upper()print(result)知识点讲解 input()函数 用于从标准输入&#xff08;通常是键盘&#xff09;读取用户输入的内容。它返回的是字符串类型。例如在代码中…...

QML 中 Z 轴顺序(z 属性)

在 QML 中&#xff0c;z 属性用于控制元素的堆叠顺序&#xff08;Z 轴顺序&#xff09;&#xff0c;决定元素在视觉上的前后层次关系。 基本概念 默认行为&#xff1a; 所有元素的默认 z 值为 0 同层级元素后声明的会覆盖先声明的 父元素的 z 值会影响所有子元素 核心规则…...

Redis快的原因

1、基于内存实现 Redis将所有数据存储在内存中&#xff0c;因此它可以非常快速地读取和写入数据&#xff0c;而无需像传统数据库那样将数据从磁盘读取和写入磁盘&#xff0c;这样也就不受I/O限制。 2、I/O多路复用 多路指的是多个socket连接&#xff1b;复用指的是复用一个线…...

蓝桥杯c ++笔记(含算法 贪心+动态规划+dp+进制转化+便利等)

蓝桥杯 #include <iostream> #include <vector> #include <algorithm> #include <string> using namespace std; //常使用的头文件动态规划 小蓝在黑板上连续写下从 11 到 20232023 之间所有的整数&#xff0c;得到了一个数字序列&#xff1a; S12345…...

每日算法-250410

今天分享两道 LeetCode 题目&#xff0c;它们都可以巧妙地利用二分查找来解决。 275. H 指数 II 问题描述 思路&#xff1a;二分查找 H 指数的定义是&#xff1a;一个科学家有 h 篇论文分别被引用了至少 h 次。 题目给定的 citations 数组是升序排列的。这为我们使用二分查找…...

swagger + Document

swagger 虽然有了api接口&#xff0c;对于复杂接口返回值说明&#xff0c;文档还是不能少。如果是一个人做的还简单一点&#xff0c;现在都搞前后端分离&#xff0c;谁知道你要取那个值呢...

线程同步与互斥(下)

线程同步与互斥&#xff08;中&#xff09;https://blog.csdn.net/Small_entreprene/article/details/147003513?fromshareblogdetail&sharetypeblogdetail&sharerId147003513&sharereferPC&sharesourceSmall_entreprene&sharefromfrom_link我们学习了互斥…...

MySQL 优化教程:让你的数据库飞起来

文章目录 前言一、数据库设计优化1. 合理设计表结构2. 范式化与反范式化3. 合理使用索引 二、查询优化1. 避免使用 SELECT *2. 优化 WHERE 子句3. 优化 JOIN 操作 三、服务器配置优化1. 调整内存分配2. 调整并发参数3. 优化磁盘 I/O 四、监控与分析1. 使用 EXPLAIN 分析查询语句…...

SD + Contronet,扩散模型V1.5+约束条件后续优化:保存Canny边缘图,便于视觉理解——stable diffusion项目学习笔记

目录 前言 背景与需求 代码改进方案 运行过程&#xff1a; 1、Run​编辑 2、过程&#xff1a; 3、过程时间线&#xff1a; 4、最终效果展示&#xff1a; 总结与展望 前言 机器学习缺点之一&#xff1a;即不可解释性。最近&#xff0c;我在使用stable diffusion v1.5 Co…...

位掩码、哈希表、异或运算、杨辉三角、素数查找、前缀和

1、位掩码 对二进制数操作的方法&#xff0c;&#xff08;mask1<<n&#xff09;,将数mask的第n位置为1&#xff0c;其它位置为0&#xff0c;即1000...2^n&#xff0c;当n较小时&#xff0c;可以用于解决类似于0/1背包的问题&#xff0c;要么是0&#xff0c;要么是1&…...

安装OpenJDK1.8 17 (macos M芯片)

安装OpenJDK 1.8 下载完后&#xff0c;解压&#xff0c;打开 环境变量的配置文件即可 vim ~/.zshrc #export JAVA_HOME/Users/xxxxx/jdk-21.jdk/Contents/Home #export JAVA_HOME/Users/xxxxx/jdk-17.jdk/Contents/Home #export JAVA_HOME/Users/xxxxx/jdk-11.jdk/Contents…...

Spring Boot 自动加载流程详解

前言 Spring Boot 是一个基于约定优于配置理念的框架&#xff0c;它通过自动加载机制大大简化了开发者的配置工作。本文将深入探讨 Spring Boot 的自动加载流程&#xff0c;并结合源码和 Mermaid 图表进行详细解析。 一、Spring Boot 自动加载的核心机制 Spring Boot 的自动加…...

2025 年“认证杯”数学中国数学建模网络挑战赛 C题 化工厂生产流程的预测和控制

流水线上也有每个位置的温度、压力、流量等诸多参数。只有参数处于正常范 围时&#xff0c;最终的产物才是合格的。这些参数很容易受到外部随机因素的干扰&#xff0c;所 以需要实时调控。但由于参数众多&#xff0c;测量困难&#xff0c;很多参数想要及时调整并不容 易&#x…...

Richardson-Lucy (RL) 反卷积算法 —— 通过不断迭代更新图像估计值

文章目录 一、RL反卷积算法&#xff08;1&#xff09;主要特点&#xff08;2&#xff09;基本原理&#xff08;3&#xff09;关键步骤&#xff08;4&#xff09;优化算法 二、项目实战&#xff08;1&#xff09;RL 反卷积&#xff08;2&#xff09;优化&#xff1a;RL 反卷积 …...

2025.04.10-拼多多春招笔试第四题

📌 点击直达笔试专栏 👉《大厂笔试突围》 💻 春秋招笔试突围在线OJ 👉 笔试突围OJ 04. 优惠券最优分配问题 问题描述 LYA是一家电商平台的运营经理,负责促销活动的策划。现在平台上有 n n n...

------------------V2024-2信息收集完结------------------

第二部分信息收集完结撒花*★,*:.☆(&#xffe3;▽&#xffe3;)/$:*.★* 。 进入开发部分&#xff0c;工具要求&#xff1a;phpstorm Adobe Navicat16 小皮 准备完毕 php开发起飞起飞~~~~~...

Java Lambda与方法引用:函数式编程的颠覆性实践

在Java 8引入Lambda表达式和方法引用后&#xff0c;函数式编程范式彻底改变了Java开发者的编码习惯。本文将通过实战案例和深度性能分析&#xff0c;揭示如何在新项目中优雅运用这些特性&#xff0c;同时提供传统代码与函数式代码的对比优化方案。 文章目录 一、Lambda表达式&a…...

2025年常见渗透测试面试题- PHP考察(题目+回答)

网络安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 PHP考察 php的LFI&#xff0c;本地包含漏洞原理是什么&#xff1f;写一段带有漏洞的代码。手工的话如何发掘&am…...

【在校课堂笔记】南山 - 第 10 节课 总结

- 第 92 篇 - Date: 2025 - 04 - 10 Author: 郑龙浩/仟墨 【Python 在校课堂笔记】 南山 - 第 10 节课 文章目录 南山 - 第 10 节课一 in –> 存在性测试 - 基础介绍二 in –> 例题 - 火车票 - 使用 in 优化**问题**【代码 - 以前的代码】【代码 - 使用存在性测试 in】 …...

GaussDB ECPG与Oracle Pro_C深度对比:嵌入式SQL开发者的迁移指南

GaussDB ECPG与Oracle Pro*C深度对比&#xff1a;嵌入式SQL开发者的迁移指南 一、体系架构差异 关键组件对比表 二、语法兼容性分析 核心语法差异对比 c /* Pro*C示例 */ EXEC SQL SELECT empno INTO :emp_id FROM employees WHERE ename :name;/* ECPG等效实现 */ EXEC…...

debian系统中文输入法失效解决

在 Debian 9.6 上无法切换中文输入法的问题通常与输入法框架&#xff08;如 Fcitx 或 IBus&#xff09;的配置或依赖缺失有关。以下是详细的解决步骤&#xff1a; 1. 安装中文语言包 确保系统已安装中文语言支持&#xff1a; sudo apt update sudo apt install locales sudo…...

2025年危化品安全管理人员备考指南|智能题库+核心考点解析

作为危化品生产单位安全管理人员&#xff08;主要负责人&#xff09;&#xff0c;考试内容主要涵盖三大模块&#xff1a; 法律法规体系 《安全生产法》修订要点&#xff08;2023版&#xff09; 危险化学品重大危险源辨识标准&#xff08;GB 18218&#xff09; 最新《化工过…...

我为女儿开发了一个游戏网站

大家好&#xff0c;我是星河。 自从协助妻子为女儿开发了算数射击游戏后&#xff0c;星河就一直有个想法&#xff1a;为女儿打造一个专属的学习游戏网站。之前的射击游戏虽然有趣&#xff0c;但缺乏难度分级&#xff0c;无法根据女儿的学习进度灵活调整。而且&#xff0c;仅仅…...

SpringBoot企业级开发之【用户模块-更新用户基本信息】

接口文档&#xff1a; 开发前我们先看一下接口文档&#xff1a; 这是实现的预想结果&#xff1a; 实现思路&#xff1a; 设计一下我们的实现思路 拿起家伙实操&#xff1a; 1.controller 定义一个方法去修改用户&#xff1a; 注意&#xff01;是【put请求】 //更改用户信…...

循环神经网络 - 长短期记忆网络的门控机制

长短期记忆网络&#xff08;LSTM&#xff09;的门控机制是其核心设计&#xff0c;用来解决普通 RNN 在长程依赖中遇到的梯度消失与信息混淆问题。为了更进一步理解长短期记忆网络&#xff0c;本文我们来深入分析一下其门控机制。 一、理解长短期记忆网络的“三个门” 所谓门控…...

AutoKeras 处理图像回归预测

AutoKeras 是一个自动机器学习库&#xff0c;在处理图像回归预测问题时&#xff0c;它可以自动选择最佳的模型架构和超参数&#xff0c;从而简化深度学习模型的构建过程。 AutoKeras 主要用于分类和回归任务&#xff0c;它同样可以进行图像数据的回归预测。 步骤 1: 安装 Auto…...

批量清空图片的相机参数、地理位置等敏感元数据

我们在使用相机或者手机拍摄照片的时候&#xff0c;照片中都会带有一些敏感元数据信息&#xff0c;比如说相机的型号&#xff0c;参数&#xff0c;拍摄的时间地点等等。这些信息虽说不是那么引人注意&#xff0c;但是在某些时候他是非常隐私非常重要的。如果我们将这些信息泄露…...

驱动-字符设备驱动框架

简要了解 字符设备驱动框架 整个流程 文章目录 基本知识&#xff1a;实际应用效果说明 参考资料字符设备驱动框架基本结构关键数据结构 - 文件操作结构体(file_operations)struct module *ownerssize_t (*read) (struct file *, char __user *, size_t, loff_t *);ssize_t (*wr…...

RK3588芯片NPU的使用:Windows11 Docker中运行PPOCRv4例子

本文的目标 本文将在RKNN Docker环境中练习PPOCR示例&#xff0c;并通过adb工具部署到RK3588开发板。 开发环境说明 主机系统&#xff1a;Windows11目标设备&#xff1a;搭载RK3588芯片的安卓开发板核心工具&#xff1a;包含rknn-toolkit2、rknn_model_zoo等工具的Docker镜像…...

88.高效写入文件—StringBuilder C#例子 WPF例子

在处理文件写入操作时&#xff0c;选择合适的方法可以显著影响程序的性能。本文将通过两个示例代码&#xff0c;对比使用 StringBuilder 和直接写入文件的性能差异&#xff0c;并提供具体的实现步骤。 问题背景 在实际开发中&#xff0c;我们经常需要将大量数据写入文件。然而…...

redis 延迟双删

Redis延迟双删是一种用于解决缓存与数据库数据一致性问题的策略&#xff0c;通常在高并发场景下使用。以下是其核心内容&#xff1a; 1. 问题背景 当更新数据库时&#xff0c;如果未及时删除或更新缓存&#xff0c;可能导致后续读请求仍从缓存中读取旧数据&#xff0c;造成数…...

如何在CentOS部署青龙面板并实现无公网IP远程访问本地面板

&#xfeff;青龙面板的功能多多&#xff0c;可以帮助我们自动化处理很多需要手动操作的事情&#xff0c;比如京东领京豆&#xff0c;阿里云盘签到白嫖 vip、掘金签到等等&#xff0c;本教程使用 Docker 搭建青龙面板&#xff0c;并结合 cpolar 内网穿透实现使用公网地址远程访…...

VectorBT量化入门系列:第五章 VectorBT性能评估与分析

VectorBT量化入门系列&#xff1a;第五章 VectorBT性能评估与分析 本教程专为中高级开发者设计&#xff0c;系统讲解VectorBT技术在量化交易中的应用。通过结合Tushare数据源和TA-Lib技术指标&#xff0c;深度探索策略开发、回测优化与风险评估的核心方法。从数据获取到策略部署…...

新能源商用车能耗终极优化指南:悬架、制动、电驱桥全链路硬核拆解(附仿真代码)

引言&#xff1a;新能源商用车的“续航战争”与工程师的破局点 1.1 行业现状&#xff1a;政策红利与技术瓶颈的博弈 数据冲击&#xff1a; 2023年中国新能源商用车销量突破50万辆&#xff0c;但平均续航仅为燃油车的55%&#xff08;数据来源&#xff1a;中汽协&#xff09;。…...

Maven笔记

Maven作用 依赖管理、版本控制标准化项目结构、自动化构建项目生命周期管理细分项目模块自动化构建、通过插件拓展构建过程 Maven下载及配置 https://blog.csdn.net/qq_29689343/article/details/135566775 使用IDEA 构建Maven工程 https://blog.csdn.net/qq_29689343/art…...

Java——接口扩展

JDK8开始接口中新增的方法 JDK7以前:接口中只能定义抽象方法。 JDK8的新特性:接口中可以定义有方法体的方法。(默认、静态) JDK9的新特性:接口中可以定义私有方法。 默认方法 需要使用关键字default修饰 作用: 解决接口升级的问题 接口中默认方法的定义格式: 格式: public d…...

COD任务论文--MAMIFNet

摘要 提示&#xff1a;论文机翻 由于难以从复杂背景中区分高度相似的目标&#xff0c;伪装物体检测&#xff08;COD&#xff09;仍然是计算机视觉领域的一项具有挑战性的任务。现有的伪装物体检测方法往往在场景理解和信息利用方面存在困难&#xff0c;导致精度不足&#xff0c…...

基于MCP协议调用的大模型agent开发04

目录 MCP客户端Client开发流程 uv工具 uv安装流程 uv的基本用法介绍 MCP极简客户端搭建流程 MCP客户端接入OpenAI、DeepSeek在线模型流程 参考来源及学习推荐&#xff1a; Anthropic MCP发布通告&#xff1a;https://www.anthropic.com/news/model-context-protocol MC…...

ComfyUI_Echomimic部署问题集合

本博客总结自己在从WebUI转到ComfyUI的过程配置Echomimic遇到的一些问题和解决方法。 默认大家已经成功安装ComfyUI&#xff0c;我之前装的是ComfyU桌面版&#xff0c;现在用的是B站秋葉大佬的整合包。但内核都一样&#xff0c;错误也是通用的。遇到问题时&#xff0c;应该先去…...

音频转文本:如何识别音频成文字

Python脚本:MP4转MP3并语音识别为中文 以下是一个完整的Python脚本,可以将MP4视频转换为MP3音频,然后使用语音识别模型将音频转换为中文文本。 准备工作 首先需要安装必要的库: pip install moviepy pydub SpeechRecognition openai-whisper完整脚本 import os from m…...

脑科学与人工智能的交叉:未来智能科技的前沿与机遇

引言 随着科技的迅猛发展&#xff0c;脑科学与人工智能&#xff08;AI&#xff09;这两个看似独立的领域正在发生深刻的交汇。脑机接口、神经网络模型、智能机器人等前沿技术&#xff0c;正带来一场跨学科的革命。这种结合不仅推动了科技进步&#xff0c;也在医疗、教育、娱乐等…...

Linux | I.MX6ULL外设功能验证(11)

01 CSI 摄像头测试 I.MX6ULL 终结者开发板引出了一路 CSI 的摄像头接口,支持【007】的 OV5640 摄像头模块。首先我们连接OV5640 摄像头模块到开发板上,如下图所示(大家在连接的时候一定要注意方向,摄像头朝向开发板的内侧,千万不要接反):...