【Linux】————(日志、线程池及死锁问题)
作者主页: 作者主页
本篇博客专栏:Linux
创作时间 :2024年11月29日
日志
关于日志,首先我们来说一下日志的作用,
作用:
- 问题追踪:通过日志不仅仅包括我们程序的一些bug,也可以在安装配置时,通过日志可以发现问题。
- 状态监控:通过实时分析日志,可以监控系统的运行状态,做到早发现问题、早处理问题。
- 安全审计:审计主要体现在安全上,通过对日志进行分析,可以发现是否存在非授权的操作。
日志并不是越多越详细就越好。在分析运行日志,查找问题时,我们经常遇到该出现的日志没有,无用的日志一大堆,或者有效的日志被大量无意义的日志信息淹没,查找起来非常困难。那么什么时候输出日志呢?以下列出了一些常见的需要输出日志的情况:
常见的需要输出日志的情况:
- 1. 系统启动参数、环境变量系统启动的参数、配置、环境变量、System.Properties等信息对于软件的正常运行至关重要,这些信息的输出有助于安装配置人员通过日志快速定位问题,所以程序有必要在启动过程中把使用到的关键参数、变量在日志中输出出来。在输出时需要注意,不是一股脑的全部输出,而是将软件运行涉及到的配置信息输出出来。比如,如果软件对jvm的内存参数比较敏感,对最低配置有要求,那么就需要在日志中将-Xms -Xmx -XX:PermSize这几个参数的值输出出来。
- 2. 异常捕获处在捕获异常处输出日志,大家在基本都能做到,唯一需要注意的是怎么输出一个简单明了的日志信息。这在后面的问题问题中有进一步说明。
- 3. 函数获得期望之外的结果时一个函数,尤其是供外部系统或远程调用的函数,通常都会有一个期望的结果,但如果内部系统或输出参数发生错误时,函数将无法返回期望的正确结果,此时就需要记录日志,日志的基本通常是warn。需要特别说明的是,这里的期望之外的结果不是说没有返回就不需要记录日志了,也不是说返回false就需要记录日志。比如函数:isXXXXX(),无论返回true、false记录日志都不是必须的,但是如果系统内部无法判断应该返回true还是false时,就需要记录日志,并且日志的级别应该至少是warn。
- 4. 关键操作关键操作的日志一般是INFO级别,如果数量、频度很高,可以考虑使用DEBUG级别。以下是一些关键操作的举例,实际的关键操作肯定不止这么多。
- 5.删除:删除一个文件、删除一组重要数据库记录……
- 5.添加:和外系统交互时,收到了一个文件、收到了一个任务……
- 7.处理:开始、结束一条任务……
对于日志我们就说这些,下面我们看一下日志的代码:
#pragma once#include <iostream> #include <cstdio> #include <string> #include <cstring> #include <unistd.h> #include <fstream> #include <sstream> #include <filesystem> //c++17 #include <memory> #include <time.h> #include "Mutex.hpp"namespace LogModule {using namespace LockModule;std::string Currtime(){time_t time_stamp = ::time(nullptr);struct tm curr;localtime_r(&time_stamp, &curr);std::string buffer;buffer.resize(100); // 预留足够空间,可根据实际情况调整大小std::snprintf(&buffer[0], buffer.size(), "%4d-%02d-%02d %02d:%02d:%02d",curr.tm_year + 1900,curr.tm_mon + 1,curr.tm_mday,curr.tm_hour,curr.tm_min,curr.tm_sec);buffer.resize(std::strlen(&buffer[0])); // 调整大小为实际字符串长度return buffer;}// 构成:1.构建日志字符串2.刷新落盘(screen,file)// 日志文件的默认路径和文件名// 2.日志等级enum class LogLevel{DEBUG = 1,INFO, // 正常WARNING,ERROR,FATAL // 致命的};std::string Level2String(LogLevel level){switch (level){case LogLevel::DEBUG:return "DEBUG";break;case LogLevel::ERROR:return "ERROR";break;case LogLevel::FATAL:return "FATAL";break;case LogLevel::INFO:return "INFO";break;case LogLevel::WARNING:return "WARNING";break;default:return "";}}const std::string defaultlogpath = "./log/";const std::string defaultlogname = "log.txt";// 3.刷新策略class LogStrategy{public:virtual ~LogStrategy() = default;virtual void SyncLog(const std::string &message) = 0;private:};// 3.1控制台策略class ConsoleLogStrategy : public LogStrategy // 继承一下{public:ConsoleLogStrategy(){}~ConsoleLogStrategy(){}void SyncLog(const std::string &message){LockGuard lockguard(_lock); // 保证刷新策略的安全std::cout << message << std::endl;}private:Mutex _lock; // 锁};// 3.2 文件级策略class FileLogStrategy : public LogStrategy{public:FileLogStrategy(const std::string logpath = defaultlogpath, const std::string logname = defaultlogname): _logpath(logpath),_logname(logname){LockGuard lockguard(_lock);if (std::filesystem::exists(_logpath))return;try{std::filesystem::create_directories(_logpath);}catch (const std::filesystem::filesystem_error &e){std::cerr << e.what() << "\n";}}~FileLogStrategy(){}void SyncLog(const std::string &message){std::string log = _logpath + _logname;std::ofstream out(log, std::ios::app); // 日志写入,一定是追加的if (!out.is_open()){return;}out << message << "\n";out.close();}private:std::string _logpath;std::string _logname;Mutex _lock;};// 日志类,构建日志字符串,根据策略进行刷新。class Logger{public:Logger(){// 默认采用ConsoleLogStrategy_strategy = std::make_shared<ConsoleLogStrategy>();}void EnableConsoleLog(){_strategy = std::make_shared<ConsoleLogStrategy>();}void EnableFileLog(){_strategy = std::make_shared<FileLogStrategy>();}~Logger(){}// 一条完整的信息:[2024-8-09 12:32:22] [DEBUG]class LogMessage{public:LogMessage(LogLevel level, const std::string &filename, int line, Logger &logger): _currtime(Currtime()),_level(level),_pid(getpid()),_filename(filename),_line(line),_logger(logger){std::stringstream ssbuffer;ssbuffer << "[" << _currtime << "] "<< "[" << Level2String(_level) << "] " << "[" << _pid << "] "<< "[" << _filename << "] "<< "[" << _line << "] ";_loginfo = ssbuffer.str();}template <typename T>LogMessage &operator<<(const T &info){std::stringstream ss;ss << info;_loginfo += ss.str();return *this;}~LogMessage(){if (_logger._strategy){_logger._strategy->SyncLog(_loginfo);}}private:std::string _currtime; // 当前日志时间吗,需要可读性,所以不要时间戳LogLevel _level; // 日志等级pid_t _pid; // 进程pidstd::string _filename; // 源文件名称uint32_t _line; // 日治所在的行号,32位的无符号整数Logger &_logger; // 负责根据不同的策略进行刷新std::string _loginfo; // 一条完整的日志记录};// 就是要拷贝LogMessage operator()(LogLevel level, const std::string &filename, int line){return LogMessage(level, filename, line, *this);}private:std::shared_ptr<LogStrategy> _strategy; // 日志刷新的策略方案};Logger logger;#define LOG(Level) logger(Level, __FILE__, __LINE__) #define ENABLE_CONSOLE_LOG() logger.EnableConsoleLog() #define ENABLE_FILE_LOG() logger.EnableFileLog() }
基于环形队列的生产消费模型
环形队列采用数组模拟,用模运算来模拟环状特性
环形结构起始状态和结束状态都是一样的,不好判断为空或者为满,所以可以通过加计数器或者标记位来判断满或者空。另外也可以预留一个空的位置,作为满的状态
但是我们现在有信号量这个计数器,就很简单的进行多线程间的同步过程
下面我们看一下代码:
RingQueue.hpp:
#pragma once#include <iostream>
#include <vector>
#include <string>
#include <pthread.h>
#include <semaphore.h>template <typename T>
class RingQueue
{
private:void P(sem_t &s)//申请信号量{sem_wait(&s);}void V(sem_t &s)//释放信号量{sem_post(&s);}
public:RingQueue(int max_cap): _ringqueue(max_cap), _max_cap(max_cap), _c_step(0), _p_step(0){sem_init(&_data_sem, 0, 0);sem_init(&_space_sem, 0, max_cap);pthread_mutex_init(&_c_mutex, nullptr);pthread_mutex_init(&_p_mutex, nullptr);}void Push(const T &in) //生产者{// 信号量:是一个计数器,是资源的预订机制。预订:在外部,可以不判断资源是否满足,就可以知道内部资源的情况!P(_space_sem); // 信号量这里,对资源进行使用,申请,为什么不判断一下条件是否满足???信号量本身就是判断条件!pthread_mutex_lock(&_p_mutex); //?_ringqueue[_p_step] = in;_p_step++;_p_step %= _max_cap;pthread_mutex_unlock(&_p_mutex);V(_data_sem);}void Pop(T *out) // 消费{P(_data_sem);pthread_mutex_lock(&_c_mutex); //?*out = _ringqueue[_c_step];_c_step++;_c_step %= _max_cap;pthread_mutex_unlock(&_c_mutex);V(_space_sem);}~RingQueue(){sem_destroy(&_data_sem);sem_destroy(&_space_sem);pthread_mutex_destroy(&_c_mutex);pthread_mutex_destroy(&_p_mutex);}
private:std::vector<T> _ringqueue;int _max_cap;int _c_step;int _p_step;sem_t _data_sem; // 消费者关心sem_t _space_sem; // 生产者关心pthread_mutex_t _c_mutex;pthread_mutex_t _p_mutex;
};
Main.cc
#include "RingQueue.hpp"
#include "Task.hpp"
#include <iostream>
#include <pthread.h>
#include <unistd.h>
#include <ctime>void *Consumer(void*args)
{RingQueue<Task> *rq = static_cast<RingQueue<Task> *>(args);while(true){Task t;// 1. 消费rq->Pop(&t);// 2. 处理数据t();std::cout << "Consumer-> " << t.result() << std::endl;}
}
void *Productor(void*args)
{RingQueue<Task> *rq = static_cast<RingQueue<Task> *>(args);while(true){sleep(1);// 1. 构造数据int x = rand() % 10 + 1; //[1, 10]usleep(x*1000);int y = rand() % 10 + 1;Task t(x, y);// 2. 生产rq->Push(t);std::cout << "Productor -> " << t.debug() << std::endl;}
}int main()
{srand(time(nullptr) ^ getpid());RingQueue<Task> *rq = new RingQueue<Task>(5);// 单单pthread_t c1, c2, p1, p2, p3;pthread_create(&c1, nullptr, Consumer, rq);pthread_create(&c2, nullptr, Consumer, rq);pthread_create(&p1, nullptr, Productor, rq);pthread_create(&p2, nullptr, Productor, rq);pthread_create(&p3, nullptr, Productor, rq);pthread_join(c1, nullptr);pthread_join(c2, nullptr);pthread_join(p1, nullptr);pthread_join(p2, nullptr);pthread_join(p3, nullptr);return 0;
}
Task.hpp
#pragma once#include<iostream>
#include<functional>// typedef std::function<void()> task_t;
// using task_t = std::function<void()>;// void Download()
// {
// std::cout << "我是一个下载的任务" << std::endl;
// }// 要做加法
class Task
{
public:Task(){}Task(int x, int y) : _x(x), _y(y){}void Excute(){_result = _x + _y;}void operator ()(){Excute();}std::string debug(){std::string msg = std::to_string(_x) + "+" + std::to_string(_y) + "=?";return msg;}std::string result(){std::string msg = std::to_string(_x) + "+" + std::to_string(_y) + "=" + std::to_string(_result);return msg;}private:int _x;int _y;int _result;
};
线程池(懒汉单例模式)
线程池: 一种线程使用模式。线程过多会带来调度开销,进而影响缓存局部性和整体性能。而线程池维护着多个线程,等待着监督管理者分配可并发执行的任务。这避免了在处理短时间任务时创建与销毁线程的代价。线程池不仅能够保证内核的充分利用,还能防止过分调度。
这里我们主要还是看一下线程池这个代码的实现,其他不在这里展示:
ThreadPool.hpp:
#pragma once#include <iostream>
#include <unistd.h>
#include <string>
#include <vector>
#include <queue>
#include <functional>
#include "Thread.hpp"
#include "Log.hpp"
#include "LockGuard.hpp"using namespace ThreadMoudle;
using namespace log_ns;static const int gdefaultnum = 5;void test()
{while (true){std::cout << "hello world" << std::endl;sleep(1);}
}template <typename T>
class ThreadPool
{
private:void LockQueue(){pthread_mutex_lock(&_mutex);}void UnlockQueue(){pthread_mutex_unlock(&_mutex);}void Wakeup(){pthread_cond_signal(&_cond);}void WakeupAll(){pthread_cond_broadcast(&_cond);}void Sleep(){pthread_cond_wait(&_cond, &_mutex);}bool IsEmpty(){return _task_queue.empty();}void HandlerTask(const std::string &name) // this{while (true){// 取任务LockQueue();while (IsEmpty() && _isrunning){_sleep_thread_num++;LOG(INFO, "%s thread sleep begin!\n", name.c_str());Sleep();LOG(INFO, "%s thread wakeup!\n", name.c_str());_sleep_thread_num--;}// 判定一种情况if (IsEmpty() && !_isrunning){UnlockQueue();LOG(INFO, "%s thread quit\n", name.c_str());break;}// 有任务T t = _task_queue.front();_task_queue.pop();UnlockQueue();// 处理任务t(); // 处理任务,此处不用/不能在临界区中处理// std::cout << name << ": " << t.result() << std::endl;LOG(DEBUG, "hander task done, task is : %s\n", t.result().c_str());}}void Init(){func_t func = std::bind(&ThreadPool::HandlerTask, this, std::placeholders::_1);for (int i = 0; i < _thread_num; i++){std::string threadname = "thread-" + std::to_string(i + 1);_threads.emplace_back(threadname, func);LOG(DEBUG, "construct thread %s done, init success\n", threadname.c_str());}}void Start(){_isrunning = true;for (auto &thread : _threads){LOG(DEBUG, "start thread %s done.\n", thread.Name().c_str());thread.Start();}}ThreadPool(int thread_num = gdefaultnum): _thread_num(thread_num), _isrunning(false), _sleep_thread_num(0){pthread_mutex_init(&_mutex, nullptr);pthread_cond_init(&_cond, nullptr);}ThreadPool(const ThreadPool<T> &) = delete;void operator=(const ThreadPool<T> &) = delete;public:void Stop(){LockQueue();_isrunning = false;WakeupAll();UnlockQueue();LOG(INFO, "Thread Pool Stop Success!\n");}// 如果是多线程获取单例呢?static ThreadPool<T> *GetInstance(){if (_tp == nullptr){LockGuard lockguard(&_sig_mutex);if (_tp == nullptr){LOG(INFO, "create threadpool\n");// thread-1 thread-2 thread-3...._tp = new ThreadPool();_tp->Init();_tp->Start();}else{LOG(INFO, "get threadpool\n");}}return _tp;}void Equeue(const T &in){LockQueue();if (_isrunning){_task_queue.push(in);if (_sleep_thread_num > 0)Wakeup();}UnlockQueue();}~ThreadPool(){pthread_mutex_destroy(&_mutex);pthread_cond_destroy(&_cond);}private:int _thread_num;std::vector<Thread> _threads;std::queue<T> _task_queue;bool _isrunning;int _sleep_thread_num;pthread_mutex_t _mutex;pthread_cond_t _cond;// 单例模式// volatile static ThreadPool<T> *_tp;static ThreadPool<T> *_tp;static pthread_mutex_t _sig_mutex;
};template <typename T>
ThreadPool<T> *ThreadPool<T>::_tp = nullptr;
template <typename T>
pthread_mutex_t ThreadPool<T>::_sig_mutex = PTHREAD_MUTEX_INITIALIZER;
线程安全的单例模式
单例模式是一种 "经典的, 常用的, 常考的" 设计模式
大佬和菜鸡们两极分化的越来越严重. 为了让菜鸡们不太拖大佬的后腿, 于是大佬们针对一些经典的常见的场景, 给定了一些对应的解决方案, 这个就是设计模式
单例模式的特点
某些类, 只应该具有一个对象(实例), 就称之为单例. 例如一个男人只能有一个媳妇. 在很多服务器开发场景中, 经常需要让服务器加载很多的数据 (上百G) 到内存中. 此时往往要用一个单例的类来管理这些数据.
饿汉实现方式和懒汉实现方式
- 吃完饭, 立刻洗碗, 这种就是饿汉方式. 因为下一顿吃的时候可以立刻拿着碗就能吃饭.
- 吃完饭, 先把碗放下, 然后下一顿饭用到这个碗了再洗碗, 就是懒汉方式.
懒汉方式最核心的思想是 "延时加载". 从而能够优化服务器的启动速度.
可重入VS线程安全
概念:
- 线程安全:多个线程并发同一段代码时,不会出现不同的结果。常见对全局变量或者静态变量进行操作, 并且没有锁保护的情况下,会出现该问题。
- 重入:同一个函数被不同的执行流调用,当前一个流程还没有执行完,就有其他的执行流再次进入,我们称之为重入。一个函数在重入的情况下,运行结果不会出现任何不同或者任何问题,则该函数被称为可重入函数,否则,是不可重入函数。
常见的线程不安全的情况
- 不保护共享变量的函数
- 函数状态随着被调用,状态发生变化的函数
- 返回指向静态变量指针的函数
- 调用线程不安全函数的函数
常见的线程安全的情况
- 每个线程对全局变量或者静态变量只有读取的权限,而没有写入的权限,一般来说这些线程是安全的
- 类或者接口对于线程来说都是原子操作
- 多个线程之间的切换不会导致该接口的执行结果存在二义性
常见不可重入的情况
- 调用了malloc/free函数,因为malloc函数是用全局链表来管理堆的
- 调用了标准I/O库函数,标准I/O库的很多实现都以不可重入的方式使用全局数据结构
- 可重入函数体内使用了静态的数据结构
常见可重入的情况
- 不使用全局变量或静态变量
- 不使用用malloc或者new开辟出的空间
- 不调用不可重入函数
- 不返回静态或全局数据,所有数据都有函数的调用者提供
- 使用本地数据,或者通过制作全局数据的本地拷贝来保护全局数据
可重入与线程安全联系
- 函数是可重入的,那就是线程安全的
- 函数是不可重入的,那就不能由多个线程使用,有可能引发线程安全问题
- 如果一个函数中有全局变量,那么这个函数既不是线程安全也不是可重入的。
可重入与线程安全区别
- 可重入函数是线程安全函数的一种
- 线程安全不一定是可重入的,而可重入函数则一定是线程安全的。
- 如果将对临界资源的访问加上锁,则这个函数是线程安全的,但如果这个重入函数若锁还未释放则会产生死锁,因此是不可重入的。
常见锁概念
死锁
死锁是指在一组进程中的各个进程均占有不会释放的资源,但因互相申请被其他进程所站用不会释放的资源而处于的一种永久等待状态。
死锁四个必要条件
- 互斥条件:一个资源每次只能被一个执行流使用
- 请求与保持条件:一个执行流因请求资源而阻塞时,对已获得的资源保持不放
- 不剥夺条件:一个执行流已获得的资源,在末使用完之前,不能强行剥夺
- 循环等待条件:若干执行流之间形成一种头尾相接的循环等待资源的关系
避免死锁
- 破坏死锁的四个必要条件
- 加锁顺序一致
- 避免锁未释放的场景
- 资源一次性分配
STL,智能指针和线程安全
STL中的容器是否是线程安全的?
不是. 原因是, STL 的设计初衷是将性能挖掘到极致, 而一旦涉及到加锁保证线程安全, 会对性能造成巨大的影响. 而且对于不同的容器, 加锁方式的不同, 性能可能也不同(例如hash表的锁表和锁桶). 因此 STL 默认不是线程安全. 如果需要在多线程环境下使用, 往往需要调用者自行保证线程安全
智能指针是否是线程安全的?
对于 unique_ptr, 由于只是在当前代码块范围内生效, 因此不涉及线程安全问题. 对于 shared_ptr, 多个对象需要共用一个引用计数变量, 所以会存在线程安全问题. 但是标准库实现的时候考虑到了这 个问题, 基于原子操作(CAS)的方式保证 shared_ptr 能够高效, 原子的操作引用计数.
其他常见的各种锁
悲观锁:在每次取数据时,总是担心数据会被其他线程修改,所以会在取数据前先加锁(读锁,写锁,行锁等),当其他线程想要访问数据时,被阻塞挂起。
乐观锁:每次取数据时候,总是乐观的认为数据不会被其他线程修改,因此不上锁。但是在更新数据前, 会判断其他数据在更新前有没有对数据进行修改。主要采用两种方式:版本号机制和CAS操作。
CAS操作:当需要更新数据时,判断当前内存值和之前取得的值是否相等。如果相等则用新值更新。若不等则失败,失败则重试,一般是一个自旋的过程,即不断重试。
最后:
十分感谢你可以耐着性子把它读完和我可以坚持写到这里,送几句话,对你,也对我:
1.一个冷知识:
屏蔽力是一个人最顶级的能力,任何消耗你的人和事,多看一眼都是你的不对。
2.你不用变得很外向,内向挺好的,但需要你发言的时候,一定要勇敢。
正所谓:君子可内敛不可懦弱,面不公可起而论之。
3.成年人的世界,只筛选,不教育。
4.自律不是6点起床,7点准时学习,而是不管别人怎么说怎么看,你也会坚持去做,绝不打乱自己的节奏,是一种自我的恒心。
5.你开始炫耀自己,往往都是灾难的开始,就像老子在《道德经》里写到:光而不耀,静水流深。
最后如果觉得我写的还不错,请不要忘记点赞✌,收藏✌,加关注✌哦(。・ω・。)
愿我们一起加油,奔向更美好的未来,愿我们从懵懵懂懂的一枚菜鸟逐渐成为大佬。加油,为自己点赞!
相关文章:
【Linux】————(日志、线程池及死锁问题)
作者主页: 作者主页 本篇博客专栏:Linux 创作时间 :2024年11月29日 日志 关于日志,首先我们来说一下日志的作用, 作用: 问题追踪:通过日志不仅仅包括我们程序的一些bug,也可以在…...
【自动化】配置信息抽取
公共基本信息配置文件抽取 公共基本信息比如卖家、买家、管理员,验证码等基本信息,再比如数据库、redis、各个服务的域名,这些目前是写死在代码之中的,为了能够更好的维护他们,我们将他们放入配置文件进行管理 公共的…...
Python毕业设计选题:基于django+vue的校园影院售票系统
开发语言:Python框架:djangoPython版本:python3.7.7数据库:mysql 5.7数据库工具:Navicat11开发软件:PyCharm 系统展示 管理员登录 管理员功能界面 用户管理 影院信息管理 电影类型管理 电影信息管理 系统…...
Docker化部署Flask:轻量级Web应用的快速部署方案
Flask是一个用Python编写的轻量级Web应用框架,以其简洁性和灵活性而受到开发者的喜爱。Docker作为一种流行的容器化技术,为应用的部署和管理提供了极大的便利。本文将探讨Flask的优点、Docker部署的好处,并详细介绍如何将Flask应用Docker化部…...
centos怎么通过docker安装一个gitlab
在CentOS上通过Docker安装GitLab的步骤如下: 安装Docker引擎: 首先,需要在你的CentOS系统上安装Docker。可以通过以下命令来安装Docker:yum install -y yum-utils yum-config-manager --add-repo https://download.docker.com/lin…...
docker 运行my-redis命令
CREATE TABLE orders ( order_id bigint NOT NULL COMMENT "订单ID", dt date NOT NULL COMMENT "日期", merchant_id int NOT NULL COMMENT "商家ID", user_id int NOT NULL COMMENT "用户ID", good_id int NOT NULL COMMENT "商…...
qt6.4.0+visual studio2022+opencv
qt6.4.0visual studio2022opencv 补充:在安装完Qt后还需要配置环境变量...
23种设计模式之适配器模式
目录 1. 简介1.1 定义1.2 结构和组成部分 2. 代码2.1 MediaPlayer2.2 AdvanceMediaPlayer2.3 VicPlayer2.4 Mp4Player2.5 MediaPlayerAdapter2.6 AudioPlayer2.7 Test 3. 适用场景4. 优点和缺点5. 总结 1. 简介 1.1 定义 适配器模式(Adapter Pattern)是…...
剖析go协程池实现原理
go协程池实现 在go语言编程中有一种池肯定避免不了,那就是-协程池,无论你是日常工作还是面试中面试官都无法避免协程池,掌握协程池你也就算是入门go的并发编程了,打一波广告后面会有专门的文章来介绍如何在go中进行并发编程。 协…...
渗透测试--Linux上获取凭证
在测试过程中我们也会发现一些Linux主机加域的情况,虽然不多见,但它确实存在。正所谓技多不压身,这样能够触类旁通的知识,我们怎能错过,所以在此我们将会主要探讨从Linux主机上获取域凭证的方法。主要有以下内容&#…...
【笔记】自动驾驶预测与决策规划_Part9_数据驱动前沿算法与发展趋势
文章目录 数据驱动前沿算法与发展趋势0. 前言1. 端到端自动驾驶引言2. 端到端自动驾驶2.1 端到端自动驾驶早期尝试 ALVINN2.2 基于模仿学习的端到端系统 NVIDIA-E2E2.3 基于强化学习的端到端系统2.4 多模态融合的自动驾驶 Transfuser2.5 模块化端到端 UniAD2.6 模块化端到端 VA…...
工业公辅车间数智化节能头部企业,蘑菇物联选择 TDengine 升级 AI 云智控
小T导读:在工业节能和智能化转型的浪潮中,蘑菇物联凭借其自研的灵知 AI 大模型走在行业前沿,为高能耗设备和公辅能源车间提供先进的 AI 解决方案。此次采访聚焦于蘑菇物联与 TDengine 的合作项目,通过 AI 云智控平台的建设&#x…...
【Linux】开启你的Linux之旅:初学者指令指南
Linux相关知识点可以通过点击以下链接进行学习一起加油! 在 Linux 开发中,GDB 调试器和 Git 版本控制工具是开发者必备的利器。GDB 帮助快速定位代码问题,Git 则提供高效的版本管理与协作支持。本指南将简明介绍两者的核心功能与使用技巧&…...
Vite 6.0 发布:引领现代前端开发新方向
Vite 6.0 带来了大量更新与优化,旨在简化开发流程、提升性能,并解决现代 Web 开发中的诸多挑战。本次更新引入了 实验性环境 API 和现代化的工具链,进一步巩固了 Vite 作为开发者首选工具的地位。以下是关于新特性、生态发展以及重要更新的全…...
深入了解阿里云 OSS:强大的云存储解决方案
在现代互联网应用中,数据存储是一个不可忽视的环节。随着数据量的不断增长,传统的存储方式已经无法满足高速、低成本、大容量的需求。阿里云 OSS(对象存储服务)作为一种高性能、低成本且具备高度扩展性的云存储服务,已…...
canvas绘制网络地址图片
canvas在绘制网络地址图片时,需要先下载成临时路径 export function downLoadBgImg (url) {return new Promise((r,j) > {uni.downloadFile({url,success : res > {if (res.statusCode 200) {r(res.tempFilePath);return;};j(依赖文件下载失败);},fail : er…...
《DSL-FIQA》论文翻译
《DSL-FIQA: Assessing Facial Image Quality Via Dual-Set Degradation Learning and Landmark-Guided Transformer》 原文链接:DSL-FIQA: Assessing Facial Image Quality via Dual-Set Degradation Learning and Landmark-Guided Transformer | IEEE Conference…...
【Linux网络编程】第四弹---构建UDP服务器与字典翻译系统:源码结构与关键组件解析
✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】【Linux网络编程】 目录 1、UdpServer.hpp 1.1、函数对象声明 1.2、Server类基本结构 1.3、构造函数 1.4、Start() 2、Dict.hpp…...
【人工智能】人工智能,深度学习与人工神经网络
人工智能 人工智能一、定义与核心要素二、主要方法与技术三、应用领域四、发展前景与挑战五、分类六、研究目标与价值 深度学习定义与核心思想网络结构工作原理关键技术与模型应用领域发展与挑战 人工神经网络一、定义与原理二、基本特性三、网络结构四、工作原理五、应用领域六…...
嵌入式系统应用-LVGL的应用-平衡球游戏 part2
平衡球游戏 part2 4 mpu60504.1 mpu6050 介绍4.2 电路图4.3 驱动代码编写 5 游戏界面移植5.1 移植源文件5.2 添加头文件 6 参数移植6.1 4 mpu6050 4.1 mpu6050 介绍 MPU6050是一款由InvenSense公司生产的加速度计和陀螺仪传感器,广泛应用于消费电子、机器人等领域…...
Linux网络编程之---多线程实现并发服务器
下面我们来使用tcp集合多线程实现并发服务器 一.服务端 #include <stdio.h> #include <arpa/inet.h> #include <unistd.h> #include <stdlib.h> #include <string.h> #include <pthread.h>typedef struct sockinfo {char ip[16];unsigne…...
架构师的英文:Architect
中文版 软件架构师 的英文是 “Software Architect”。 Software: 软件Architect: 架构师,通常指的是设计和规划某种系统或结构的人。 Software Architect 通常负责软件系统的整体设计、技术选型、架构规划,确保系统的可扩展性、可维护性和高效性等。…...
量化交易系统开发-实时行情自动化交易-8.7.文华平台
19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。 接下来会对于文华平台介绍。 文华财经…...
【前端】JavaScript 中的创建对象模式要点
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: 前端 文章目录 💯前言💯对象属性值中的引号规则💯对象属性换行与尾随逗号的使用💯工厂模式:灵活高效的对象创建💯自定义构造函数:通过…...
鸿蒙NEXT元服务:论如何免费快速上架作品
【引言】天下武功,唯快不破。 本文讨论如何免费且以最快速度上架自己的作品。 作者以自己从零开始到提交发布审核一共俩小时的操作流程分享给大家作参考。 【1】立项选择 结论:元服务,单机,工具类(非游戏ÿ…...
hive3.1.3安装及基本例子
前提要安装好hadoop环境和mysql。 1、下载并解压 https://archive.apache.org/dist/hive/hive-3.1.3/apache-hive-3.1.3-bin.tar.gz 下载bin包到/app/src中。 cd /app/src/ tar zxvf apache-hive-3.1.3-bin.tar.gz mv apache-hive-3.1.3-bin /app/hive2、配置path nano /etc…...
【设计模式】工厂方法模式 在java中的应用
文章目录 1. 引言工厂方法模式的定义 2. 工厂方法模式的核心概念工厂方法模式的目的和原理与其他创建型模式的比较(如简单工厂和抽象工厂) 3. Java中工厂方法模式的实现基本的工厂方法模式结构示例代码:创建不同类型的日志记录器 4. 工厂方法…...
【热门主题】000079 服务器虚拟化:开启高效计算新时代
前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 【热…...
软考高项经验分享:我的备考之路与实战心得
软考,尤其是信息系统项目管理师(高项)考试,对于众多追求职业提升与专业认可的人士来说,是一场充满挑战与机遇的征程。我在当年参加软考高项的经历,可谓是一波三折,其中既有成功的喜悦࿰…...
【小白学机器学习38】用np.random 生成各种随机数,随机数数组/序列
目录 0 总结 np.random() 的一些点 1 用np.random.random() 生成[0,1) 区间内的随机数 2 生成指定范围内的随机整数/数组 np.random.randint() 3 用np.random.choice()生成指定数组范围内的随机数 3.1 np.random.choice(array6) 3.2 np.random.choice(array6) ࿰…...
Scala的数组匹配模式
package Test32//匹配:数组:元素的个数 元素的特征 object Test4 {def main(args: Array[String]): Unit {val arr1 Array(1, 2, 3)val arr2 Array(0, 2, 3)val arr3 Array(1, 2, 3, 4)val arr4 Array(-1, 1, 2, 3, 4)val b: Any arr1b match {ca…...
力扣【算法学习day.50】
前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向和记录学习过程(例如想要掌握基础用法,该刷哪些题?)我的解析也不会做的非常详细,只会提供思路和一些关键点,力扣上的大佬们的题解质量是非…...
C 语言学习的经典书籍有哪些?
学习C语言的理由 C语言是一种程席设计语言,它是由美国AT&T公司贝尔实验室的Dennis Ritchie于1972年发明的。C语言之所以流行,是因为它简单易用。学习C语言的几个理由如下: (1)C、C#和Java使用一种被称为面向对象程序设计(0bject-Orient…...
数据结构——栈
目录 栈的介绍 一、栈的基本概念 1.1 栈的定义 1.2 栈的常见基本操作 二、栈的顺序存储结构 2.1 栈的顺序储存 2.2 顺序栈 2.3 共享栈 三、栈的链式储存结构 3.1 链栈 3.2 链栈的进出栈操作 四、栈的应用 4.1实现斐波那契数列 一、栈的基本概念 1.1 栈的定义 栈…...
开发系统准备与开发环境配置总结
开发前系统配置及环境搭建 系统配置0 Github打不开、速度慢怎么办1 WSL、Linux、Ubuntu、Docker都是什么鬼2 在Windows下安装WSL和Ubuntu3 配置MySQL4 配置Redis并启动服务5 Docker(Windows和Ubuntu下)6 Nginx 系统配置 你好! 这是你第一次使…...
bash: jstack: command not found【jps、jstack、jmap、jstats 命令不生效解决】
JVM 系列文章传送门 初识 JVM(Java 虚拟机) 深入理解 JVM(Java 虚拟机) 一文搞懂 JVM 垃圾回收(JVM GC) 深入理解 JVM 垃圾回收算法 一文搞懂 JVM 垃圾收集器 JVM 调优相关参数 JVM 场景面试题【强烈…...
两数之和问题——c语言
声明: 以下是我在leetcode上面刷题的两数之和问题,如涉及侵权马上删除文章 声明:本文主要用作技术分享,所有内容仅供参考。任何使用或依赖于本文信息所造成的法律后果均与本人无关。请读者自行判断风险,并遵循相关法律…...
《沉积与特提斯地质》
《沉积与特提斯地质》为中国地质调查局主管,中国地质调查局成都地质调查中心(西南地质科技创新中心)主办的地学类学术期刊。 《沉积与特提斯地质》创刊于1981年,创刊名为《岩相古地理研究与编图通讯》,后更名为《岩相…...
全面解析 C++ STL 中的 set 和 map
C 标准模板库(STL)中的关联式容器以其强大的功能和高效性成为开发者解决复杂数据组织问题的重要工具。其中,set 和 map 是最常用的两类关联容器。本篇博客将从基本特性、底层实现、用法详解、高级案例以及性能优化等多个角度,详细…...
【RL Application】语义分割中的强化学习方法
📢本篇文章是博主强化学习(RL)领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对相关等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅…...
MySql:Centos7安装MySql
目录 安装之前,清除MySql残留文件 下载MySql的官方yum源 安装MySql 服务 MySql配置 常见问题 本次安装基于Centos7,平台为云服务器,由XShell软件演示。 注意,请将用户切换为Root用户。 安装之前,清除MySql残留文…...
数据结构-散列函数的构造方法
一.数字关键词 关键词存储应该尽可能的离散 直接定址法:利用线性函数,例如上面的例子,h(key)key-1990,key1990,这个就被存放在0的位置 数字分析法:关键字可能有很到位组成,每一位变化可能都不一样,有的位是不变的,就是说不同的对象这一位都是一样的,有的…...
MySQL:DDL数据定义语言
DDL(Data Definition Language),数据定义语言 对数据库的常用操作 查看所有数据库 语法:show databases; 创建数据库 dbname:用户自己定义的数据库名称。 语法:create database [if not exists] dbname [charsetutf8]; 切换…...
【落羽的落羽 C语言篇】指针·之其五
文章目录 一、冒泡排序二、qsort排序1. qsort使用指南2.回调函数3. qsort函数的模拟实现 一、冒泡排序 冒泡排序的核心思想就是:两两相邻的元素进行比较和交换。 现在,我们想编写一个函数,使它能够运用冒泡排序的原理,由小到大排…...
Java程序员最新场景面试题总结
上周,在与部门业务伙伴(BP)的交谈中,我了解到当前求职市场的一个显著现象:她在招聘平台上发布的初级后端岗位每日吸引了超过500份简历的投递。这一现象凸显了Java后端岗位竞争的激烈程度,尤其是在这个技术日…...
平衡性能与隐私:解读Google的服务器端标记
在当前数字化时代,企业需要深入洞察用户行为,以提高网站转化率。然而,随着用户对隐私保护的期待日益提高以及相关法规的收紧,如何兼顾性能与隐私成为了一大挑战。为了解决这一问题,Google推出了服务器端标记࿰…...
在云上怎么样让环境更加安全?
随着云计算的普及,越来越多的企业和组织将其应用迁移到云端。在这个过程中,安全性成为了一个不可忽视的重要因素。华为云作为全球领先的云服务提供商,致力于为用户提供安全可靠的云环境。本文九河云将探讨在华为云上如何增强环境的安全性。 …...
分布式实验一
Socket编程作业: 在Linux系统上,用C编两个程序:Client和Server。两个进程间利用socket进行TCP通信。 要求: Server进程运行后,输出本进程所在主机IP地址以及正在监听的端口号; Client进程运行后,…...
网络安全防护指南
网络安全防护指南 网络安全是指保护网络系统中的硬件、软件及数据不受偶然或恶意原因而遭到破坏、更改或泄露,确保网络系统连续可靠地正常运行。随着互联网的普及和技术的发展,网络安全问题日益严峻,对个人、企业和国家都构成了巨大威胁。因…...
DreamCamera2相机预览变形的处理
最近遇到一个问题,相机更换了摄像头后,发现人像角度顺时针旋转了90度,待人像角度正常后,发现 预览时图像有挤压变形,最终解决。在此记录 一人像角度的修改 先放示意图 设备预览人像角度如图1所示,顺时针旋…...