当前位置: 首页 > news >正文

网络编程—TCP/IP模型(IP协议)

上篇文章:

网络编程—TCP/IP模型(TCP协议)https://blog.csdn.net/sniper_fandc/article/details/147011479?fromshare=blogdetail&sharetype=blogdetail&sharerId=147011479&sharerefer=PC&sharesource=sniper_fandc&sharefrom=from_link

目录

1 网络层

2 IP协议

3 IP地址

3.1 IP地址分类

3.2 特殊的IP地址

3.3 解决IP地址不够用

3.3.1 IPV6

3.3.2 DHCP动态分配IP地址

3.3.3 NAT IP地址转换

3.4 路由选择


1 网络层

        IP协议属于网络层,网络层协议的工作:1.地址管理2.路径规划。

2 IP协议

        4位版本:目前只有4和6,即IPv4和IPv6。IPv4地址32位,IPv6地址128位。

        4位首部长度:单位4字节,故4位首部长度可以表示15*4=60字节,其中固定首部的长度为50字节,因此选项长度最多40字节。

        8位服务类型(Type Of Service):3位优先权字段(已经弃用),4位TOS字段,和1位保留字段(必须置为0)。4位TOS分别表示:最小延时,最大吞吐量,最高可靠性,最小成本。这四者相互冲突,只能选择一个。对于ssh/telnet这样的应用程序,最小延时比较重要;对于ftp这样的程序,最大吞吐量比较重要。

        16位总长度:单位字节,总长度=首部长度+数据载荷(传输层数据报)。注意:虽然此处长度做了限制,但这不意味IP数据包遇到数据很多的传输层数据报就无法传输,实际上IP数据包可以进行拆包和组包,拆包和组包的相关字段和标识、标志、片偏移有关。

        16位标识:唯一标识主机发送的数据报文,IP数据包的拆包(又被称为分片)和组包行为不由网络层控制,而是由数据链路层控制。数据链路层如果对IP数据包分片,那么多个分片后的包属于同一个IP数据包,因此16位标识一致。

        3位标志:第一位保留。第二位置为1表示禁止分片,这时候如果报文长度超过MTU,IP模块就会丢弃报文。第三位表示“是否还有更多分片”,如果还有分片,置为1;如果没有分片了则是0,类似于一个结束标记。

        13位片偏移:当前分片相对于原始IP报文开始处的偏移。其实就是在表示当前分片在原报文中处在哪个位置。实际偏移的字节数是这个值*8得到的。因此,除了最后一个报文之外,其他报文的长度必须是8的整数倍(否则报文就不连续了)。

        8位生存时间(TTL):数据报到达目的地的最大报文跳数。一般是64(如果是国外的地址,一般是128)。每次经过一个路由,TTL -= 1,一直减到0还没到达,那么就丢弃了。这个字段主要是用来防止出现路由循环。

        比如ping百度的地址,百度服务器发送的报文经过64-49=15跳(15次转发)到达本主机。

        8位协议:表示上层协议的类型。

        16位头部校验和:使用CRC进行校验,来鉴别头部是否损坏。数据部分的校验由传输层负责。

        32位源地址和32位目标地址:表示发送端和接收端的IP地址。

3 IP地址

        以IPv4为准,IP地址由32位二进制数表示,每8位二进制用“.”分割,共分成4部分,每部分表示一个字节,范围为0-255。

3.1 IP地址分类

        这里不介绍传统的ABCDE类地址的分类方法(太浪费了,实际中也不用)。实际中使用的是CIDR划分方法,CIDR引入子网掩码,作用是表示IP地址哪部分是网络号,哪部分是主机号。子网掩码32位,网络号部分全是1,主机号部分全是0,如下所示:

        同一个局域网内(内网)的设备,网络号一样,主机号不一样;相邻局域网的网络号不一样(网络号一样就属于同一个局域网了)。

3.2 特殊的IP地址

        1.网关IP:意思是一个局域网的入口/出口,通常是主机号为.1的IP作为网关IP。

        2.网络号:主机号为.0的IP,表示这个局域网的网络号,因此该IP不会分配给局域网的主机作为IP地址使用。

        3.广播IP:主机号为.255的IP,表示广播IP,向这个IP发送数据,该局域网内的所有设备都会收到。

        注意:为什么UDP可以实现广播,TCP不可以?UDP不需要连接,把数据报直接向这个IP发送,就可以实现广播;而TCP需要建立连接,但是广播IP没有实际的设备,即TCP向这个IP发送建立连接信息,没有设备会应答,因此连接不会建立成功,难以实现广播。

        4.本地环回IP:127.0.0.1/127.*,表示主机自己,每台主机都有一个虚拟的表示环回IP的网卡,因此可以实现自己访问自己。

        5.内网IP:10.*、172.16.*-172.31.*和192.168.*,这三类IP都属于内网IP。

        6.外网IP:除了内网IP外,其余的都是外网IP。

        32位IP地址最初的设计是为了唯一表示世界上所有主机设备的地址,因为32位可以表示4294967296,这在当时看来是非常庞大的数字,但是如今手机、电脑、物联网等各种可上网设备越来越多,这些地址也就不够用了。如何解决IP地址不够用问题?就有了以下三种方式:

3.3 解决IP地址不够用

3.3.1 IPV6

        IPv6地址为128位,比IPv4地址32位大2^96倍,为地球上每一个沙子分配一个IP都绰绰有余。但是IPv6与IPv4不兼容,而市面上大多数网卡设备等目前仍使用IPv4,因此对于IPv6不做过多研究。

        IPv6还有个作用,有了IPv6访问外网就不需要NAT地址转换了。

3.3.2 DHCP动态分配IP地址

        当设备需要上网时,向DHCP服务器发送请求,由DHCP服务器分配可用的IP地址,不上网时就不分配IP地址。但是这种方法治标不治本。

3.3.3 NAT IP地址转换

        把IP地址按局域网和广域网分为内网IP和外网IP,不同内网中的IP可以重复,外网IP不能重复

        观察下图的内网IP和外网IP,体会不同局域网的内网IP可以重复,相邻的局域网网络号不同(因为路由器把相邻的两个局域网连接起来),同一个局域网的网络号相同的含义。

        假设主机1想要上网看视频,主机1向视频平台发送请求,源IP是自己的内网IP192.168.0.10,目的IP是视频平台的IP3.3.3.3。IP数据包转发过程可能经历多个路由器(上图进行了简化),每经过一个路由器,NAT机制就会将源IP改为自己的转发IP(WAN口出去的IP),同时记录下地址的映射(包是从哪来的),因此最终视频平台看到数据包的源IP并不是主机1的IP,而是上一条路由器的IP。通过NAT机制,视频平台不会将返回的响应错误发送给局域网3的主机3(和主机1的IP相同),而是原路返回。

        因此,NAT机制的本质是:用一个外网IP代替多个内网IP,从而节省了IPv4的地址的使用。

3.4 路由选择

        路由器内部会维护一张路由表,路由选择的方式类似“问路”,采用一跳一跳的方式进行,当数据包传入时,路由器会根据目的IP在路由表搜索下一跳地址,如果匹配到相应的信息就转发数据包到下一跳;如果没有匹配到就选择默认的下一跳地址转发(路由表的默认选项配置)。

下篇文章:

网络编程—TCP/IP模型(数据链路层了解与知识补充)https://blog.csdn.net/sniper_fandc/article/details/147025676?fromshare=blogdetail&sharetype=blogdetail&sharerId=147025676&sharerefer=PC&sharesource=sniper_fandc&sharefrom=from_link

相关文章:

网络编程—TCP/IP模型(IP协议)

上篇文章: 网络编程—TCP/IP模型(TCP协议)https://blog.csdn.net/sniper_fandc/article/details/147011479?fromshareblogdetail&sharetypeblogdetail&sharerId147011479&sharereferPC&sharesourcesniper_fandc&sharef…...

Android NDK C/C++交叉编译脚本

以下是 ​​Android (arm64-v8a) 交叉编译 C/C 项目的完整脚本模板​​,基于 NDK 工具链,支持自定义源文件编译为静态库/动态库/可执行文件: 1. 基础交叉编译脚本 (build_android.sh) bash 复制 #!/bin/bash# Android 交叉编译脚本 (arm64-…...

IS-IS-单区域的配置

一、IS-IS的概念 IS-IS(Intermediate System to Intermediate System,中间系统到中间系统)是一种‌链路状态路由协议‌,最初设计用于‌OSI(Open Systems Interconnection)参考模型‌的网络层(CL…...

Java EE期末总结(第四章)

目录 一、ORM框架 二、MyBatis与Hibernate 1、 概念与设计理念 2、SQL 控制 3、学习成本 4、开发效率 三、MyBatisAPI 1、SqlSessionFactoryBuilder 2、SqlSessionFactory 3、SqlSession 四、MyBatis配置 1、核心依赖与日志依赖 2、建立.XML映射文件 3、建立映射…...

Kafka 的选举机制

Kafka 的选举机制在 Zookeeper 模式 和 KRaft 模式 下有所不同,主要体现在 领导选举 和 集群元数据管理 的方式上。下面详细介绍这两种模式下 Kafka 如何进行选举机制。 1. Zookeeper 模式下的选举机制 在早期的 Kafka 架构中,集群的元数据管理和选举机…...

FreeRTOS移植笔记:让操作系统在你的硬件上跑起来

一、为什么需要移植? FreeRTOS就像一套"操作系统积木",但不同硬件平台(如STM32、ESP32、AVR等)的CPU架构和外设差异大,需要针对目标硬件做适配配置。移植工作就是让FreeRTOS能正确管理你的硬件资源。 二、…...

设计模式简述(十二)策略模式

策略模式 描述基本使用使用传统策略模式的缺陷以及规避方法 枚举策略描述基本使用使用 描述 定义一组策略,并将其封装起来到一个策略上下文中。 由调用者决定应该使用哪种策略,并且可以动态替换 基本使用 定义策略接口 public interface IStrategy {…...

如何在idea中快速搭建一个Spring Boot项目?

文章目录 前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热启动(热部署)结语 前言 Spring Boot 凭借其便捷的开发特性,极大提升了开发效率,为 Java 开发工作带来诸多便利。许多大伙伴希望快速…...

【注解简化配置的原理是什么】

注解(Annotation)简化配置的核心原理是将原本分散在外部文件(如XML、properties)中的元数据直接内嵌到代码中,通过声明式编程让框架或工具自动处理这些元数据,从而减少手动配置的复杂度。以下是其实现原理的…...

Livox-Mid-70雷达使用------livox_mapping建图

1.ubuntu20.04 和Livox mid 70 的IP设置 连接好Livox-Mid-70雷达,然后进行局域网配置 1.1 Livox mid 70的IP是已知的,即192.168.1.1XX, XX表示mid 70广播码的后两位 1.2 ubuntu 20.04的IP设置 a.查看本机IP名 ifconfig b.设置本机IP地址 sudo ifconfig enx00e04…...

Django中使用不同种类缓存的完整案例

Django中使用不同种类缓存的完整案例 推荐超级课程: 本地离线DeepSeek AI方案部署实战教程【完全版】Docker快速入门到精通Kubernetes入门到大师通关课AWS云服务快速入门实战目录 Django中使用不同种类缓存的完整案例步骤1:设置Django项目步骤2:设置URL路由步骤3:视图级别…...

代码随想录算法训练营Day32| 完全背包问题(二维数组 滚动数组)、LeetCode 518 零钱兑换 II、377 组合总数 IV、爬楼梯(进阶)

理论基础 完全背包问题 在完全背包问题中,每种物品都有无限个,我们可以选择任意个数(包括不选),放入一个容量为 W W W 的背包中。我们希望在不超过容量的情况下,最大化背包内物品的总价值。 完全背包&a…...

Django SaaS案例:构建一个多租户博客应用

Django SaaS案例:构建一个多租户博客应用 推荐超级课程: 本地离线DeepSeek AI方案部署实战教程【完全版】Docker快速入门到精通Kubernetes入门到大师通关课AWS云服务快速入门实战目录 Django SaaS案例:构建一个多租户博客应用如果你正在从事一个SaaS(软件即服务)项目或一…...

静态库与动态库

静态库(Static Library) 定义:静态库(如 .a 文件或 .lib 文件)是编译时直接链接到可执行文件中的库。其代码和数据会被完整复制到最终的可执行文件中。 特点: 独立部署:无需依赖外部库文件。 …...

优选算法的妙思之流:分治——归并专题

专栏:算法的魔法世界 个人主页:手握风云 目录 一、归并排序 二、例题讲解 2.1. 排序数组 2.2. 交易逆序对的总数 2.3. 计算右侧小于当前元素的个数 2.4. 翻转对 一、归并排序 归并排序也是采用了分治的思想,将数组划分为多个长度为1的子…...

PDFBox渲染生成pdf文档

使用PDFBox可以渲染生成pdf文档,并且自定义程度高,只是比较麻烦,pdf的内容位置都需要手动设置x(横向)和y(纵向)绝对位置,但是每个企业的单据都是不一样的,一般来说都会设…...

flutter dio网络请求与json数据解析

在Flutter中,Dio 是一个功能强大且易于使用的网络请求库,用于处理HTTP请求和响应。与 http 包相比,Dio 提供了更多高级功能,例如拦截器、文件上传/下载、请求取消等。结合 json_serializable 或手动解析 JSON 数据,可以…...

7. RabbitMQ 消息队列——延时队列(Spring Boot + 安装message_exchange“延迟插件“ 的详细配置说明)的详细讲解

7. RabbitMQ 消息队列——延时队列(Spring Boot 安装message_exchange"延迟插件" 的详细配置说明)的详细讲解 文章目录 7. RabbitMQ 消息队列——延时队列(Spring Boot 安装message_exchange"延迟插件" 的详细配置说明)的详细讲解1. RabbitMQ 延时队列概…...

使用 MyBatis-Plus 实现高效的 Spring Boot 数据访问层

在开发 Spring Boot 应用时,数据访问是不可或缺的部分。为了提高开发效率并减少样板代码,MyBatis-Plus 提供了强大的功能,能够简化与数据库交互的操作。本文将详细介绍如何在 Spring Boot 中使用 MyBatis-Plus,并结合具体代码示例…...

Linux学习笔记——零基础详解:什么是Bootloader?U-Boot启动流程全解析!

零基础详解:什么是Bootloader?U-Boot启动流程全解析! 一、什么是Bootloader?📌 举个例子: 二、U-Boot 是什么?三、U-Boot启动过程:分为两个阶段🔹 第一阶段(汇…...

网络初识 - Java

网络发展史: 单机时代(独立模式) -> 局域网时代 -> 广域网时代 -> 移动互联网时代 网络互联:将多台计算机链接再一起,完成数据共享。 数据共享的本质是网络数据传输,即计算机之间通过网络来传输数…...

(51单片机)独立按键控制流水灯LED流向(独立按键教程)(LED使用教程)

源代码 如上图将7个文放在Keli5 中即可,然后烧录在单片机中就行了 烧录软件用的是STC-ISP,不知道怎么安装的可以去看江科大的视频: 【51单片机入门教程-2020版 程序全程纯手打 从零开始入门】https://www.bilibili.com/video/BV1Mb411e7re?…...

QML输入控件: TextArea的应用(带行号的编辑器)

目录 引言📚 相关阅读🔨BUG修复实现思路代码解析主窗口代码自定义TextAreaItem组件行号显示部分文本编辑区域滚动同步 关键功能解析1. 动态更新行号2. 属性映射3. 外观定制 运行效果总结工程下载 引言 在开发Qt/QML应用程序时,文本编辑功能是…...

kafka 的存储文件结构

Kafka 的存储文件结构是其高吞吐量和高效性能的关键部分。Kafka 的存储结构是围绕 日志(Log) 的设计展开的,而每个 Kafka 分区(Partition) 都会以日志文件的形式存储。Kafka 采用了顺序写入、分段存储和索引文件的机制…...

FAISS原理深度剖析与LLM检索分割难题创新解决方案

一、FAISS核心技术解构:突破传统检索的次元壁 1.1 高维空间的降维艺术 FAISS(Facebook AI Similarity Search)通过独创的Product Quantization(乘积量化)技术,将高维向量空间切割为多个正交子空间。每个子…...

Windows操作系统安全配置(一)

1.操作系统和数据库系统管理用户身份标识应具有不易被冒用的特点,口令应有复杂度要求并定期更换 配置方法:运行“gpedit.msc”计算机配置->Windows设置->安全设置>帐户策略->密码策略: 密码必须符合复杂性要求->启用 密码长度最小值->…...

JavaScript promise实例——通过XHR获取省份列表

文章目录 需求和步骤代码示例效果 需求和步骤 代码示例 <!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><!-- 确保IE浏览器使用最新的渲染引擎 --><meta http-equiv"X-UA-Compatible" conten…...

【力扣hot100题】(065)搜索旋转排序数组

难点在于情况真的很多需要逐一判断&#xff0c;画个走向图再写判断条件就行了。 还有处理边界条件也比较麻烦。 class Solution { public:int search(vector<int>& nums, int target) {int left0;int rightnums.size()-1;while(left<right){int mid(leftright)/…...

毕设论文的分类号与UDC查询的网站

毕业论文分类号 中图分类号查询链接 找到自己的细分类&#xff0c;一个一个点就好&#xff0c;然后就找到了 毕业论文UDC UDC查询...

pyqt5实现多个窗口互相调用

使用以下代码可以实现多窗口之间的相互调用&#xff1a; import sys from PyQt5.QtWidgets import QApplication, QMainWindow import win0, win1, win2, win3 # 分别包含 Ui_win0 和 Ui_win1class Win0Window(QMainWindow, win0.Ui_win0):def __init__(self, x, parentNone)…...

Python基于Django的企业it资产管理系统(附源码,文档说明)

博主介绍&#xff1a;✌IT徐师兄、7年大厂程序员经历。全网粉丝15W、csdn博客专家、掘金/华为云//InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3…...

浅谈在HTTP中GET与POST的区别

从 HTTP 报文来看&#xff1a; GET请求方式将请求信息放在 URL 后面&#xff0c;请求信息和 URL 之间以 &#xff1f;隔开&#xff0c;请求信息的格式为键值对&#xff0c;这种请求方式将请求信息直接暴露在 URL 中&#xff0c;安全性比较低。另外从报文结构上来看&#xff0c…...

计算机视觉5——运动估计和光流估计

一、运动估计 &#xff08;一&#xff09;运动场&#xff08;Motion Field&#xff09; 定义与物理意义 运动场是三维场景中物体或相机运动在二维图像平面上的投影&#xff0c;表现为图像中每个像素点的运动速度矢量。其本质是场景点三维运动&#xff08;平移、旋转、缩放等&a…...

8. RabbitMQ 消息队列 + 结合配合 Spring Boot 框架实现 “发布确认” 的功能

8. RabbitMQ 消息队列 结合配合 Spring Boot 框架实现 “发布确认” 的功能 文章目录 8. RabbitMQ 消息队列 结合配合 Spring Boot 框架实现 “发布确认” 的功能1. RabbitMQ 消息队列 结合配合 Spring Boot 框架实现 “发布确认” 的功能1.1 回退消息 2.备用交换机3. API说…...

铰链损失函数 Hinge Loss和Keras 实现

一、说明 在为了了解 Keras 深度学习框架的来龙去脉&#xff0c;本文介绍铰链损失函数&#xff0c;然后使用 Keras 实现它们以进行练习并了解它们的行为方式。在这篇博客中&#xff0c;您将首先找到两个损失函数的简要介绍&#xff0c;以确保您在我们继续实现它们之前直观地理解…...

【Tips】Cloudflare用户与网站之间的中介

Cloudflare是一家提供多种网络服务的公司&#xff0c;旨在帮助网站和应用程序提高性能、安全性和可靠性。它为全球网站、应用程序和网络提供一系列网络安全、性能优化和可靠性服务。Cloudflare 的核心使命是让互联网更加安全、快速和可靠。 以下是其主要服务介绍&#xff1a;…...

PDF 转图片,一行代码搞定!批量支持已上线!

大家好&#xff0c;我是程序员晚枫。今天我要给大家带来一个超实用的功能——popdf 现在支持 PDF 转图片了&#xff0c;而且还能批量操作&#xff01;是不是很激动&#xff1f;别急&#xff0c;我来手把手教你玩转这个功能。 1. 一行代码搞定单文件转换 popdf 的核心就是简单暴…...

可以使用费曼学习法阅读重要的书籍

书本上画了很多线&#xff0c;回头看等于没画出任何重点。 不是所有的触动都是有效的。就像你曾经看过很多好文章&#xff0c;当时被触动得一塌糊涂&#xff0c;还把它们放进了收藏夹&#xff0c;但一段时间之后&#xff0c;你就再也记不起来了。如果让你在一本书上画出令自己…...

基于Flask的笔记本电脑数据可视化分析系统

【Flask】基于Flask的笔记本电脑数据可视化分析系统&#xff08;完整系统源码开发笔记详细部署教程&#xff09;✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 该系统采用Python语言进行编写&#xff0c;以Flask为后端框架&#xff0c;利用Echarts实现数…...

JavaScript基础--17-数组的常见方法

数组的方法清单 数组的类型相关 方法描述备注Array.isArray()判断是否为数组toString()将数组转换为字符串Array.from(arrayLike)将伪数组转化为真数组Array.of(value1, value2, value3)创建数组&#xff1a;将一系列值转换成数组 注意&#xff0c;获取数组的长度是用length…...

TDengine 从入门到精通(2万字长文)

第一章&#xff1a;走进 TDengine 的世界 TDengine 是个啥&#xff1f; 如果你首次接触 TDengine&#xff0c;心里可能满是疑惑&#xff1a;这究竟是个什么东西&#xff0c;能派上什么用场&#xff1f;简单来讲&#xff0c;TDengine 是一款开源、高性能且云原生的时序数据库&…...

ctfshow VIP题目限免(前10题)

目录 源码泄露 前台JS绕过 协议头信息泄露 robots后台泄露 phps源码泄露 源码压缩包泄露 版本控制泄露源码 版本控制泄露源码2 vim临时文件泄露 cookie泄露 源码泄露 根据题目提示是源代码泄露&#xff0c;右键查看页面源代码发现了 flag 前台JS绕过 发现右键无法使用了&…...

PyTorch中的各种损失函数的详细解析与通俗理解!

目录 1. 前言 2. 回归任务中的损失函数 2.1 L1损失&#xff08;Mean Absolute Error, MAE&#xff09; 2.2 平方损失&#xff08;Mean Squared Error, MSE&#xff09; 2.3 平滑L1损失&#xff08;Smooth L1 Loss&#xff09; 3. 分类任务中的损失函数 3.1 交叉熵损失&a…...

leetcode53-最大子数组和

leetcode 53 思路 本题使用贪心算法&#xff0c;核心在于对每一个元素进行遍历&#xff0c;在遍历过程里&#xff0c;持续更新当前的子数组和以及最大子数组和 假设 sum 是当前的子数组和&#xff0c;max 是到目前为止最大的子数组和遍历数组时&#xff0c;计算每个位置的当…...

解决Long类型前端精度丢失和正常传回后端问题

在 Java 后端开发中&#xff0c;可能会遇到前后端交互过程中 Long 类型精度丢失的问题。尤其是在 JavaScript 中&#xff0c;由于其 Number 类型是双精度浮点数&#xff0c;超过 16 位的 Long 类型值就会发生精度丢失。 问题背景 假设有如下实体类&#xff1a; public class…...

Green Coding规范:从循环语句到数据库查询的节能写法

本文系统化阐述绿色编码的工程实践方案&#xff0c;通过重构循环控制结构、优化集合操作范式、改进数据库访问模式三大技术路径&#xff0c;实现典型业务系统降低28.6%的CPU指令周期消耗。基于对JVM和SQL解释器的指令级分析&#xff0c;提出循环展开的黄金分割法则、位图索引加…...

Spring Boot整合Elasticsearch

摘要&#xff1a;本文手把手教你如何在Spring Boot项目中整合Elasticsearch&#xff08;ES&#xff09;&#xff0c;并实现基本的CRUD与搜索操作。包含版本选择、配置、代码示例及常见问题解决。 一、环境准备 1.1 软件版本 Spring Boot: 3.xElasticsearch: 8.x&#xff08;推…...

2025年渗透测试面试题总结- 某四字大厂面试复盘扩展 一面(题目+回答)

网络安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 某四字大厂面试复盘扩展 一面 一、Java内存马原理与查杀 二、冰蝎与哥斯拉原理对比&#xff08;技术演…...

java基础自用笔记:文件、递归、常见的字符集、IO流

文件 递归 递归文件夹寻找某个文件&#xff0c;要先判断是否有权限进入文件夹&#xff08;若无权限返回null&#xff09;然后再判断文件数量是否不为0 常见的字符集 IO流 字节流 文件字节输入流 当读取到最后一个字节的时候&#xff0c;装在buffer[0]中&#xff0c;如果后面没…...

关于计算机网络的一些疑问

目录 1. HTTP/1.x 中的“队头阻塞”&#xff08;Head-of-Line Blocking&#xff09;问题解释什么是队头阻塞&#xff1f;其他相关概念&#xff1a; 2. HPACK 算法是什么&#xff1f;HPACK 的作用&#xff1a;HPACK 的特点&#xff1a;HPACK 提升性能的原因&#xff1a; 3. 如何…...