当前位置: 首页 > news >正文

【数学建模】(时间序列模型)ARIMA时间序列模型

ARIMA时间序列模型详解及常见时间序列模型概览

文章目录

  • ARIMA时间序列模型详解及常见时间序列模型概览
    • 1 引言
    • 2 ARIMA模型的基本概念
    • 3 ARIMA模型的组成部分详解
      • 3.1 AR模型 (自回归模型)
      • 3.2 MA模型 (移动平均模型)
      • 3 I (差分)
    • 4 ARIMA模型的建模步骤
    • 5 Python实现ARIMA模型
    • 6 常见时间序列模型概览
      • 1. 简单时间序列模型
      • 2. 指数平滑模型
      • 3. ARIMA族模型
      • 4. 状态空间模型
      • 5. 机器学习和深度学习模型
    • 7 ARIMA模型的优缺点
      • 优点
      • 缺点
    • 8 如何选择合适的时间序列模型
    • 9 结论
    • 参考资料

1 引言

时间序列分析在数据科学中占据重要地位,广泛应用于金融、经济、气象等领域。本文将详细介绍ARIMA模型的基本原理和应用,并简要概述其他常见的时间序列模型,帮助读者了解时间序列分析的全貌。

2 ARIMA模型的基本概念

ARIMA模型全称为自回归差分移动平均模型(AutoRegressive Integrated Moving Average),由三部分组成:

  • AR (AutoRegressive): 自回归部分
  • I (Integrated): 差分部分
  • MA (Moving Average): 移动平均部分

通常表示为ARIMA(p,d,q),其中:

  • p: 自回归项数
  • d: 差分次数
  • q: 移动平均项数

ARIMA模型的基本思想是利用数据本身的历史信息来预测未来。一个时间点上的标签值既受过去一段时间内的标签值影响,也受过去一段时间内的偶然事件的影响,这就是说,ARIMA模型假设:标签值是围绕着时间的大趋势而波动的,其中趋势是受历史标签影响构成的,波动是受一段时间内的偶然事件影响构成的,且大趋势本身不一定是稳定的。

简而言之,ARIMA模型就是试图通过数据的自相关性和差分的方式,提取出隐藏在数据背后的时间序列模式,然后用这些模式来预测未来的数据。其中:

  1. AR部分用于处理时间序列的自回归部分,它考虑了过去若干时期的观测值对当前值的影响。

  2. I部分用于使非平稳时间序列达到平稳,通过一阶或者二阶等差分处理,消除了时间序列中的趋势和季节性因素。

  3. MA部分用于处理时间序列的移动平均部分,它考虑了过去的预测误差对当前值的影响。

结合这三部分,ARIMA模型既可以捕捉到数据的趋势变化,又可以处理那些有临时、突发的变化或者噪声较大的数据。所以,ARIMA模型在很多时间序列预测问题中都有很好的表现。

3 ARIMA模型的组成部分详解

3.1 AR模型 (自回归模型)

AR模型,即自回归模型,其优势是对于具有较长历史趋势的数据,AR模型可以捕获这些趋势,并据此进行预测。但是AR模型不能很好地处理某些类型的时间序列数据,例如那些有临时、突发的变化或者噪声较大的数据。AR模型相信“历史决定未来”,因此很大程度上忽略了现实情况的复杂性、也忽略了真正影响标签的因子带来的不可预料的影响。

AR§模型假设当前值与过去p个时间点的值线性相关。数学表达式为:

X t = c + ϕ 1 X t − 1 + ϕ 2 X t − 2 + . . . + ϕ p X t − p + ε t X_t = c + \phi_1 X_{t-1} + \phi_2 X_{t-2} + ... + \phi_p X_{t-p} + \varepsilon_t Xt=c+ϕ1Xt1+ϕ2Xt2+...+ϕpXtp+εt

其中:

  • X t X_t Xt 是t时刻的值
  • c c c 是常数项
  • ϕ 1 , ϕ 2 , . . . , ϕ p \phi_1, \phi_2, ..., \phi_p ϕ1,ϕ2,...,ϕp 是模型参数
  • ε t \varepsilon_t εt 是白噪声

3.2 MA模型 (移动平均模型)

相反地,MA模型,即移动平均模型,可以更好地处理那些有临时、突发的变化或者噪声较大的时间序列数据。但是对于具有较长历史趋势的数据,MA模型可能无法像AR模型那样捕捉到这些趋势。MA模型相信“时间序列是相对稳定的,时间序列的波动是由偶然因素影响决定的”,但现实中的时间序列很难一直维持“稳定”这一假设。

(P.S. ARIMA模型是一种结合了AR模型和MA模型优点的模型,可以处理更复杂的时间序列问题。参考资料:时间序列模型(四):ARIMA模型)

MA(q)模型假设当前值与过去q个预测误差项线性相关。数学表达式为:

X t = μ + ε t + θ 1 ε t − 1 + θ 2 ε t − 2 + . . . + θ q ε t − q X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + ... + \theta_q \varepsilon_{t-q} Xt=μ+εt+θ1εt1+θ2εt2+...+θqεtq

其中:

  • μ \mu μ 是期望值
  • ε t \varepsilon_t εt 是白噪声
  • θ 1 , θ 2 , . . . , θ q \theta_1, \theta_2, ..., \theta_q θ1,θ2,...,θq 是模型参数

3 I (差分)

差分操作用于使非平稳时间序列转化为平稳序列(P.S. GNSS中的周跳检测)。d阶差分定义为:

∇ d X t = ( 1 − B ) d X t \nabla^d X_t = (1-B)^d X_t dXt=(1B)dXt

其中B是后移算子, B X t = X t − 1 B X_t = X_{t-1} BXt=Xt1

4 ARIMA模型的建模步骤

  1. 平稳性检验:使用ADF检验等方法检验时间序列是否平稳
  2. 差分处理:如果序列非平稳,进行差分直到序列平稳
  3. 模型识别:通过ACF和PACF图确定合适的p、q值
  4. 模型拟合:估计模型参数
  5. 模型诊断:检验残差是否为白噪声
  6. 模型预测:使用拟合好的模型进行预测

5 Python实现ARIMA模型

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf# 加载数据
data = pd.read_csv('data.csv', index_col='date', parse_dates=True)
ts = data['value']# 平稳性检验
def test_stationarity(timeseries):# ADF检验dftest = adfuller(timeseries, autolag='AIC')dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used'])for key, value in dftest[4].items():dfoutput['Critical Value (%s)'%key] = valueprint(dfoutput)# 差分处理
ts_diff = ts.diff().dropna()# 模型拟合
model = ARIMA(ts, order=(1, 1, 1))  # ARIMA(p,d,q)
model_fit = model.fit()
print(model_fit.summary())# 模型预测
forecast = model_fit.forecast(steps=10)  # 预测未来10个时间点

6 常见时间序列模型概览

除了ARIMA模型外,时间序列分析还有许多其他模型,以下是一些常见的时间序列模型:

1. 简单时间序列模型

  • 简单平均模型:使用历史数据的平均值作为预测值
  • 朴素模型(Naive Method):使用最近一期的观测值作为预测值
  • 季节性朴素模型:使用上一个季节周期对应时间点的值作为预测值
  • 移动平均模型:使用过去n个时间点的平均值作为预测值

2. 指数平滑模型

  • 简单指数平滑(SES):适用于无趋势、无季节性的数据
    y ^ t + 1 = α y t + ( 1 − α ) y ^ t \hat{y}_{t+1} = \alpha y_t + (1-\alpha)\hat{y}_t y^t+1=αyt+(1α)y^t

  • Holt线性趋势模型:适用于有趋势、无季节性的数据
    KaTeX parse error: No such environment: align at position 7: \begin{̲a̲l̲i̲g̲n̲}̲ \hat{y}_{t+h} …

  • Holt-Winters季节性模型:适用于有趋势、有季节性的数据

    • 加法形式和乘法形式

3. ARIMA族模型

  • SARIMA:季节性ARIMA,处理具有季节性的时间序列
    S A R I M A ( p , d , q ) ( P , D , Q ) s SARIMA(p,d,q)(P,D,Q)_s SARIMA(p,d,q)(P,D,Q)s

  • ARIMAX:带外生变量的ARIMA模型
    X t = c + ϕ 1 X t − 1 + . . . + ϕ p X t − p + β 1 Z 1 , t + . . . + β k Z k , t + ε t + θ 1 ε t − 1 + . . . + θ q ε t − q X_t = c + \phi_1 X_{t-1} + ... + \phi_p X_{t-p} + \beta_1 Z_{1,t} + ... + \beta_k Z_{k,t} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + ... + \theta_q \varepsilon_{t-q} Xt=c+ϕ1Xt1+...+ϕpXtp+β1Z1,t+...+βkZk,t+εt+θ1εt1+...+θqεtq

  • VARIMA:向量ARIMA,处理多变量时间序列

  • GARCH:广义自回归条件异方差模型,用于建模波动性
    σ t 2 = ω + ∑ i = 1 p α i ε t − i 2 + ∑ j = 1 q β j σ t − j 2 \sigma_t^2 = \omega + \sum_{i=1}^{p} \alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^{q} \beta_j \sigma_{t-j}^2 σt2=ω+i=1pαiεti2+j=1qβjσtj2

4. 状态空间模型

  • 卡尔曼滤波:递归估计动态系统状态的算法
  • 结构时间序列模型:将时间序列分解为趋势、季节性和不规则成分

5. 机器学习和深度学习模型

  • Prophet:Facebook开发的时间序列预测工具,适合处理具有强季节性的数据
  • LSTM (长短期记忆网络):一种特殊的RNN,能够学习长期依赖关系
  • GRU (门控循环单元):LSTM的简化版本,计算效率更高
  • Transformer:基于注意力机制的模型,近年来在时间序列预测中表现出色
  • N-BEATS:纯深度学习方法,不依赖于传统的时间序列分解

7 ARIMA模型的优缺点

优点

  1. 理论基础扎实,模型简单易懂
  2. 适用于大多数线性时间序列问题
  3. 预测短期趋势效果较好
  4. 模型解释性强

缺点

  1. 只适用于平稳或可通过差分转化为平稳的时间序列
  2. 对非线性关系的建模能力有限
  3. 需要较长的历史数据才能得到较好的效果
  4. 不适合处理具有长期记忆特性的序列

8 如何选择合适的时间序列模型

选择时间序列模型时,需要考虑以下因素:

  1. 数据特性:是否存在趋势、季节性、周期性
  2. 预测时间范围:短期预测和长期预测适合的模型不同
  3. 数据量:深度学习模型通常需要更多的数据
  4. 解释性需求:是否需要理解模型的内部机制
  5. 计算资源:复杂模型需要更多的计算资源

9 结论

ARIMA作为经典的时间序列分析模型,在许多场景下仍然表现良好。随着机器学习和深度学习的发展,时间序列分析工具箱不断丰富,为不同的应用场景提供了更多选择。在实际应用中,应根据具体问题特点选择合适的模型,有时候甚至可以将多种模型结合使用,以获得更好的预测效果。

参考资料

  1. Box, G. E. P., & Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control.
  2. Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice.
  3. statsmodels官方文档: https://www.statsmodels.org/
  4. 时间序列模型(四):ARIMA模型

希望这篇文章对您了解ARIMA和其他时间序列模型有所帮助!如有任何问题,欢迎在评论区留言交流。

相关文章:

【数学建模】(时间序列模型)ARIMA时间序列模型

ARIMA时间序列模型详解及常见时间序列模型概览 文章目录 ARIMA时间序列模型详解及常见时间序列模型概览1 引言2 ARIMA模型的基本概念3 ARIMA模型的组成部分详解3.1 AR模型 (自回归模型)3.2 MA模型 (移动平均模型)3 I (差分) 4 ARIMA模型的建模步骤5 Python实现ARIMA模型6 常见时…...

模版的特性及其编译分离

1.模版的分类 模版参数分为 类型形参 和 非类型形参 类型形参:出现在模版参数列表中,跟在class和typename之后的参数类型名称 非类型形参:就是用一个常量作为类(函数)模版的一个参数,在类(函…...

8电池_多绕组反激式变压器均衡_4模式

(1)8节串联锂离子电池组 (2)多绕组双向反激式变压器,1个变压器解决多电池均衡 (3)亮点:支持1建切换4种均衡算法–>全网唯一 (4)多绕组变压器均衡也能设计多种均衡算法–>全网唯一 锂离子电池均衡,均衡拓扑,均衡算法...

6.1 python加载win32或者C#的dll的方法

python很方便的可以加载win32的方法以及C#编写的dll中的方法或者变量,大致过程如下。 一.python加载win32的方法,使用win32api 1.安装库win32api pip install win32api 2.加载所需的win32函数并且调用 import win32api win32api.MessageBox(0,"…...

STP学习

{所有内容均来自于西安欧鹏的陈俊老师} STP生成树 当二层交换机意外成环路的时候会发生: 1.广播风暴:当广播帧进入环路时,会被不断复制并传输,导致网络中的广播流量急剧增加,消耗大量的网络带宽,降低网络…...

特征值与特征向量:从理论到应用的全面解析

特征值与特征向量:从理论到应用的全面解析 一、特征值与特征向量核心概念 定义 对于方阵 ( A ),若存在标量 ( \lambda ) 和非零向量 ( v ),使得: [ A v \lambda v ] 则 ( \lambda ) 为特征值,( v ) 为对应的特征向…...

【Python】数组的条件逻辑统计运算元素排序

【Python】数组的条件逻辑&统计运算&元素排序: 一.条件逻辑二.统计运算三.数组元素排序检索数组元素是否满足条件查找数组的唯一元素判断元素是否在其他数组中 一.条件逻辑 import numpy as np arr_x np.array([1, 5, 7]) arr_y np.array([2, 6, 8]) arr_…...

数据流和重定向

1、数据流 不管正确或错误的数据都是默认输出到屏幕上,所以屏幕是混乱的。所以就需要用数据流重定向将这两 条数据分开。数据流重定向可以将标准输出和标准错误输出分别传送到其他的文件或设备去 标准输入(standard input,简称stdin&#xff…...

Jetpack Compose 自定义组件完全指南

Jetpack Compose 自定义组件完全指南 Compose 的声明式 UI 范式为创建自定义组件提供了前所未有的灵活性。本指南将带你从基础到高级全面掌握 Compose 自定义组件的开发技巧。 一、自定义组件基础 1.1 基本结构 一个最简单的自定义组件: Composable fun Greeti…...

ETF 场内基金是什么?佣金最低又是多少呢?

嘿,朋友们,大家好啊,我是StockMasterX,今天咱们就坐下来慢慢聊聊这个话题,ETF 场内基金到底是个啥东西,它的佣金最低能到多少,真的是个值得深挖的问题。 说起ETF,我还记得刚入行那会…...

【C++篇】类与对象(中篇) 解密C++类的核心:六大默认成员函数详解与避坑指南

文章目录 前言一、类的六个默认成员函数二、构造函数1. 概念2. 特性(牢记) 三、析构函数1. 概念2. 特性(牢记) 四、拷贝构造函数1. 概念2. 特性(牢记) 五、赋值运算符重载1. 运算符重载2. 赋值运算符重载前…...

001 vue

https://cn.vuejs.org/ 文章目录 v-bindv-modelv-on修饰符条件渲染/控制:v-if v-show列表渲染 M:即Model,模型,包括数据和一些基本操作 V:即View,视图,页面渲染结果 VM:即View-Mode…...

web forms可视化开发显示的网页是用ExpressionWebEditorFrame控件,是IE内核还是简单的HTML解析?如何让他加载CSS和JS?

web forms可视化开发显示的网页是用ExpressionWebEditorFrame控件,是IE内核还是简单的HTML解析?如何让他加载CSS和JS? 1. ExpressionWebEditorFrame 控件的内核及解析机制 在 Visual Studio 中用于 Web Forms 可视化开发的 ExpressionWebEditorFrame 控件主要基于 Internet…...

$R^n$超平面约束下的向量列

原向量: x → \overset{\rightarrow}{x} x→ 与 x → \overset{\rightarrow}{x} x→法向相同的法向量(与 x → \overset{\rightarrow}{x} x→同向) ( x → ⋅ n → ∣ n → ∣ 2 ) n → (\frac{\overset{\rightarrow}x\cdot\overset{\righta…...

英伟达新一代GPU架构(50系列显卡)PyTorch兼容性解决方案

随着NVIDIA不断推出基于新架构的GPU产品,机器学习框架需要相应地更新以支持这些硬件。本文记录了在RTX 5070 Ti上运行PyTorch时遇到的CUDA兼容性问题,并详细分析了问题根源及其解决方案,以期为遇到类似情况的开发者提供参考。 在Anaconda虚…...

16.2Linux自带的LED灯驱动实验(详细编写)_csdn

这个实验不用自己编写代码。 1、在linux源代码中,打开 stm32mp15-pinctrl.dtsi 文件并进行修改: make uImage LOADADDR0XC2000040 -j8 //编译内核然后: 2、修改设备节点,打开 stm32mp157d-atk.dts: 其中&#xff1…...

Java 大视界 -- Java 大数据在智慧交通停车场智能管理与车位预测中的应用实践(174)

💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…...

HashMap 底层原理详解

1. 核心数据结构 JDK 1.7 及之前&#xff1a;数组 链表 JDK 1.8 及之后&#xff1a;数组 链表/红黑树&#xff08;链表长度 ≥8 时转红黑树&#xff0c;≤6 时退化为链表&#xff09; // JDK 1.8 的 Node 定义&#xff08;链表节点&#xff09; static class Node<K,V&g…...

重生之我是去噪高手——diffusion model

diffusion model是如何运作的&#xff1f; 想象一下&#xff0c;你有一张清晰的图片。扩散模型的核心思想分为两个过程&#xff1a; 前向过程&#xff08;Forward Process / Diffusion Process&#xff09;&#xff1a;逐步加噪反向过程&#xff08;Reverse Process / Denois…...

FfreeRTOS有阻塞作用的API

在 FreeRTOS 中,阻塞 API 是指那些会导致调用任务进入阻塞状态(Blocked State)的函数,即任务会暂时让出 CPU,直到某个条件满足(如超时、信号量可用、队列数据到达等)。以下是常见的阻塞 API 分类及示例: 1. 任务延迟(延时) vTaskDelay() 使任务阻塞指定的时间(以系统…...

app逆向专题二:app逆向流程

app逆向专题二&#xff1a;app逆向流程 一、app逆向说明二、拿到APP应用的apk三、使用工具进行查壳四、有壳需要先进行脱壳&#xff0c;拿到dex文件进行反编译五、使用Jadx-Gui或其他工具进行反编译&#xff0c;分析源码&#xff1b;六、根据app的抓包情况拿到加密的关键词参数…...

VMware 安装 Ubuntu 全流程实战指南:从零搭建到深度优化

在软件开发、系统测试以及技术学习等诸多场景中&#xff0c;使用虚拟机安装操作系统是一种灵活且高效的方式。Ubuntu 作为一款优秀的开源操作系统&#xff0c;在 VMware 虚拟机上的安装与优化备受关注。接下来&#xff0c;将为大家带来 VMware 安装 Ubuntu 的全流程实战指南&am…...

论文阅读笔记——RDT-1B: A DIFFUSION FOUNDATION MODEL FOR BIMANUAL MANIPULATION

RDT-1B 论文 模型表达与泛化能力&#xff1a;由于双臂操作中动作空间维度是单臂空间的两倍&#xff0c;传统方法难以建模其多模态分布。 数据&#xff1a;双臂数据少且不同机器人的物理结构和动作空间差异&#xff08;如关节数、运动范围&#xff09;导致数据分布不一致&#x…...

如何一天背300到500个单词

买一本有结构分析或词源注释的目标词汇书。 买一盒口香糖。 准备一摞空白的A4纸。 找一间用于冥想的黑屋子(眼晴闭上就可以了)。 将要背诵的单词进行分组: 5个一小组10个一中组50个一大组100个一个基本包或单元。给自己一个约定,比如背完一中组或一大组单词,嚼一粒口香糖…...

vs环境中编译osg以及osgQt

1、下载 OpenSceneGraph 获取源代码 您可以通过以下方式获取 OSG 源代码: 官网下载:https://github.com/openscenegraph/OpenSceneGraph/releases 使用 git 克隆: git clone https://github.com/openscenegraph/OpenSceneGraph.git 2、下载必要的第三方依赖库 依赖库 ht…...

C++ - 头文件基础(常用标准库头文件、自定义头文件、头文件引入方式、防止头文件重复包含机制)

一、头文件 在 C 中&#xff0c;头文件&#xff08;.h&#xff09;用于函数声明、类定义、宏定义等等 在 Visual Studio 中&#xff0c;头文件通常放在头文件目录中&#xff0c;头文件实现通常放在源文件目录中 二、常用标准库头文件 1、输入输出 <iostream> 标准输入…...

12款字重国外法国风格复古报纸日历设计衬线英文字体安装包 Claire Font Family

Claire 是一个带有坚固衬线的字体系列。该系列中的几种粗细字体非常适合设置大量连续文本&#xff1b;另一方面&#xff0c;极轻和极重的字体在显示应用中配合使用效果很好。Clair 中的字体具有垂直轴&#xff0c;其设计让人联想到当代报纸字体以及 Century 模型中的十九世纪晚…...

Java 类型转换和泛型原理(JVM 层面)

一、类型转换 概念解释&#xff1a; 编译类型&#xff1a;在编译时确定&#xff0c;保存在虚拟机栈的栈帧中的局部变量表中&#xff1b; 运行类型&#xff1a;在运行时确定&#xff0c;由保存在局部变量表中变量指向的堆中对象实例的类型决定&#xff08;存储在对象头中&…...

ffmpeg基础知识入门

文章目录 &#x1f4e6; 1. **容器&#xff08;Container&#xff09;**✅ 定义&#xff1a;✅ 举例&#xff1a;✅ 功能&#xff1a; &#x1f4f6; 2. **媒体流&#xff08;Stream&#xff09;**✅ 定义&#xff1a;✅ 举例&#xff1a;✅ 流和容器关系&#xff1a; &#x1…...

k8s 1.23升级1.24

0、简介 这里只用3台服务器来做一个简单的集群&#xff0c;当前版本是1.23.17目标升级到1.24.17 地址主机名192.168.160.40kuber-master-1192.168.160.41kuber-master-2192.168.160.42kuber-node-1 我这里设置的master2可调度pod&#xff0c;将master2的污点去掉 kubectl de…...

MIPI与DVP接口摄像头:深度解析与应用指南

1、MIPI 1.1 MIPI简介 MIPI是什么&#xff1f;MIPI&#xff1a;mobile industry processor interface移动行业处理器接口。它是一个由Intel、Motorola、Nokia、NXP、Samsung、ST&#xff08;意法半导体&#xff09;和TI&#xff08;德州仪器&#xff09;等公司发起的开放标准…...

liunx输入法

1安装fcitx5 sudo apt update sudo apt install fcitx fcitx-pinyin 2配置为默认输入法 设置-》系统-》区域和语言 点击系统弹出语言和支持选择键盘输入法系统 3设置设置 fcitx-configtool 如果没显示需要重启电脑 4配置fcitx 把搜狗输入法放到第一位&#xff08;点击下面…...

马吕斯定律(Malus‘s Law)

马吕斯定律&#xff08;Maluss Law&#xff09;详解 马吕斯定律是偏振光学中的基本定律&#xff0c;由法国物理学家**tienne-Louis Malus**于1809年发现&#xff0c;描述了**线偏振光**通过检偏器后的光强变化规律。 2. 实验验证 3. 数学推导 4. 关键应用 5. 特殊情况讨论 …...

大厂算法面试 7 天冲刺:第6天-树与图深度剖析——高频算法面试题 Java 实战

&#x1f9e0; 第6天&#xff1a;树与图深度剖析——高频算法面试题 & Java 实战 &#x1f4da; 一、核心知识概览 Overview 1. 树&#xff08;Tree&#xff09; 树是一种非线性数据结构&#xff0c;常见于面试中的二叉树&#xff08;Binary Tree&#xff09;、二叉搜索树…...

C语言编译和链接错题

一、错题重现 1.用在switch语句中的关键字不包含哪个&#xff1f;( ) A.continue B.break C.default D.case 2.下面代码的结果是&#xff1a;( ) A.3 B.4 C.随机值 D.5 3.下面那个不是转义字符&#xff1f; A.\n B.\060 C.\q D.\b 二、错因分析及思考 1.题目看…...

吴恩达深度学习复盘(7)一个简单训练示例

简介 本篇简单讲解简单的神经网络训练。通过回顾逻辑回归模型训练&#xff0c;了解神经网络训练的相关内容。比如训练步骤、损失函数、优化算法以及深度学习库的使用&#xff0c;了解训练过程中的相关概念。 例子 手写数字识别&#xff08;判断是 0 还是 1&#xff09;。这是…...

道路坑洼目标检测数据集-665-labelme

文章目录 1.介绍3.标签介绍4.标注工具5.数据集下载 1.介绍 目标&#xff1a;从道路图像中检测坑洼&#xff1b; 应用&#xff1a;检测道路地形和坑洼可实现平稳行驶&#xff0c;小型数据集常常用于学习和学术研究&#xff1b; 详细信息&#xff1a; 665 张图、1740个在坑洼处标…...

提升移动端用户体验:解决输入框被软键盘遮挡的有效方法

解决移动端输入框被软键盘覆盖的问题 在开发移动端网页时&#xff0c;如果页面包含输入框&#xff0c;则可能会遇到输入框被弹出的软键盘遮挡的问题。为了解决这个问题&#xff0c;我们需要理解两种常见的情况以及相应的解决策略。 浏览器未主动聚焦到输入框 现代浏览器和移…...

函数极限常见计算方法集锦

本文非常直接&#xff0c;如标题所见就是一个常见的计算方式极限方法的集锦。 所以内在逻辑性确实不强&#xff0c;主要通过例题的形式阐述。 添项减项 当题目出现了交错的形式便可以考虑添项减项。 一般而言我们会加一项交错项&#xff0c;减一项交错项。 例如出现 A B …...

Tomcat的部署

Tomcat 服务器是一个免费的开放源代码的Web 应用服务器&#xff0c;属于轻量级应用服务器&#xff0c;在中小型系统和 并发访问用户不是很多的场合下被普遍使用&#xff0c;Tomcat 具有处理HTML页面的功能&#xff0c;它还是一个Servlet和 JSP容器 官网:Apache Tomcat - Welco…...

Ubuntu(CentOS、Rockylinux等)快速进入深度学习pytorch环境

这里写自定义目录标题 安装进入系统&#xff08;如Ubuntu22.04&#xff09;安装anacondapip、conda换源pip换源conda换源 安装nvidia安装pytorch环境针对于wsl的优化 安装进入系统&#xff08;如Ubuntu22.04&#xff09; docker 、 wsl 、 双系统 、服务器系统 推荐 Ubuntu 20…...

AI 如何帮助我们提升自己,不被替代

在当今快速发展的时代&#xff0c;人工智能&#xff08;AI&#xff09;正逐渐渗透到生活的方方面面。许多人担心 AI 会取代人类的工作&#xff0c;然而&#xff0c;AI 更多的是作为一种强大的赋能工具&#xff0c;帮助我们提升自身能力&#xff0c;让我们在工作中更具竞争力。以…...

ROS2 多机时间同步(Chrony配置简明指南)

适用场景&#xff1a; 主机运行 ROS2 Humble&#xff08;发布 /scan 等&#xff09;&#xff0c;板子运行 ROS2 Foxy&#xff08;发布 /tf 等&#xff09;&#xff0c;两边通过 ROS_DOMAIN_ID 跨平台通讯。需要保证系统时间对齐&#xff0c;避免 TF 插值失败、建图抖动等问题。…...

C 语言排序算法:从基础到进阶的全面解析一、引言

一、引言 在 C 语言编程领域&#xff0c;排序算法是一项基础且核心的技能。无论是处理海量数据&#xff0c;还是优化程序性能&#xff0c;选择合适的排序算法都至关重要。本文将深入剖析 C 语言中常见的几种排序算法&#xff0c;包括冒泡排序、选择排序、插入排序、希尔排序、…...

蓝桥云客--团队赛

2.团队赛【算法赛】 - 蓝桥云课 问题描述 蓝桥杯最近推出了一项团队赛模式&#xff0c;要求三人组队参赛&#xff0c;并规定其中一人必须担任队长。队长的资格很简单&#xff1a;其程序设计能力值必须严格大于其他两名队友程序设计能力值的总和。 小蓝、小桥和小杯正在考虑报名…...

VBA第三十八期 VBA自贡分把表格图表生成PPT

上一节讲到把数据区域自动生成PPT&#xff0c;这一实例是把图表自动生成PPT。 Sub CopyA11ChartsToPresenta&#xff08;&#xff09; Dim PP As PowerPoint. Application Dim PPPres As PowerPoint. Presentation Dim PPSlide As PowerPoint. SlideDim i As Integer Shee…...

Linux字符驱动设备开发入门之框架搭建

声明 本博客所记录的关于正点原子i.MX6ULL开发板的学习笔记&#xff0c;&#xff08;内容参照正点原子I.MX6U嵌入式linux驱动开发指南&#xff0c;可在正点原子官方获取正点原子Linux开发板 — 正点原子资料下载中心 1.0.0 文档&#xff09;&#xff0c;旨在如实记录我在学校学…...

Nextjs15 实战 - React Notes之SidebarNoteList优化和Suspense的使用

current branch 对应如下文档 redis ioredis 本专栏内容均可在Github&#xff1a;notes_02 找到 完整项目使用技术栈&#xff1a; Nextjs15 MySQL Redis Auth Prisma i18n strapi Docker vercel 一、本节目标 实现笔记列表展开回收和 Suspense 的实践 二、修改根…...

第三十章:Python-NetworkX库:创建、操作与研究复杂网络

一、NetworkX库简介 NetworkX是一个强大的Python库&#xff0c;用于创建、操作和研究复杂网络&#xff08;图&#xff09;的结构、动态和功能。它支持多种类型的图&#xff0c;包括无向图、有向图、加权图和多重图&#xff0c;并提供了丰富的图论算法和可视化工具。资源绑定附…...

cpp自学 day19(多态)

一、基本概念 同一操作作用于不同的对象&#xff0c;产生不同的执行结果 &#x1f449; 就像「按F1键」&#xff1a;在Word弹出帮助文档&#xff0c;在PS弹出画笔设置&#xff0c;​同一个按键触发不同功能 &#xff08;1&#xff09;多态类型 类型实现方式绑定时机​静态多态…...