当前位置: 首页 > news >正文

图像数据增强教程:为目标检测任务准备数据

目录

一、简介

二、代码结构

三、环境要求

四、数据增强类

4.1 调整增强概率和参数

4.2 增强方法参数

五、数据增强主函数

六、主函数

效果展示

完整代码


一、简介

  在目标检测任务中,数据增强是一种关键技术,通过对原始图像应用多种变换来增加训练数据的多样性,从而提升模型的泛化能力。本教程将详细讲解一个基于 Python 和 OpenCV 的图像数据增强工具,专为目标检测任务设计。该工具支持旋转、平移、裁剪、翻转、亮度调整、噪声添加和 Cutout 等增强方法,并能自动调整边界框(Bounding Box)坐标。

  以下是对代码的功能、结构和使用方法的全面解析,适合有一定 Python 和 OpenCV 基础的读者。

二、代码结构

  代码主要由以下模块组成:

  显示图片函数:show_pic 用于可视化图像和边界框。

  数据增强类:DataAugmentForObjectDetection 包含多种增强方法。

  XML 解析工具类:ToolHelper 用于解析 XML 文件并保存增强结果。

  主函数:通过命令行参数配置路径并执行增强。

三、环境要求

运行代码需要以下库:

  • Python 3.x
  • OpenCV (cv2)
  • NumPy
  • SciKit-Image (skimage)
  • lxml
  • xml.etree.ElementTree (ET)

安装方法:

pip install opencv-python numpy scikit-image lxml

四、数据增强类

class DataAugmentForObjectDetection():def __init__(self, rotation_rate=0.5, max_rotation_angle=5,crop_rate=0.5, shift_rate=0.5, change_light_rate=0.5,add_noise_rate=0.5, flip_rate=0.5,cutout_rate=0.5, cut_out_length=50, cut_out_holes=1, cut_out_threshold=0.5,is_addNoise=False, is_changeLight=False, is_cutout=False, is_rotate_img_bbox=False,is_crop_img_bboxes=True, is_shift_pic_bboxes=False, is_filp_pic_bboxes=False)

在 DataAugmentForObjectDetection 类中,可以通过 is_xxx 参数控制是否启用某种增强方法。

示例:启用旋转和翻转:

dataAug = DataAugmentForObjectDetection(is_rotate_img_bbox=True,is_filp_pic_bboxes=True
)

4.1 调整增强概率和参数

每种增强方法都有对应的概率参数(xxx_rate,范围 0 到 1)和增强强度参数。例如:

旋转:启用旋转,设置旋转概率为 0.8,最大旋转角度为 10 度:

dataAug = DataAugmentForObjectDetection(is_rotate_img_bbox=True,rotation_rate=0.8,max_rotation_angle=10
)

翻转:启用翻转,设置翻转概率为 0.6:

dataAug = DataAugmentForObjectDetection(is_filp_pic_bboxes=True,flip_rate=0.6
)

4.2 增强方法参数

以下是部分增强方法的关键参数:

  • 旋转
    • rotation_rate:旋转概率。
    • max_rotation_angle:最大旋转角度(度)。
  • 裁剪
    • crop_rate:裁剪概率。
  • 平移
    • shift_rate:平移概率。
  • 亮度调整
    • change_light_rate:调整亮度概率。
  • 噪声
    • add_noise_rate:添加噪声概率。
  • Cutout
    • cutout_rate:Cutout 概率。
    • cut_out_length:挖空区域边长。
    • cut_out_holes:挖空区域数量。

五、数据增强主函数

def dataAugment(self, img, bboxes):change_num = 0while change_num < 1:if self.is_rotate_img_bbox and random.random() > self.rotation_rate:change_num += 1angle = random.uniform(-self.max_rotation_angle, self.max_rotation_angle)scale = random.uniform(0.7, 0.8)img, bboxes = self._rotate_img_bbox(img, bboxes, angle, scale)# 其他增强方法类似return img, bboxes

 随机应用一种或多种增强方法。通过随机数和概率参数决定增强类型,确保至少应用一种增强。

六、主函数

if __name__ == '__main__':need_aug_num = 1is_endwidth_dot = TruedataAug = DataAugmentForObjectDetection()toolhelper = ToolHelper()parser = argparse.ArgumentParser()parser.add_argument('--source_img_path', type=str, default="E:/AIrailway/100_raind/images/")parser.add_argument('--source_xml_path', type=str, default="E:/AIrailway/100_raind/voc_labels/")parser.add_argument('--save_img_path', type=str, default="E:/AIrailway/100_raind/images/images_crop/")parser.add_argument('--save_xml_path', type=str, default="E:/AIrailway/100_raind/images/voc_labels_crop/")args = parser.parse_args()

--source_img_path:源图像文件夹路径。

--source_xml_path:源 XML 文件夹路径。

--save_img_path:保存增强图像的文件夹路径。

--save_xml_path:保存增强 XML 的文件夹路径。

默认情况下,每张图像增强 1 次。你可以通过修改脚本中的 need_aug_num 变量调整增强次数,例如:

need_aug_num = 3  # 每张图像增强 3 次

效果展示

完整代码

# -*- coding=utf-8 -*-import time
import random
import copy
import cv2
import os
import math
import numpy as np
from skimage.util import random_noise
from lxml import etree, objectify
import xml.etree.ElementTree as ET
import argparse# 显示图片
def show_pic(img, bboxes=None):'''输入:img:图像arraybboxes:图像的所有boudning box list, 格式为[[x_min, y_min, x_max, y_max]....]names:每个box对应的名称'''for i in range(len(bboxes)):bbox = bboxes[i]x_min = bbox[0]y_min = bbox[1]x_max = bbox[2]y_max = bbox[3]cv2.rectangle(img, (int(x_min), int(y_min)), (int(x_max), int(y_max)), (0, 255, 0), 3)cv2.namedWindow('pic', 0)  # 1表示原图cv2.moveWindow('pic', 0, 0)cv2.resizeWindow('pic', 1200, 800)  # 可视化的图片大小cv2.imshow('pic', img)cv2.waitKey(0)cv2.destroyAllWindows()# 图像均为cv2读取
class DataAugmentForObjectDetection():def __init__(self, rotation_rate=0.5, max_rotation_angle=5,crop_rate=0.5, shift_rate=0.5, change_light_rate=0.5,add_noise_rate=0.5, flip_rate=0.5,cutout_rate=0.5, cut_out_length=50, cut_out_holes=1, cut_out_threshold=0.5,is_addNoise=False, is_changeLight=False, is_cutout=False, is_rotate_img_bbox=False,is_crop_img_bboxes=True, is_shift_pic_bboxes=False, is_filp_pic_bboxes=False):# 配置各个操作的属性self.rotation_rate = rotation_rateself.max_rotation_angle = max_rotation_angleself.crop_rate = crop_rateself.shift_rate = shift_rateself.change_light_rate = change_light_rateself.add_noise_rate = add_noise_rateself.flip_rate = flip_rateself.cutout_rate = cutout_rateself.cut_out_length = cut_out_lengthself.cut_out_holes = cut_out_holesself.cut_out_threshold = cut_out_threshold# 是否使用某种增强方式self.is_addNoise = is_addNoiseself.is_changeLight = is_changeLightself.is_cutout = is_cutoutself.is_rotate_img_bbox = is_rotate_img_bboxself.is_crop_img_bboxes = is_crop_img_bboxesself.is_shift_pic_bboxes = is_shift_pic_bboxesself.is_filp_pic_bboxes = is_filp_pic_bboxes# ----1.加噪声---- #def _addNoise(self, img):'''输入:img:图像array输出:加噪声后的图像array,由于输出的像素是在[0,1]之间,所以得乘以255'''# return cv2.GaussianBlur(img, (11, 11), 0)# return random_noise(img, mode='pepper', seed=int(time.time()), clip=True) * 255v = random.uniform(0, 0.2)return random_noise(img, mode='gaussian', mean=0, var=v) * 255# ---2.调整亮度--- #def _changeLight(self, img):# alpha = random.uniform(0.35, 1)alpha = random.uniform(0.3, 2)# alpha = random.uniform(0, 0.5)blank = np.zeros(img.shape, img.dtype)return cv2.addWeighted(img, alpha, blank, 1 - alpha, 0)# ---3.cutout--- #def _cutout(self, img, bboxes, length=100, n_holes=1, threshold=0.5):'''原版本:https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.pyRandomly mask out one or more patches from an image.Args:img : a 3D numpy array,(h,w,c)bboxes : 框的坐标n_holes (int): Number of patches to cut out of each image.length (int): The length (in pixels) of each square patch.'''def cal_iou(boxA, boxB):'''boxA, boxB为两个框,返回iouboxB为bouding box'''# determine the (x, y)-coordinates of the intersection rectanglexA = max(boxA[0], boxB[0])yA = max(boxA[1], boxB[1])xB = min(boxA[2], boxB[2])yB = min(boxA[3], boxB[3])if xB <= xA or yB <= yA:return 0.0# compute the area of intersection rectangleinterArea = (xB - xA + 1) * (yB - yA + 1)# compute the area of both the prediction and ground-truth# rectanglesboxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)iou = interArea / float(boxBArea)return iou# 得到h和wif img.ndim == 3:h, w, c = img.shapeelse:_, h, w, c = img.shapemask = np.ones((h, w, c), np.float32)for n in range(n_holes):chongdie = True  # 看切割的区域是否与box重叠太多while chongdie:y = np.random.randint(h)x = np.random.randint(w)y1 = np.clip(y - length // 2, 0,h)  # numpy.clip(a, a_min, a_max, out=None), clip这个函数将将数组中的元素限制在a_min, a_max之间,大于a_max的就使得它等于 a_max,小于a_min,的就使得它等于a_miny2 = np.clip(y + length // 2, 0, h)x1 = np.clip(x - length // 2, 0, w)x2 = np.clip(x + length // 2, 0, w)chongdie = Falsefor box in bboxes:if cal_iou([x1, y1, x2, y2], box) > threshold:chongdie = Truebreakmask[y1: y2, x1: x2, :] = 0.img = img * maskreturn img# ---4.旋转--- #def _rotate_img_bbox(self, img, bboxes, angle=5, scale=1.):'''参考:https://blog.csdn.net/u014540717/article/details/53301195crop_rate输入:img:图像array,(h,w,c)bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值angle:旋转角度scale:默认1输出:rot_img:旋转后的图像arrayrot_bboxes:旋转后的boundingbox坐标list'''# 旋转图像w = img.shape[1]h = img.shape[0]# 角度变弧度rangle = np.deg2rad(angle)  # angle in radians# now calculate new image width and heightnw = (abs(np.sin(rangle) * h) + abs(np.cos(rangle) * w)) * scalenh = (abs(np.cos(rangle) * h) + abs(np.sin(rangle) * w)) * scale# ask OpenCV for the rotation matrixrot_mat = cv2.getRotationMatrix2D((nw * 0.5, nh * 0.5), angle, scale)# calculate the move from the old center to the new center combined# with the rotationrot_move = np.dot(rot_mat, np.array([(nw - w) * 0.5, (nh - h) * 0.5, 0]))# the move only affects the translation, so update the translationrot_mat[0, 2] += rot_move[0]rot_mat[1, 2] += rot_move[1]# 仿射变换rot_img = cv2.warpAffine(img, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4)# 矫正bbox坐标# rot_mat是最终的旋转矩阵# 获取原始bbox的四个中点,然后将这四个点转换到旋转后的坐标系下rot_bboxes = list()for bbox in bboxes:xmin = bbox[0]ymin = bbox[1]xmax = bbox[2]ymax = bbox[3]point1 = np.dot(rot_mat, np.array([(xmin + xmax) / 2, ymin, 1]))point2 = np.dot(rot_mat, np.array([xmax, (ymin + ymax) / 2, 1]))point3 = np.dot(rot_mat, np.array([(xmin + xmax) / 2, ymax, 1]))point4 = np.dot(rot_mat, np.array([xmin, (ymin + ymax) / 2, 1]))# 合并np.arrayconcat = np.vstack((point1, point2, point3, point4))# 改变array类型concat = concat.astype(np.int32)# 得到旋转后的坐标rx, ry, rw, rh = cv2.boundingRect(concat)rx_min = rxry_min = ryrx_max = rx + rwry_max = ry + rh# 加入list中rot_bboxes.append([rx_min, ry_min, rx_max, ry_max])return rot_img, rot_bboxes# ---5.裁剪--- #def _crop_img_bboxes(self, img, bboxes):'''裁剪后的图片要包含所有的框输入:img:图像arraybboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值输出:crop_img:裁剪后的图像arraycrop_bboxes:裁剪后的bounding box的坐标list'''# 裁剪图像w = img.shape[1]h = img.shape[0]x_min = w  # 裁剪后的包含所有目标框的最小的框x_max = 0y_min = hy_max = 0for bbox in bboxes:x_min = min(x_min, bbox[0])y_min = min(y_min, bbox[1])x_max = max(x_max, bbox[2])y_max = max(y_max, bbox[3])d_to_left = x_min  # 包含所有目标框的最小框到左边的距离d_to_right = w - x_max  # 包含所有目标框的最小框到右边的距离d_to_top = y_min  # 包含所有目标框的最小框到顶端的距离d_to_bottom = h - y_max  # 包含所有目标框的最小框到底部的距离# 随机扩展这个最小框crop_x_min = int(x_min - random.uniform(0, d_to_left))crop_y_min = int(y_min - random.uniform(0, d_to_top))crop_x_max = int(x_max + random.uniform(0, d_to_right))crop_y_max = int(y_max + random.uniform(0, d_to_bottom))# 随机扩展这个最小框 , 防止别裁的太小# crop_x_min = int(x_min - random.uniform(d_to_left//2, d_to_left))# crop_y_min = int(y_min - random.uniform(d_to_top//2, d_to_top))# crop_x_max = int(x_max + random.uniform(d_to_right//2, d_to_right))# crop_y_max = int(y_max + random.uniform(d_to_bottom//2, d_to_bottom))# 确保不要越界crop_x_min = max(0, crop_x_min)crop_y_min = max(0, crop_y_min)crop_x_max = min(w, crop_x_max)crop_y_max = min(h, crop_y_max)crop_img = img[crop_y_min:crop_y_max, crop_x_min:crop_x_max]# 裁剪boundingbox# 裁剪后的boundingbox坐标计算crop_bboxes = list()for bbox in bboxes:crop_bboxes.append([bbox[0] - crop_x_min, bbox[1] - crop_y_min, bbox[2] - crop_x_min, bbox[3] - crop_y_min])return crop_img, crop_bboxes# ---6.平移--- #def _shift_pic_bboxes(self, img, bboxes):'''平移后的图片要包含所有的框输入:img:图像arraybboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值输出:shift_img:平移后的图像arrayshift_bboxes:平移后的bounding box的坐标list'''# 平移图像w = img.shape[1]h = img.shape[0]x_min = w  # 裁剪后的包含所有目标框的最小的框x_max = 0y_min = hy_max = 0for bbox in bboxes:x_min = min(x_min, bbox[0])y_min = min(y_min, bbox[1])x_max = max(x_max, bbox[2])y_max = max(y_max, bbox[3])d_to_left = x_min  # 包含所有目标框的最大左移动距离d_to_right = w - x_max  # 包含所有目标框的最大右移动距离d_to_top = y_min  # 包含所有目标框的最大上移动距离d_to_bottom = h - y_max  # 包含所有目标框的最大下移动距离x = random.uniform(-(d_to_left - 1) / 3, (d_to_right - 1) / 3)y = random.uniform(-(d_to_top - 1) / 3, (d_to_bottom - 1) / 3)M = np.float32([[1, 0, x], [0, 1, y]])  # x为向左或右移动的像素值,正为向右负为向左; y为向上或者向下移动的像素值,正为向下负为向上shift_img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))#  平移boundingboxshift_bboxes = list()for bbox in bboxes:shift_bboxes.append([bbox[0] + x, bbox[1] + y, bbox[2] + x, bbox[3] + y])return shift_img, shift_bboxes# ---7.镜像--- #def _filp_pic_bboxes(self, img, bboxes):'''平移后的图片要包含所有的框输入:img:图像arraybboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值输出:flip_img:平移后的图像arrayflip_bboxes:平移后的bounding box的坐标list'''# 翻转图像flip_img = copy.deepcopy(img)h, w, _ = img.shapesed = random.random()if 0 < sed < 0.33:  # 0.33的概率水平翻转,0.33的概率垂直翻转,0.33是对角反转flip_img = cv2.flip(flip_img, 0)  # _flip_xinver = 0elif 0.33 < sed < 0.66:flip_img = cv2.flip(flip_img, 1)  # _flip_yinver = 1else:flip_img = cv2.flip(flip_img, -1)  # flip_x_yinver = -1# 调整boundingboxflip_bboxes = list()for box in bboxes:x_min = box[0]y_min = box[1]x_max = box[2]y_max = box[3]if inver == 0:# 0:垂直翻转flip_bboxes.append([x_min, h - y_max, x_max, h - y_min])elif inver == 1:# 1:水平翻转flip_bboxes.append([w - x_max, y_min, w - x_min, y_max])elif inver == -1:# -1:水平垂直翻转flip_bboxes.append([w - x_max, h - y_max, w - x_min, h - y_min])return flip_img, flip_bboxes# 图像增强方法def dataAugment(self, img, bboxes):'''图像增强输入:img:图像arraybboxes:该图像的所有框坐标输出:img:增强后的图像bboxes:增强后图片对应的box'''change_num = 0  # 改变的次数# print('------')while change_num < 1:  # 默认至少有一种数据增强生效if self.is_rotate_img_bbox:if random.random() > self.rotation_rate:  # 旋转change_num += 1angle = random.uniform(-self.max_rotation_angle, self.max_rotation_angle)scale = random.uniform(0.7, 0.8)img, bboxes = self._rotate_img_bbox(img, bboxes, angle, scale)if self.is_shift_pic_bboxes:if random.random() < self.shift_rate:  # 平移change_num += 1img, bboxes = self._shift_pic_bboxes(img, bboxes)if self.is_changeLight:if random.random() > self.change_light_rate:  # 改变亮度change_num += 1img = self._changeLight(img)if self.is_addNoise:if random.random() < self.add_noise_rate:  # 加噪声change_num += 1img = self._addNoise(img)if self.is_cutout:if random.random() < self.cutout_rate:  # cutoutchange_num += 1img = self._cutout(img, bboxes, length=self.cut_out_length, n_holes=self.cut_out_holes,threshold=self.cut_out_threshold)if self.is_filp_pic_bboxes:if random.random() < self.flip_rate:  # 翻转change_num += 1img, bboxes = self._filp_pic_bboxes(img, bboxes)if self.is_crop_img_bboxes:if random.random() < self.crop_rate:  # 裁剪change_num += 1img, bboxes = self._crop_img_bboxes(img, bboxes)return img, bboxes# xml解析工具
class ToolHelper():# 从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]def parse_xml(self, path):'''输入:xml_path: xml的文件路径输出:从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]'''tree = ET.parse(path)root = tree.getroot()objs = root.findall('object')coords = list()for ix, obj in enumerate(objs):name = obj.find('name').textbox = obj.find('bndbox')x_min = int(box[0].text)y_min = int(box[1].text)x_max = int(box[2].text)y_max = int(box[3].text)coords.append([x_min, y_min, x_max, y_max, name])return coords# 保存图片结果def save_img(self, file_name, save_folder, img):cv2.imwrite(os.path.join(save_folder, file_name), img)# 保持xml结果def save_xml(self, file_name, save_folder, img_info, height, width, channel, bboxs_info):''':param file_name:文件名:param save_folder:#保存的xml文件的结果:param height:图片的信息:param width:图片的宽度:param channel:通道:return:'''folder_name, img_name = img_info  # 得到图片的信息E = objectify.ElementMaker(annotate=False)anno_tree = E.annotation(E.folder(folder_name),E.filename(img_name),E.path(os.path.join(folder_name, img_name)),E.source(E.database('Unknown'),),E.size(E.width(width),E.height(height),E.depth(channel)),E.segmented(0),)labels, bboxs = bboxs_info  # 得到边框和标签信息for label, box in zip(labels, bboxs):anno_tree.append(E.object(E.name(label),E.pose('Unspecified'),E.truncated('0'),E.difficult('0'),E.bndbox(E.xmin(box[0]),E.ymin(box[1]),E.xmax(box[2]),E.ymax(box[3]))))etree.ElementTree(anno_tree).write(os.path.join(save_folder, file_name), pretty_print=True)if __name__ == '__main__':need_aug_num = 1  # 每张图片需要增强的次数is_endwidth_dot = True  # 文件是否以.jpg或者png结尾dataAug = DataAugmentForObjectDetection()  # 数据增强工具类toolhelper = ToolHelper()  # 工具# 获取相关参数parser = argparse.ArgumentParser()parser.add_argument('--source_img_path', type=str, default="E:/AIrailway/100_raind/images/")parser.add_argument('--source_xml_path', type=str, default="E:/AIrailway/100_raind/voc_labels/")parser.add_argument('--save_img_path', type=str, default="E:/AIrailway/100_raind/images/images_crop/")parser.add_argument('--save_xml_path', type=str, default="E:/AIrailway/100_raind/images/voc_labels_crop/")args = parser.parse_args()source_img_path = args.source_img_path  # 图片原始位置source_xml_path = args.source_xml_path  # xml的原始位置save_img_path = args.save_img_path  # 图片增强结果保存文件save_xml_path = args.save_xml_path  # xml增强结果保存文件# 如果保存文件夹不存在就创建if not os.path.exists(save_img_path):os.mkdir(save_img_path)if not os.path.exists(save_xml_path):os.mkdir(save_xml_path)for parent, _, files in os.walk(source_img_path):files.sort()for file in files:cnt = 0pic_path = os.path.join(parent, file)xml_path = os.path.join(source_xml_path, file[:-4] + '.xml')values = toolhelper.parse_xml(xml_path)  # 解析得到box信息,格式为[[x_min,y_min,x_max,y_max,name]]coords = [v[:4] for v in values]  # 得到框labels = [v[-1] for v in values]  # 对象的标签# 如果图片是有后缀的if is_endwidth_dot:# 找到文件的最后名字dot_index = file.rfind('.')_file_prefix = file[:dot_index]  # 文件名的前缀_file_suffix = file[dot_index:]  # 文件名的后缀img = cv2.imread(pic_path)# show_pic(img, coords)  # 显示原图while cnt < need_aug_num:  # 继续增强auged_img, auged_bboxes = dataAug.dataAugment(img, coords)auged_bboxes_int = np.array(auged_bboxes).astype(np.int32)height, width, channel = auged_img.shape  # 得到图片的属性img_name = '{}_{}{}'.format(_file_prefix, cnt + 1, _file_suffix)  # 图片保存的信息toolhelper.save_img(img_name, save_img_path,auged_img)  # 保存增强图片toolhelper.save_xml('{}_{}.xml'.format(_file_prefix, cnt + 1),save_xml_path, (save_img_path, img_name), height, width, channel,(labels, auged_bboxes_int))  # 保存xml文件# show_pic(auged_img, auged_bboxes)  # 强化后的图print(img_name)cnt += 1  # 继续增强下一张

 

    相关文章:

    图像数据增强教程:为目标检测任务准备数据

    目录 一、简介 二、代码结构 三、环境要求 四、数据增强类 4.1 调整增强概率和参数 4.2 增强方法参数 五、数据增强主函数 六、主函数 效果展示 完整代码 一、简介 在目标检测任务中&#xff0c;数据增强是一种关键技术&#xff0c;通过对原始图像应用多种变换来增加…...

    Unity编辑器功能及拓展(2) —Gizmos编辑器绘制功能

    Unity中的Gizmos功能是用于在场景视图中绘制辅助图形或图标的工具&#xff0c;帮助开发者在编辑模式下直观调试和可视化游戏对象的位置、范围、方向等信息。 一.定义概述 Gizomsd 概述 Gizoms是Unity提供的一个API&#xff0c;或者叫做一个工具类&#xff0c;包含一系列静态…...

    HarmonyOS WebSocket全场景应用开发深度解析

    注&#xff1a;适用版本&#xff08;Harmony OS NEXT / 5.0 / API 12 &#xff09; 一、最终效果预览 二、基础代码结构 Entry Component struct ChatApp {State messages: Message[] [] // 所有聊天记录State inputText: string "" // 输入框内容State isCon…...

    JCRQ1河马算法+消融实验!HO-CNN-LSTM-Attention系列四模型多变量时序预测

    JCRQ1河马算法消融实验&#xff01;HO-CNN-LSTM-Attention系列四模型多变量时序预测 目录 JCRQ1河马算法消融实验&#xff01;HO-CNN-LSTM-Attention系列四模型多变量时序预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 基于HO-CNN-LSTM-Attention、CNN-LSTM-Attent…...

    ubuntu 安装 postgresql

    在 Ubuntu 系统中安装 PostgreSQL 的步骤如下&#xff1a; 步骤 1&#xff1a;更新软件包列表 sudo apt update步骤 2&#xff1a;安装 PostgreSQL Ubuntu 默认仓库包含 PostgreSQL&#xff0c;直接安装&#xff1a; sudo apt install postgresql postgresql-contrib -ypost…...

    深入实践:基于WebSocket的全球化金融数据实时对接方案。 马来西亚、印度、美国金融数据API

    深入实践&#xff1a;基于WebSocket的全球化金融数据实时对接方案 在全球金融市场中&#xff0c;实时数据的高效获取与处理是量化交易、行情监控等场景的核心能力。本文将以技术实践为核心&#xff0c;详细解析如何通过WebSocket技术实现美国、印度、马来西亚等多国金融数据&a…...

    深度学习处理时间序列(5)

    Keras中的循环层 上面的NumPy简单实现对应一个实际的Keras层—SimpleRNN层。不过&#xff0c;二者有一点小区别&#xff1a;SimpleRNN层能够像其他Keras层一样处理序列批量&#xff0c;而不是像NumPy示例中的那样只能处理单个序列。也就是说&#xff0c;它接收形状为(batch_si…...

    Linux: 进程间通信

    目录 一 前言 二 进程间通信目的 三 进程间通信方法 四 管道通信 1. 进程如何通信 2.管道概念 2.1匿名管道 2.2 匿名管道对多个进程的控制 2.3 命名管道 2.4 命名管道原理 一 前言 在我们学习进程的时候&#xff0c;我们知道正是因为程序地址空间的存在&#xff…...

    为什么idea显示数据库连接成功,但操作数据库时,两边数据不同步

    今日份小bug又叕又来了&#xff01; 一、原因分析 1. 未提交的事务 - IDEA 中执行了修改操作但未提交事务 - 其他客户端有未提交的修改 2. 连接隔离级别问题 - 不同连接使用了不同的事务隔离级别 - 读未提交(READ UNCOMMITTED)导致看到未提交数据 3. 多客户端同时操作…...

    VMware中新建Ubuntu虚拟机系统,并安装Anaconda

    详细介绍 Ubuntu18.04版本的安装Anaconda的安装 Ubuntu20.04版本的安装给出其他参考 安装Ubuntu18.04 新建虚拟机 如果不习惯图文形式的&#xff0c;也可参考该up主的环境安装分享&#xff0c;和我如下记录有些不同&#xff0c;但不影响&#xff0c;大部分均一致。 …...

    LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板

    LangChain 基础系列之 Prompt 工程详解&#xff1a;从设计原理到实战模板 一、揭开 LangChain 的 “灵魂引擎”&#xff1a;Prompt 的核心作用 在 LangChain 构建的智能应用中&#xff0c;Prompt&#xff08;提示词&#xff09;堪称驱动大模型的 “神经中枢”。这个承载着任务…...

    项目如何安装本地tgz包并配置局部registry

    一、判断包来源是否正确 1. 检查url curl <registry_url>2. 查看包是否存在 npm view <package_name> --registry<registry_url>二、局部registry配置步骤&#xff1a; 1. 全局配置 如果你希望对所有项目生效&#xff0c;可以将这行配置添加到全局.npmr…...

    unity客户端面试高频2(自用)

    标题是我 1.构造函数为什么不能为虚函数&#xff1f;析构函数为什么要虚函数&#xff1f;2.C智能指针3.左值和右值完美转发 4.深拷贝与浅拷贝5.malloc VS new 你们知道吗 1.构造函数为什么不能为虚函数&#xff1f;析构函数为什么要虚函数&#xff1f; 构造函数不能定义为虚函…...

    【12】Ajax的原理和解析

    一、前言 二、什么是Ajax 三、Ajax的基本原理 3.1 发送请求 3.2 解析内容 3.3 渲染网页 3.4 总结 四、Ajax 分析 五、过滤请求-筛选所有Ajax请求 一、前言 当我们在用 requests 抓取页面的时候&#xff0c;得到的结果可能会和在浏览器中看到的不一样&a…...

    深度学习在测距模型中的应用

    一、单目视觉测距和双目视觉测距简介 1、单目视觉测距 模型&#xff1a;深度估计&#xff08;Depth Estimation&#xff09; 原理&#xff1a;通过深度学习模型&#xff08;如MonoDepth2、MiDaS&#xff09;或传统的计算机视觉方法&#xff08;如单目相机结合物体大小推断&am…...

    Python np.vectorize函数介绍

    np.vectorize 是 NumPy 提供的一个 用于将标量函数(scalar function)向量化 的工具,使其可以作用于 NumPy 数组,类似于 通用函数(ufunc) 的行为。 1️⃣ np.vectorize 语法 numpy.vectorize(pyfunc, otypes=None, signature=None, excluded=None, cache=False)📌 参数…...

    HarmonyOS NEXT状态管理实践

    在HarmonyOS NEXT开发中&#xff0c;状态管理是构建高效、响应式应用的核心。本文深入探讨状态管理的最佳实践&#xff0c;结合代码示例与案例分析&#xff0c;帮助开发者掌握这一关键技能。 一、状态管理装饰器的合理使用 HarmonyOS NEXT提供多种状态管理装饰器&#xff0c;…...

    广告牌变“高空炸弹“?智能预警终端筑起安全防线!

    近年来&#xff0c;随着城市发展步伐加快&#xff0c;广告牌已成为城市形象的重要载体。但与此同时&#xff0c;因设计缺陷、违规搭建、维护缺失等问题导致的广告牌坠落事故频发&#xff0c;给市民生命财产安全带来严重威胁。据不完全统计&#xff0c;我国2000万块户外广告牌中…...

    scss预处理器对比css的优点以及基本的使用

    本文主要在vue中演示&#xff0c;scss的基本使用。安装命令 npm install sass sass-loader --save-dev 变量 SCSS 支持变量&#xff0c;可将常用的值&#xff08;如颜色、字体大小、间距等&#xff09;定义为变量&#xff0c;方便重复使用和统一修改。 <template><…...

    Redis 单线程

    Redis 读写是否是单线程&#xff1f; 核心数据操作仍然是单线程 Redis 主要采用 单线程执行命令&#xff0c;这是因为&#xff1a; 避免加锁&#xff1a;如果多个线程并发修改数据&#xff0c;就需要加锁&#xff0c;而 Redis 采用单线程保证操作的原子性&#xff0c;无需加…...

    Node.js 下载安装及环境配置教程、卸载删除环境配置超详细步骤(附图文讲解!) 从零基础入门到精通,看完这一篇就够了

    Node.js 安装 一、进入官网地址下载安装包 Node.js — Download Node.js 选择对应你系统的Node.js版本&#xff0c;这里我选择的是Windows系统、64位 Tips&#xff1a;如果想下载指定版本&#xff0c;点击【以往的版本】&#xff0c;即可选择自己想要的版本下载 二、安装程序…...

    第十五章:Python的Pandas库详解及常见用法

    在数据分析领域&#xff0c;Python的Pandas库是一个不可或缺的工具。它提供了高效的数据结构和数据分析工具&#xff0c;使得数据处理变得简单而直观。本文将详细介绍Pandas库的基本功能、常见用法&#xff0c;并通过示例代码演示如何使用Pandas进行数据处理。最后&#xff0c;…...

    Windows下VSCode的安装

    前言 VSCode的安装看起来平平无奇&#xff0c;但也不是轻轻松松的。笔者将最新的Windows下安装VSCode&#xff0c;以及运行最简单的C程序的过程记录下来&#xff0c;供后续的自己和大家参考。 一、官网下载安装包 Visual Studio Code - Code Editing. Redefined 二、安装 直接…...

    PgDog:一个PostgreSQL分布式集群中间件

    PgDog 是一个实现了 PostgreSQL 分片、连接池以及负载均衡功能的中间。PgDog 使用 Rust 语言编写&#xff0c;支持跨平台&#xff08;Linux、Mac OS、Windows&#xff09;&#xff0c;具有高性能和高可靠性&#xff0c;可以在不需要修改任何应用程序的前提下实现 PostgreSQL 数…...

    基于yolov11的棉花品种分类检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面

    【算法介绍】 基于YOLOv11的棉花品种分类检测系统是一种高效、准确的农作物品种识别工具。该系统利用YOLOv11深度学习模型&#xff0c;能够实现对棉花主要品种&#xff0c;包括树棉&#xff08;G. arboreum&#xff09;、海岛棉&#xff08;G. barbadense&#xff09;、草棉&a…...

    Web网页内嵌福昕OFD版式办公套件实现在线预览编辑PDF、OFD文档

    PDF&#xff0c;即Portable Document Format&#xff0c;用于以一种独立于应用程序、硬件、操作系统的方式共享和查看文档&#xff1b;OFD&#xff0c;即Office Open Document Format for Document&#xff0c;是一种在政府公文和法律文件等领域广泛应用的电子文件格式&#xf…...

    UE4学习笔记 FPS游戏制作32 主菜单,暂停游戏,显示鼠标指针

    文章目录 一主菜单搭建UI显示主菜单时&#xff0c;暂停游戏&#xff0c;显示鼠标绑定按钮 二 打开主菜单 一主菜单 搭建UI 添加一个MainUi的控件 添加一个返回游戏的按钮和一个退出游戏的按钮 修改一下样式&#xff0c;放中间 显示主菜单时&#xff0c;暂停游戏&#xff0…...

    多线程 - 线程安全引入

    写一个代码&#xff0c;让主线程创建一个新的线程&#xff0c;由新的线程负责完成一系列的运算&#xff08;比如&#xff1a;1 2 3 ... 1000&#xff09;&#xff0c;再由主线程负责获取到最终结果。 但打印结果为 result 0&#xff0c;略微思考&#xff0c;明白了要让 t 线…...

    Angular项目改端口号

    在 Angular 项目中修改开发服务器的端口号&#xff08;默认是 4200&#xff09;&#xff0c;可以通过以下几种方式实现&#xff1a; 方法 1&#xff1a;通过 ng serve 命令行参数 直接在运行 ng serve 时指定端口号&#xff1a; ng serve --port 4300效果&#xff1a;开发服务…...

    论文内可解释性分析

    目录 3 TEPM(Text-Enhanced Prototype Module)3.1 为什么要进行文本增强?(动机)3.2 为什么要使用 Concat(Fv, T) 和 Repeat(T) + Fv?3.3 为什么 Q=F_C,K=V=F_R ?(第一层注意力)3.4 为什么要进行两层注意力?3.5 为什么最终结果会更好?**3.6 面试官可能问的挑战性问题*…...

    《C++11:通过thread类编写C++多线程程序》

    关于多线程的概念与理解&#xff0c;可以先了解Linux下的底层线程。当对底层线程有了一定程度理解以后&#xff0c;再学习语言级别的多线程编程就轻而易举了。 【Linux】多线程 -&#xff1e; 从线程概念到线程控制 【Linux】多线程 -&#xff1e; 线程互斥与死锁 语言级别的…...

    @Resource 与 @Autowired:Spring 中的依赖注入注解大比拼

    在 Spring 框架中&#xff0c;依赖注入&#xff08;DI&#xff09;是核心功能之一&#xff0c;它允许开发者将组件之间的依赖关系交给 Spring 容器管理&#xff0c;从而实现解耦和更灵活的代码结构。Resource 和 Autowired 是两种常用的依赖注入注解&#xff0c;它们虽然功能相…...

    大模型学习:从零到一实现一个BERT微调

    目录 一、准备阶段 1.导入模块 2.指定使用的是GPU还是CPU 3.加载数据集 二、对数据添加词元和分词 1.根据BERT的预训练&#xff0c;我们要将一个句子的句头添加[CLS]句尾添加[SEP] 2.激活BERT词元分析器 3.填充句子为固定长度 代码解释&#xff1a; 三、数据处理 1.…...

    Git和GitCode使用(从Git安装到上传项目一条龙)

    第一步 菜鸟教程-Git教程 点击上方链接&#xff0c;完成Git的安装&#xff0c;并了解Git 工作流程&#xff0c;知道Git 工作区、暂存区和版本库的区别 第二步 GitCode官方帮助文档-SSH 公钥管理 点击上方链接&#xff0c;完成SSH公钥设置 第三步&#xff08;GitCode的官方引…...

    NodeJs之http模块

    一、概念&#xff1a; 1、协议&#xff1a;双方必须共同遵从的一组约定。 Hypertext Transfer Protocol&#xff1a;HTTP&#xff0c;超文本传输协议 2、请求&#xff1a; ① 请求报文的组成&#xff1a; 请求行请求头空行请求体 ② 请求行&#xff1a; 请求方法URLHTTP版本…...

    【深度学习与实战】2.3、线性回归模型与梯度下降法先导案例--最小二乘法(向量形式求解)

    为了求解损失函数 对 的导数&#xff0c;并利用最小二乘法向量形式求解 的值‌ 这是‌线性回归‌的平方误差损失函数&#xff0c;目标是最小化预测值 与真实值 之间的差距。 ‌损失函数‌&#xff1a; 考虑多个样本的情况&#xff0c;损失函数为所有样本的平方误差之和&a…...

    在word中使用zotero添加参考文献并附带超链接

    一、引言 在写大论文时&#xff0c;为了避免文中引用与文末参考文献频繁对照、修改文中引用顺序/引用文献时手动维护参考文献耗易出错&#xff0c;拟在 word 中使用 zotero 插入参考文献&#xff0c;并为每个参考文献附加超链接&#xff0c;实现交互式阅读。 版本&#xff1a…...

    在Linux系统中将html保存为PNG图片

    1 前言 之前使用Pyecharts库在Windows系统中生成图表并转换为PNG格式图片&#xff08;传送门&#xff09;&#xff0c;现将代码放于Linux服务器上运行&#xff0c;结果发现错误&#xff0c;生成html文件之后无法保存图片。 2 原理 基于Selenium库的保存方案&#xff0c;其原…...

    presto任务优化参数

    presto引擎业内通常用它来做即席查询&#xff0c;它基于内存计算效率确实快&#xff0c;不过它自身的任务优化参数比较杂&#xff0c;不同类型的catalog能用的参数不完全一样&#xff0c;在官网上倒是可以看到相关资料&#xff0c;配置文件中写的见https://prestodb.io/docs/cu…...

    uniapp + Axios + 小程序封装网络请求

    前言 小程序自带的网络请求使用起来比较麻烦&#xff0c;不便于管理&#xff0c;就需要封装网络请求&#xff0c;减少繁琐步骤&#xff0c;封装最终效果&#xff0c;根据类别将网络请求封装在文件中&#xff0c;使用得时候调用文件名名称加文件中得自定义名称&#xff0c;就可…...

    《网络管理》实践环节01:OpenEuler22.03sp4安装zabbix6.2

    兰生幽谷&#xff0c;不为莫服而不芳&#xff1b; 君子行义&#xff0c;不为莫知而止休。 1 环境 openEuler 22.03 LTSsp4PHP 8.0Apache 2Mysql 8.0zabbix6.2.4 表1-1 Zabbix网络规划&#xff08;用你们自己的特征网段规划&#xff09; 主机名 IP 功能 备注 zbx6svr 19…...

    4.6js面向对象

    js原型继承 JavaScript 的原型链继承是其核心特性之一&#xff0c;理解原型链对于掌握 JavaScript 的面向对象编程至关重要。 1. ​原型&#xff08;Prototype&#xff09;基础 在 JavaScript 中&#xff0c;每个对象都有一个内部属性 [[Prototype]]&#xff08;可以通过 __p…...

    【云服务器】在Linux CentOS 7上快速搭建我的世界 Minecraft Fabric 服务器搭建,Fabric 模组详细搭建教程

    【云服务器】在Linux CentOS 7上快速搭建我的世界 Minecraft Fabric 服务器搭建&#xff0c;Fabric 模组详细搭建教程 一、 服务器介绍二、安装 JDK 21三、搭建 Minecraft 服务端四、本地测试连接五、如何添加模组&#xff08;mods&#xff09;六、添加服务&#xff0c;并设置开…...

    SQL SELECT DISTINCT 语句详解:精准去重的艺术

    SQL SELECT DISTINCT 语句详解&#xff1a;精准去重的艺术 一、为什么需要数据去重&#xff1f; 在日常数据库操作中&#xff0c;我们经常会遇到这样的场景&#xff1a;查询客户表时发现重复的邮箱地址&#xff0c;统计销售数据时出现冗余的订单记录&#xff0c;分析用户行为…...

    从ChatGPT到AutoGPT——AI Agent的范式迁移

    一、AI Agent的范式迁移 1. ChatGPT的局限性与Agent化需求 单轮对话的“工具属性” vs. 多轮复杂任务的“自主性” ChatGPT 作为强大的生成式AI,虽然能够进行连贯对话,但本质上仍然是“工具型”AI,依赖用户提供明确的指令,而无法自主规划和执行任务。 人类介入成本过高:提…...

    SQL EXISTS 与 NOT EXISTS 运算符

    EXISTS 和 NOT EXISTS 是 SQL 中的逻辑运算符&#xff0c;用于检查子查询是否返回任何行。它们通常用在 WHERE 子句中&#xff0c;与子查询一起使用。 EXISTS 运算符 EXISTS 运算符用于检查子查询是否返回至少一行数据。如果子查询返回任何行&#xff0c;EXISTS 返回 TRUE&…...

    AGI 的概念、意义与未来展望

    随着人工智能技术的飞速发展&#xff0c;我们已经见证了在图像识别、自然语言处理等特定领域取得的巨大突破。然而&#xff0c;这些成就都属于弱人工智能&#xff08;Narrow AI&#xff09;的范畴&#xff0c;它们只能在预设的任务范围内高效工作。 人们对于一种拥有更广泛、更…...

    基于Java与Go的下一代DDoS防御体系构建实战

    引言:混合云时代的攻防对抗新格局 2024年某金融平台遭遇峰值2.3Tbps的IPv6混合攻击,传统WAF方案在新型AI驱动攻击面前全面失效。本文将以Java与Go为技术栈,揭示如何构建具备智能决策能力的防御系统。 一、攻击防御技术矩阵重构 1.1 混合攻击特征识别 攻击类型Java检测方案…...

    FPGA调试笔记

    XILINX SSTL属性电平报错 错误如下&#xff1a; [DRC BIVRU-1] Bank IO standard Vref utilization: Bank 33 contains ports that use a reference voltage. In order to use such standards in a bank that is not configured to use INTERNAL_VREF, the banks VREF pin mu…...

    Axure项目实战:智慧城市APP(七)我的、消息(显示与隐藏交互)

    亲爱的小伙伴&#xff0c;在您浏览之前&#xff0c;烦请关注一下&#xff0c;在此深表感谢&#xff01; 课程主题&#xff1a;智慧城市APP 主要内容&#xff1a;我的、消息、活动模块页面 应用场景&#xff1a;消息页设计、我的页面设计以及活动页面设计 案例展示&#xff…...