当前位置: 首页 > news >正文

94.HarmonyOS NEXT动画系统实现教程:深入理解FuncUtils

温馨提示:本篇博客的详细代码已发布到 git : https://gitcode.com/nutpi/HarmonyosNext 可以下载运行哦!

HarmonyOS NEXT动画系统实现教程:深入理解FuncUtils

文章目录

  • HarmonyOS NEXT动画系统实现教程:深入理解FuncUtils
    • 1. 动画系统基础
      • 1.1 核心概念
      • 1.2 动画执行函数解析
    • 2. 动画实现详解
      • 2.1 参数说明
      • 2.2 动画曲线类型
    • 3. 角度计算功能
      • 3.1 角度标准化函数
      • 3.2 角度计算原理
    • 4. 实践应用
      • 4.1 基本动画示例
      • 4.2 复杂动画组合
    • 5. 最佳实践
      • 5.1 动画性能优化
      • 5.2 错误处理
    • 6. 调试与优化
      • 6.1 动画调试
      • 6.2 常见问题解决

1. 动画系统基础

1.1 核心概念

概念说明应用场景
动画持续时间动画执行的时长控制动画速度
动画曲线动画的变化规律定义动画效果
动画回调动画执行的具体内容实现状态变化

1.2 动画执行函数解析

export function runWithAnimation(fn: Function,duration: number = ImageViewerConstants.ANIMATE_DURATION,curve: Curve = Curve.Smooth): void {animateTo({ duration: duration, curve: curve }, () => {fn();})
}

2. 动画实现详解

2.1 参数说明

参数类型默认值说明
fnFunction-动画执行的回调函数
durationnumberANIMATE_DURATION动画持续时间
curveCurveCurve.Smooth动画曲线类型

2.2 动画曲线类型

// 常用动画曲线
const curves = {Smooth: Curve.Smooth,    // 平滑过渡Linear: Curve.Linear,    // 线性变化EaseIn: Curve.EaseIn,   // 渐入EaseOut: Curve.EaseOut  // 渐出
};

3. 角度计算功能

3.1 角度标准化函数

export function simplestRotationQuarter(angle: number): number {const FULL_CIRCLE = 360;const QUADRANT_DEGREES = 90;const BOUNDARY_OFFSET = 44.5;// 标准化角度let normalizedAngle = angle % FULL_CIRCLE;// 计算象限const QUADRANT = Math.floor((Math.abs(normalizedAngle) + BOUNDARY_OFFSET) / QUADRANT_DEGREES) % 4;// 获取标准角度const standardRotations = [0, 90, 180, 270];let rotation = standardRotations[QUADRANT];// 保持方向let finalRotation = rotation * (angle >= 0 ? 1 : -1);return finalRotation || 0;
}

3.2 角度计算原理

  1. 角度标准化

    • 使用取模运算限制在360度内
    • 处理负角度情况
    • 保持旋转方向
  2. 象限确定

    • 使用偏移量处理边界情况
    • 计算所在象限
    • 映射到标准角度

4. 实践应用

4.1 基本动画示例

// 简单的淡入动画
runWithAnimation(() => {this.opacity = 1;
}, 300, Curve.EaseIn);// 旋转动画
runWithAnimation(() => {this.rotation = simplestRotationQuarter(this.currentAngle);
});

4.2 复杂动画组合

// 组合多个动画效果
function complexAnimation() {runWithAnimation(() => {// 同时改变多个属性this.scale = 1.2;this.opacity = 0.8;this.rotation = 45;}, 500, Curve.Smooth);
}

5. 最佳实践

5.1 动画性能优化

  1. 合理使用动画
// 避免频繁触发
let isAnimating = false;
function safeAnimation() {if (isAnimating) return;isAnimating = true;runWithAnimation(() => {// 动画内容}, 300, Curve.Smooth);setTimeout(() => {isAnimating = false;}, 300);
}
  1. 动画时长控制
// 根据设备性能调整动画时长
const duration = performanceMode ? 200 : 300;
runWithAnimation(fn, duration);

5.2 错误处理

function safeRunAnimation(fn: Function) {try {runWithAnimation(() => {fn();});} catch (error) {console.error('Animation failed:', error);// 直接执行,不使用动画fn();}
}

6. 调试与优化

6.1 动画调试

  1. 状态监控
runWithAnimation(() => {this.value = newValue;console.log('Animation value:', this.value);
});
  1. 性能分析
const startTime = Date.now();
runWithAnimation(() => {// 动画内容
}, 300, Curve.Smooth);
console.log('Animation duration:', Date.now() - startTime);

6.2 常见问题解决

问题原因解决方案
动画卡顿执行时间过长减少动画时长,简化动画内容
动画不流畅帧率过低使用简单的动画曲线,减少同时动画数量
动画不生效参数错误检查参数类型和值范围

通过合理使用动画系统,可以为应用添加流畅的交互效果。在实际开发中,要注意性能优化和错误处理,确保动画效果既美观又流畅。同时,合理使用角度计算功能,可以实现准确的旋转效果。

相关文章:

94.HarmonyOS NEXT动画系统实现教程:深入理解FuncUtils

温馨提示:本篇博客的详细代码已发布到 git : https://gitcode.com/nutpi/HarmonyosNext 可以下载运行哦! HarmonyOS NEXT动画系统实现教程:深入理解FuncUtils 文章目录 HarmonyOS NEXT动画系统实现教程:深入理解FuncUtils1. 动画系…...

Python----数据分析(Pandas一:pandas库介绍,pandas操作文件读取和保存)

一、Pandas库 1.1、概念 Pandas是一个开源的、用于数据处理和分析的Python库,特别适合处理表格类数 据。它建立在NumPy数组之上,提供了高效的数据结构和数据分析工具,使得数据操作变得更加简单、便捷和高效。 Pandas 的目标是成为 Python 数据…...

设计模式之原型模式:原理、实现与应用

引言 原型模式(Prototype Pattern)是一种创建型设计模式,它通过复制现有对象来创建新对象,而不是通过实例化类。原型模式特别适用于创建成本较高的对象,或者需要动态配置的对象。本文将深入探讨原型模式的原理、实现方…...

平方矩阵问题

Ⅰ 回字形二维数组 #include <iostream> #include <iomanip> using namespace std; int main(){int n;while(cin>>n,n){for(int i0; i<n;i){for(int j0; j<n; j){int upi, downn-i1, leftj, rightn-j1;cout<<min(min(up,down),min(left,right)…...

C语言之链表

文章目录 前言 一、链表基本概念 1、声明节点结构 2、创建节点变量 3、链表所有节点 4、遍历链表 二、add添加 三、insert插入 四、remove删除 五、查找 总结 前言 链表是一种重要的数据结构&#xff0c;用于存储和组织数据。它是由一系列节点组成的数据结构&#x…...

RabbitMQ延迟消息

文章目录 延迟消息死信交换机延迟消息延迟消息应用场景 延迟消息 生产者在发送消息的时候指定一个时间&#xff0c;消费者不会立即收到该消息&#xff0c;而是在指定时间之后才收到消息&#xff0c;这就是延迟消息。 比如说这么一个场景&#xff0c;用户下单后将商品库存进行…...

Unity中WolrdSpace下的UI展示在上层

一、问题描述 Unity 中 Canvas使用World Space布局的UI&#xff0c;想让它不被3d物体遮挡&#xff0c;始终显示在上层。 二、解决方案 使用shader解决 在 UI 的材质中禁用深度测试&#xff08;ZTest&#xff09;&#xff0c;强制 UI 始终渲染在最上层。 Shader "Custo…...

【从零开始学习计算机科学】算法分析(一)算法、渐进分析、递归分析

【从零开始学习计算机科学】算法分析(一)算法、渐进分析、递归分析 算法算法分析正确性算法完成需要的时间使用的存储空间简单性渐进分析递归分析主方法求解递归式递归树求解代入法概率分析和随机算法顺序统计量算法 什么是算法?算法(Algorithm)是指解题方案的准确而完整…...

【菜鸟飞】Conda安装部署与vscode的结合使用

介绍 Conda 是一个跨平台的开源工具&#xff0c;用于管理软件包和环境。最初由 Anaconda 公司开发&#xff0c;它的设计目标是支持数据科学和机器学习领域&#xff0c;但其功能不仅局限于此。 以下是 Conda 的核心特点&#xff1a; 包管理&#xff1a;安装、更新、卸载各种库…...

LeetCode2593 标记所有元素后数组的分数

贪心算法实战&#xff1a;数组标记与分数计算&#xff08;LeetCode 同类题解析&#xff09; 一、问题描述 给定一个正整数数组 nums&#xff0c;按以下规则计算最终分数&#xff1a; 初始分数 score 0每次选择最小且未被标记的元素&#xff08;值相同选下标最小&#xff09…...

【C++多线程】thread

C中的std::thread是C11引入的线程库的一部分&#xff0c;提供了创建和管理线程的能力。它封装了操作系统的线程接口&#xff0c;使得在C中更方便地进行多线程编程。 1. std::thread 的定义 std::thread 类位于<thread>头文件中&#xff0c;定义在std命名空间下&#xff…...

补充二分LIS

B3637 最长上升子序列 题目描述 这是一个简单的动规板子题。 给出一个由 n ( n ≤ 5000 ) n(n\le 5000) n(n≤5000) 个不超过 1 0 6 10^6 106 的正整数组成的序列。请输出这个序列的最长上升子序列的长度。 最长上升子序列是指&#xff0c;从原序列中按顺序取出一些数字排…...

airtest用法

安装python3.7.9 64 python3 -m pip install -U airtest 或者&#xff1a; git clone https://github.com/AirtestProject/Airtest.git pip install -e airtest 下载adb 可以开始无界面的airtest 下载AirtestIDE 安装与启动 - Airtest Project Docs Airtest Project...

30天学习Java第四天——设计模式

设计模式概述 设计模式是一套被广泛接受的、经过试验的、可反复使用的基于面向对象的软件设计经验总结&#xff0c;它是开发人员在软件设计时&#xff0c;对常见问题的解决方案的总结和抽象。 一句话就是&#xff0c;设计模式是针对软件开发中常见问题和模式的通用解决方案。 …...

MongoDB 和 Elasticsearch的区别、优缺点对比,以及选型建议

MongoDB 和 Elasticsearch 在存储和搜索方面各有特点&#xff0c;适用于不同的场景。以下是它们的区别、优缺点对比&#xff0c;以及选型建议。 1. 概述 MongoDB&#xff1a;分布式 NoSQL 文档数据库&#xff0c;基于 BSON&#xff08;类似 JSON&#xff09;的文档存储&#x…...

在Android中,子线程可以更新UI吗

目录 为什么子线程不能直接更新UI&#xff1f; 如何正确在子线程更新UI&#xff1f; 1. 使用runOnUiThread方法 2. 通过Handler发送消息到主线程 3. 使用View.post(Runnable)方法 4. 结合AsyncTask&#xff08;已过时&#xff0c;仅作了解&#xff09; 5. 使用Kotlin协程…...

unittest vs pytest区别

unittest vs pytest 对比 ​unittest 像“手动挡汽车”&#xff1a;操作步骤多&#xff0c;规则严格&#xff0c;适合老司机。​pytest 像“自动挡汽车”&#xff1a;开起来轻松&#xff0c;功能强大&#xff0c;适合新手和高效开发。 区别点​unittest​&#xff08;你学过的&…...

OpenAI与谷歌DeepMind新品同日竞技,谁能引领机器人现实任务新潮流?

2025年3月12日&#xff0c;科技巨头谷歌DeepMind与OpenAI均发布了与机器人执行现实任务相关的新产品&#xff1a;谷歌DeepMind的新AI模型、OpenAI的Agents工具集&#xff0c;二者在技术路径、应用场景、安全机制设计等方面存在明显差异&#xff0c;其发展态势备受行业关注。 …...

JVM并发编程AQSsync锁ReentrantLock线程池ThreadLocal

并发编程2 synchronized锁实现**AQS****ReentrantLock实现****JUC 常用类**池的概念 ThreadLocalThreadLocal原理内存泄露强引用:软引用弱引用虚引用ThreadLocal内存泄露 synchronized锁实现 synchronized是一个关键字,实现同步,还需要我们提供一个同步锁对象,记录锁状态,记录…...

特殊 IP 地址

文章目录 特殊IP地址概述受限广播地址&#xff08;Limited Broadcast Address&#xff09;直接广播地址&#xff08;Directed Broadcast Address&#xff09;多播地址&#xff08;Multicast Address&#xff09;环回地址&#xff08;Loopback Address&#xff09;本网络本主机&…...

SSL/TLS 1.2过程:Client端如何验证服务端证书?

快速回顾非对称加密和对称加密 首先快速说一下非对称加密和对称加密。非对称加密&#xff0c;就是有一个公钥和私钥(成对存在)。 公钥对一段文本A加密得到文本B&#xff0c;只有对应的私钥能对B解密得到A。 私钥对一段文本C加密得到文本D&#xff0c;只有对应的公钥能对D解密得…...

Android(java)高版本 DownloadManager 封装工具类,支持 APK 断点续传与自动安装

主要有以下优点 兼容高版本 Android&#xff1a;适配 Android 10 及以上版本的存储权限和安装权限。断点续传&#xff1a;支持从断点继续下载。下载进度监听&#xff1a;实时获取下载进度并回调。错误处理&#xff1a;处理下载失败、网络异常等情况。自动安装 APK&#xff1a;…...

基于three.js的虚拟人阴影渲染优化方案

作者&#xff1a;来自 vivo 互联网大前端团队- Su Ning 本文将探讨 three.js 中的阴影渲染机制&#xff0c;并分享一些针对性能和效果优化的实用技巧&#xff0c;帮助开发者在不同场景下做出最佳的权衡选择。 一、前言 在3D网页应用中&#xff0c;高质量的阴影渲染对于营造场…...

人工智能中神经网络是如何进行预测的

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 https://www.captainbed.cn/north 文章目录 引言神经网络的基本结构神经网络的前向传播前向传播的步骤激活函数 代码实现流程图详细解释…...

vue3 中使用 Recorder 实现录音并上传,并用Go语言调取讯飞识别录音(Go语言)

录音并识别 效果图一、开启游览器录音权限二、前端代码三、Go代码,上传到讯飞识别录音返回到前端 效果图 recorder-core插件可以在网页中进行录音。录音文件(blob)并可以自定义上传&#xff0c;可以下载录音文件到本地,本文录音过程中会显示可视化波形&#xff0c;插件兼容PC端…...

自探索大语言模型微调(一)

一、数据 1.1、失败案例 Hugging Face&#xff1a; 根据B站上搜索到的资料&#xff0c;datasets这个库可以直接下载丰富的数据集合和与训练模型&#xff0c;调用也非常的简单&#xff0c;唯一的缺点就是&#xff0c;需要外网&#xff08;翻墙&#xff09;&#xff0c;用国内的…...

算法练习(链表)

链表 链表的分类 单向链表&#xff0c;双向链表带头链表&#xff0c;不带头链表循环的&#xff0c;非循环的 链表的结构 图中所示的为链表的一个节点&#xff0c;value是这个节点的所存储的数据值&#xff0c;next为下一节点的地址。 代码实现链表 1.创建节点类 节点由…...

在 Ubuntu 服务器上使用宝塔面板搭建博客

&#x1f4cc; 介绍 在本教程中&#xff0c;我们将介绍如何在 Ubuntu 服务器 上安装 宝塔面板&#xff0c;并使用 Nginx PHP MySQL 搭建一个博客&#xff08;如 WordPress&#xff09;。 主要步骤包括&#xff1a; 安装宝塔面板配置 Nginx PHP MySQL绑定域名与 SSL 证书…...

K8S学习之基础二十八:k8s中的configMap

k8s中的configMap ​ configMap是k8s的资源对象&#xff0c;简称cm&#xff0c;用于保存非机密性的配置&#xff0c;数据可以用key/value键值对形式保存&#xff0c;也可以通过文件形式保存 ​ 在部署服务的时候&#xff0c;每个服务都有自己的配置文件&#xff0c;如果一台服…...

EDID读取学习

简介 Video BIOS可以被认为是一个具有独立硬件抽象层的操作系统。它不会阻止或监视操作系统、应用程序或设备驱动程序对硬件的直接访问。虽然不推荐,但一些DOS应用程序确实可以改变基本的硬件设置,而根本不需要通过视频BIOS。大多数现代应用程序和操作系统都避免直接使用硬件…...

基于 SSE 和 WebSocket 的在线文本实时传输工具

简介 在线文本实时传输工具支持 SSE&#xff08;Server-Sent Events&#xff09; 和 WebSocket&#xff0c;可在不同设备间快速共享和同步文本&#xff0c;适用于跨设备协作、远程办公和即时通讯。 核心功能 实时同步&#xff1a;文本输入后&#xff0c;另一端用户可立即看到…...

​​​​​​​大语言模型安全风险分析及相关解决方案

大语言模型的安全风险可以从多个维度进行分类。 从输入输出的角度来看,存在提示注入、不安全输出处理、恶意内容生成和幻觉错误等风险; 从数据层面来看,训练数据中毒、敏感信息泄露和模型反演攻击是主要威胁; 模型自身则面临拒绝服务和盗窃的风险; 供应链和插件的不安全引…...

4、linux c 进程

【三】进程 1. 进程与程序的区别 程序&#xff1a;存放在磁盘上的指令和数据的有序集合&#xff08;文件&#xff09;&#xff0c;是静态的。 进程&#xff1a;执行一个程序所分配的资源的总称&#xff0c;是动态的。 2. 进程的组成部分 BSS段&#xff08;bss&#xff09;&…...

OpenFeign

OpenFeign 工作原理详解 1. 声明式接口 开发者通过定义一个接口&#xff0c;并使用特定的注解&#xff08;如GetMapping, PostMapping等&#xff09;来描述HTTP请求。OpenFeign会根据这些注解自动生成相应的HTTP请求。 注解支持&#xff1a; FeignClient&#xff1a;用于定…...

Centos离线安装perl

文章目录 Centos离线安装perl1. perl是什么&#xff1f;2. Perl下载地址3. perl的安装4. 安装结果验证 Centos离线安装perl 1. perl是什么&#xff1f; Perl 是一种 高级脚本语言&#xff0c;诞生于 1987 年&#xff0c;以强大的 文本处理能力 和灵活性著称&#xff0c;常用于…...

RabbitMQ可靠性进制

文章目录 1.生产者可靠性生产者重连生产者确认小结 2. MQ的可靠性数据持久化LazyQueue小结 3. 消费者的可靠性消费者确认机制消费者失败处理方案业务幂等性唯一消息ID业务判断 兜底方案业务判断 兜底方案 1.生产者可靠性 生产者重连 在某些场景下由于网络波动&#xff0c;可能…...

PHP优化技术

最近在学习php语言&#xff0c;打算用来提升开发小项目的效率。下面是php项目中常见的优化手段。 1、引起php性能问题的原因 &#xff08;1&#xff09;php语法使用不当 &#xff08;2&#xff09;使用php做了它不擅长的事 &#xff08;3&#xff09;用php连接的服务不给力 &…...

【Go类库分享】Go expr 通用表达式引擎

【Go类库分享】Go expr 通用表达式引擎 官方教程&#xff1a;https://expr-lang.org/docs/language-definition 官方Github&#xff1a;https://github.com/expr-lang/expr 文章所含代码地址&#xff1a;https://github.com/ziyifast/ziyifast-code_instruction/tree/main/go-d…...

线性代数(1)用 excel 计算鸡兔同笼

线性代数excel计算鸡兔同笼 案例&#xff1a;鸡兔同笼问题的三种解法&#xff08;递进式教学&#xff09;一、问题描述二、方程式解法&#xff08;基础版&#xff09;步骤解析 三、线性代数解法&#xff08;进阶版&#xff09;1. 方程组转化为矩阵形式2. 矩阵求解&#xff08;逆…...

Docker基础知识介绍

Docker基础篇 必须要在Linux环境下才能运行&#xff0c;windows下运行也是安装虚拟机后才能下载安装运行 下载安装 linux 依次执行下边步骤 更新 yum yum update 卸载旧的Docker yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \do…...

机器人交社保属于“无稽之谈”?

今晨浏览社交网站&#xff0c;惊奇地看到“给机器人上社保”的网页搜索结果竟然多达“约 3,280,000个”。所以被称为“无稽之谈”和“本质上是利用社保之名收税”就实不为过&#xff0c;而且还会让人读罢笑得喷饭&#xff1a;“连搞笑大王赵本山见了&#xff0c;也定会拱手作揖…...

接口测试和功能测试的区别

接口测试和功能测试的区别 一 **接口测试概述**1.1 定义1.2 优缺点 二 **功能测试概述**2.1 定义2.2 优缺点 三 **主要区别**四 两者在测试点的区别4.1 **接口测试的测试点**4.2 **功能测试的测试点**4.3 **接口测试 vs. 功能测试的测试点对比** 五 区别类比**例子背景**&#…...

人工智能中的线性代数基础详解

‌ 线性代数是人工智能领域的重要数学基础之一,是人工智能技术的底层数学支柱,它为数据表示、模型构建和算法优化提供了核心工具。其核心概念与算法应用贯穿数据表示、模型训练及优化全过程。更多内容可看我文章:人工智能数学基础详解与拓展-CSDN博客 一、基本介绍 …...

nginx不在默认的yum仓库的解决方法

1、添加 Nginx 官方仓库 epel-release 是 Extra Packages for Enterprise Linux 的仓库&#xff0c;包含了 nginx 等常用软件。 sudo yum install -y epel-release sudo yum install -y nginx 2、手动添加 Nginx 仓库 如果 epel-release 不可用&#xff0c;可以手动添加 Ng…...

IXTUR气控永磁铁:以高精度气控和稳定磁场,为机器人应用提供稳定抓取力

在现代工业生产和物流领域&#xff0c;物料的抓取与搬运是影响生产效率和成本控制的重要环节。传统夹爪在面对不同材质、形状和重量的物体时&#xff0c;常常存在适应性差、抓取不稳定、操作复杂等问题&#xff0c;导致生产流程中频繁出现停机调整&#xff0c;增加了人工干预成…...

【uni-app运行错误】SassError: expected selector @import “@/uni.scss“;

ERROR in ./src/pages/biddingViews/address_add.vue?vue&typestyle&index0&id41672bf3&scopedtrue&langscss& (./node_modules/vue/cli-service/node_modules/css-loader/dist/cjs.js??clonedRuleSet-22[0].rules[0].use[1]!./node_modules/dcloud…...

堆排序:力扣215.数组中的第K个大元素

一、问题描述 在一个整数数组 nums 中&#xff0c;需要找出第 k 个最大的元素。这里要注意&#xff0c;我们要找的是数组排序后的第 k 个最大元素&#xff0c;而不是第 k 个不同的元素。例如&#xff0c;对于数组 [3,2,1,5,6,4]&#xff0c;当 k 2 时&#xff0c;第 2 个最大…...

【网络协议】应用层协议HTTPS

文章目录 为什么引入HTTPS&#xff1f;基本概念加密的基本过程对称加密非对称加密中间人攻击证书 为什么引入HTTPS&#xff1f; 由于HTTP协议在网络传输中是明文传输的&#xff0c;那么当传输一些机密的文件或着对钱的操作时&#xff0c;就会有泄密的风险&#xff0c;从而引入…...

网络安全防护总体架构 网络安全防护工作机制

1 实践内容 1.1 安全防范 为了保障"信息安全金三角"的CIA属性、即机密性、完整性、可用性&#xff0c;信息安全领域提出了一系列安全模型。其中动态可适应网络安全模型基于闭环控制理论&#xff0c;典型的有PDR和P^2DR模型。 1.1.1 PDR模型 信息系统的防御机制能…...

图像处理篇---图像预处理

文章目录 前言一、通用目的1.1 数据标准化目的实现 1.2 噪声抑制目的实现高斯滤波中值滤波双边滤波 1.3 尺寸统一化目的实现 1.4 数据增强目的实现 1.5 特征增强目的实现&#xff1a;边缘检测直方图均衡化锐化 二、分领域预处理2.1 传统机器学习&#xff08;如SVM、随机森林&am…...