CTA策略【量化理论】
CTA策略演变史
全称:Commodity Trading Advisor (商品交易顾问)
CTA最开始是指通过为客户提供期权、期货方面的交易建议,或者直接通过受管理的期货账户参与实际交易,来获得收益的机构或个人。
随着市场的发展,市场对CTA的理解普遍发生了改变,它已不再是商品期货,而是基于量价的趋势跟踪策略——无论是商品期货、金融期货,还是股票、外汇,只要是有历史公开量价的二级市场,都可以成为CTA策略运作的市场。
在国内市场中,期货相比股票交易起来的限制较小(t+0交易且可以做空),因此推荐用期货来学习
趋势跟踪策略是CTA的重要组成部分,通俗来讲就是追涨杀跌,该假说核心的理论就是利用在股市中明显存在的非理性狂热和羊群效应,在市场情绪明显不是很好的情况下在置信区间内持有股票,以达到收割韭菜的目的,客观来讲,这种量化策略客观上实现了一件事:使得股价更加稳定且符合实际价值,降低了市场情绪对股价造成的影响
相关指标类型
国内大量的量化CTA都是利用了技术指标来构建量化策略,大体上,这些量化指标可以分为三类:
(1):趋势型:例如MACD、SAR用于趋势跟踪策略
(2):超买超卖型:和追涨杀跌的趋势型恰相反,用KDJ、RSI等指标来描述并捕捉趋势行情的终结
(3):能量型:从成交量的角度来考察价格变动的力量,常用于辅助判断信号的强度,比如VOL、OBV等
有关跳空定义的处理方法
在进行较长时间的回测时,在换月时会遇到假跳空的问题,这是由于期货合约到期后,新的合约和原来的合约存在一个比较大的价差
对于这种假跳空的情况,一般会采用三种处理方法1.使用期货合成指数来回测2.对跳空进行复权处理3.不使用主力合约,而是使用单独月份的合约来进行分析
1.使用合成指数进行回测:
对某一品种的各个月赋予权重,计算出一个综合性指标,用于代表该产品的整体走势,计算指数时,算法一般都会保证其连续性,不会出现假跳空的现象。
方法缺点:指数并非真实存在的价格数据而产生误差;指数的计算公式往往不是透明的
2.进行复权算法处理:
复权算法分为两个维度,可以分为加减复权和乘除复权,也可以分为前复权和后复权,所谓加减复权就是指对跳空产生的价差加减平移:
假设你持有以下期权组合:
• 买入一个行权价为50的看涨期权,价格为5元。
• 卖出一个行权价为60的看涨期权,价格为2元。
• 初始价差为3元(5 - 2)。
如果市场情况发生变化:
• 加价差:你可能会卖出一个行权价为70的看涨期权,价格为1元,新的价差变为4元(5 - 1)。
• 减价差:你可能会买入一个行权价为55的看涨期权,价格为3元,新的价差变为2元(5 - 3)。
• 平移:你可能会将行权价从50和60调整为60和70,但保持价差宽度不变。
例如本来的收盘价:1010,1000,1200,1170——其中,1000到1200就是由假跳空导致的,这时我们就把后面的两个序列减去200,得到新的收盘价:1010,1000,1000,930,这种处理方法的优点是价格序列整体简洁,缺点是收益率会出现偏差,要让收益率不会出现偏差,我们可以采用乘除复权法,也就是在原来的数字上乘上一个因子,比如在刚刚举例的1010,1000,1200,1170序列当中,就可以把后面的两个数字乘上(1/1.2)这样就得到了连续时收益率不变的新序列1010,1000,1000,975
前复权就是对前面的数据复权,后复权就是对后面的数据复权
法三的主要缺点是容易造成数据损失
在这里给大家介绍一个比较成熟的库:ta-lib,其本身是基于c语言开发的技术指标库,现在也提供Python包装后的库,下载此库时,在windows中建议使用预编译的二进制安装包/anaconda:
其函数主要分为如下十组:
·Overlap Studies(可叠加指标)
·Momentum Indicators(动量指标)
·Volume Indicators(成交量指标)
·Volatility Indicators(波动率指标)
·Price Transform(价格变换)
·Cycle Indicators(周期指标)
·Pattern Recognition(模式识别)
·Statistic Functions(统计函数)
·Math Transform(数学变换)
·Math Operators(数学运算符)
ta-lib有两种方法计算指标(Function API和Abstract API)
其中函数式API提供了一种轻量级的调用方式,例如:
output = talib.SMA(close)
可以简单计算其移动平均
from talib import MA_Typeupper, middle, lower = talib.BBANDS(close, matype=MA_Type.T3)
可以计算其布林线
output = talib.MOM(close, timeperiod=5)
timeperiod来指定计算周期
一般而言,一个合理的CTA策略往往以趋势跟踪为主,以反转指标和能量指标为辅,取趋势指标T、反转指标R、能量指标E
定义趋势当中最常用的方法有两种(T+表示多头信号,T-表示空头信号):
1.突破:高于或低于先前几期的最高价或最低价,就是向上突破或向下突破
2.穿越:短期均线上穿/下穿长期均线
当涨的太高,股市很容易会出现回调的情况,此时一些常见的指标高于某一值,我们就可以称目前的情况为超买,为R-空头信号;低于某值为超卖,为R+多头信号
能量指标E,比如OBV:当日价格低于昨日价格,那么当日OBV就是本日值+前一日OBV值(且本日值小于零,为交易量*-1)
import pandas as pd
import numpy as np
import talib as ta
import matplotlib.pyplot as plt# 示例数据加载(请替换为实际数据)
data = pd.read_csv('your_data.csv', index_col='Date', parse_dates=True)
data = data[['Open', 'High', 'Low', 'Close', 'Volume']]# 参数设置
fast_ma_period = 10 # 快速均线周期
slow_ma_period = 50 # 慢速均线周期
bbands_period = 20 # 布林线周期
std_dev = 2 # 布林线标准差# 计算OBV(能量指标E)
data['OBV'] = ta.OBV(data['Close'], data['Volume'])# 计算布林线(反转指标R)
data['BB_UP'], data['BB_MID'], data['BB_LOW'] = ta.BBANDS(data['Close'], timeperiod=bbands_period, nbdevup=std_dev, nbdevdn=std_dev)# 计算均线(趋势指标T)
data['MA_Fast'] = ta.SMA(data['Close'], timeperiod=fast_ma_period)
data['MA_Slow'] = ta.SMA(data['Close'], timeperiod=slow_ma_period)# 生成信号
data['Signal'] = 0 # 初始化信号# 基于OBV和布林线的反转信号
data.loc[(data['OBV'] > data['OBV'].shift(1)) & (data['Close'] < data['BB_LOW']), 'Signal'] = 1 # 买入信号
data.loc[(data['OBV'] < data['OBV'].shift(1)) & (data['Close'] > data['BB_UP']), 'Signal'] = -1 # 卖出信号# 基于均线的趋势信号
data.loc[data['MA_Fast'] > data['MA_Slow'], 'Signal'] = 1 # 均线多头,增强买入信号
data.loc[data['MA_Fast'] < data['MA_Slow'], 'Signal'] = -1 # 均线空头,增强卖出信号# 简单的交易逻辑
data['Position'] = data['Signal'].shift(1) # 当前持仓状态
data['Strategy_Return'] = data['Position'] * data['Close'].pct_change() # 策略收益率# 绘制结果
plt.figure(figsize=(14, 8))
plt.plot(data['Close'], label='Close Price')
plt.plot(data['MA_Fast'], label='Fast MA')
plt.plot(data['MA_Slow'], label='Slow MA')
plt.plot(data['BB_UP'], label='BB_UP')
plt.plot(data['BB_MID'], label='BB_MID')
plt.plot(data['BB_LOW'], label='BB_LOW')
plt.scatter(data.index[data['Signal'] == 1], data['Close'][data['Signal'] == 1], color='green', label='Buy Signal')
plt.scatter(data.index[data['Signal'] == -1], data['Close'][data['Signal'] == -1], color='red', label='Sell Signal')
plt.legend()
plt.title('CTA Strategy with OBV, BBands, and MA')
plt.show()# 输出策略绩效
cumulative_return = (1 + data['Strategy_Return']).cumprod() - 1
print("Cumulative Return:", cumulative_return.iloc[-1])
指标总体策略
空仓时,若出现T+,则开多仓;若出现T-,则开空仓。
当前是多头时,若出现T-,则平多反手开空;T+若出现R-,则平多不开新仓。
当前是空头时,若出现T+,则平空反手开多;T-若出现R+,则平空不开新仓。
所有的信号均可以用能量E超过某阈值m来辅助,只有当E有效时,信号才有效。
相关文章:
CTA策略【量化理论】
CTA策略演变史 全称:Commodity Trading Advisor (商品交易顾问) CTA最开始是指通过为客户提供期权、期货方面的交易建议,或者直接通过受管理的期货账户参与实际交易,来获得收益的机构或个人。 随着市场的发展&#…...
旋转编码器原理与应用详解:从结构到实战 | 零基础入门STM32第四十七步
主题内容教学目的/扩展视频旋转编码器电路原理,跳线设置,结构分析。驱动程序与调用。熟悉电路和驱动程序。 师从洋桃电子,杜洋老师 📑文章目录 一、旋转编码器是什么?二、内部结构揭秘2.1 机械组件解剖2.2 核心部件说明…...
计算机视觉cv2入门之图像的读取,显示,与保存
在计算机视觉领域,Python的cv2库是一个不可或缺的工具,它提供了丰富的图像处理功能。作为OpenCV的Python接口,cv2使得图像处理的实现变得简单而高效。 示例图片 目录 opencv获取方式 图像基本知识 颜色空间 RGB HSV 图像格式 BMP格式 …...
基于Canvas和和原生JS实现俄罗斯方块小游戏
这里是一个完整的H5俄罗斯方块游戏,使用了 HTML CSS JavaScript (原生) 实现,支持基本的俄罗斯方块玩法,如: ✅ 方块自动下落 ✅ 方向键控制移动、旋转、加速下落 ✅ 方块堆叠、消行 ✅ 计分系统 在 canvas 上绘制游戏&#x…...
阿里云 QwQ-32B 模型调研文档
阿里云 QwQ-32B 模型调研文档 ——技术解析、部署实践与微调指南 一、模型概述 QwQ-32B 是阿里云开源的轻量化大语言模型,以 320 亿参数 实现与 DeepSeek-R1(6710 亿参数)相当的推理性能。其核心优势包括: 参数效率:1/20 参数量达成竞品性能,显存需求降低 70%部署灵活性…...
【玩转23种Java设计模式】结构型模式篇:组合模式
软件设计模式(Design pattern),又称设计模式,是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性、程序的重用性。 汇总目录链接&…...
Eolink:专为开发者设计的API协作平台
Eolink Apikit 是一款集 API 设计、管理、自动化测试、Mock 和异常监控于一体的全生命周期智能协作平台,旨在提升 API 研发和管理的效率。以下是对其功能和特点的详细介绍: 核心功能: API 设计与文档管理:Apikit 提供了强大的 API…...
【Python】为什么要写__init__.py
文章目录 PackageA(__init__特性)应该往__init__.py里放什么东西?1、包的初始化2、管理包的公共接口3、包的信息 正常我们直接导入就可以执行,但是在package的时候,有一种__init__.py的特殊存在 引入moduleA.py,执行main.py&…...
golang 从零单排 (一) 安装环境
1.下载安装 打开网址The Go Programming Language 直接点击下载go1.24.1.windows-amd64.msi 下载完成 直接双击下一步 下一步 安装完成 环境变量自动设置不必配置 2.验证 win r 输入cmd 打开命令行 输入go version...
30-判断子序列
给定字符串 s 和 t ,判断 s 是否为 t 的子序列。 字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列&#…...
AI 驱动的软件测试革命:从自动化到智能化的进阶之路
🚀引言:软件测试的智能化转型浪潮 在数字化转型加速的今天,软件产品的迭代速度与复杂度呈指数级增长。传统软件测试依赖人工编写用例、执行测试的模式,已难以应对快速交付与高质量要求的双重挑战。人工智能技术的突破为测试领域注…...
深度相机进行目标物体的空间姿态(位姿)估计
利用深度相机(如Kinect、Intel Realsense、Zed相机等)进行目标物体的空间姿态(位姿)估计,通常结合了3D点云处理、目标识别和位姿优化算法。以下是完整的实现流程、算法选择及注意事项: 一、实现流程 1. 目…...
3月8日实验
拓扑: 需求: 1.学校内部的HTTP客户端可以正常通过域名www.baidu.com访问到白度网络中的HTTP服务器 2.学校网络内部网段基于192.168.1.0/24划分,PC1可以正常访问3.3.3.0/24网段,但是PC2不允许 3.学校内部路由使用静态路由&#…...
GO语言学习笔记
一、viper笔记【七米】 https://liwenzhou.com/posts/Go/viper/ 二、优雅关机和平滑重启 https://liwenzhou.com/posts/Go/graceful-shutdown/ 三、gin使用zap https://liwenzhou.com/posts/Go/zap-in-gin/ 四、flag 用于命令行传参 https://liwenzhou.com/posts/Go/flag/ 五、…...
Autosar技术栈总目录
总目录 Autosar架构理解Autosar Mcal配置开发(TC3xx系列 基于EB)Autosar Mcal配置开发(S32K3xx系列 基于EB)Autosar BSW服务开发(基于Davinci CFG &Dev)Makefile编译自动化脚本 持续更新中… Autosar架…...
开发指南107-谷歌内核浏览器滚动条设置
平台上统一制定了滚动条样式(仅限于webkit内核):/* ------美化谷歌浏览器滚动条 开始-----------*/ ::-webkit-scrollbar{width:12px;height:12px;background-color: #E1E1E1;} ::-webkit-scrollbar-button:single-button { background-color:#E1E1E1; display: …...
25年携程校招社招求职能力北森测评材料计算部分:备考要点与误区解析
在求职过程中,能力测评是筛选候选人的重要环节之一。对于携程这样的知名企业,其能力测评中的材料计算部分尤为关键。许多求职者在备考时容易陷入误区,导致在考试中表现不佳。本文将深入解析材料计算部分的实际考察方向,并提供针对…...
Linux系统编程--线程同步
目录 一、前言 二、线程饥饿 三、线程同步 四、条件变量 1、cond 2、条件变量的使用 五、条件变量与互斥锁 一、前言 上篇文章我们讲解了线程互斥的概念,为了防止多个线程同时访问一份临界资源而出问题,我们引入了线程互斥,线程互斥其实…...
李沐《动手学深度学习》——14.9. 用于预训练BERT的数据集——wiki数据集问题以及存在的其他问题
问题1:出现"file is not a zip file" 原因是链接已经失效。 解决方法:打开下面链接自行下载,需要魔法。下载完解压到特定位置。 下载链接:项目首页 - Wikitext-2-v1数据包下载:Wikitext-2-v1 数据包下载本仓库提供了一…...
【英伟达AI论文】多模态大型语言模型的高效长视频理解
摘要:近年来,基于视频的多模态大型语言模型(Video-LLMs)通过将视频处理为图像帧序列,显著提升了视频理解能力。然而,许多现有方法在视觉主干网络中独立处理各帧,缺乏显式的时序建模,…...
深入理解 DOM 元素
深入理解 DOM 元素:构建动态网页的基石 在网页开发的世界里,DOM(Document Object Model,文档对象模型)元素宛如一座桥梁,连接着静态的 HTML 结构与动态的 JavaScript 交互逻辑。它让原本呆板的网页变得鲜活…...
linux如何判断进程对磁盘是随机写入还是顺序写入?
模拟工具&性能测试工具:fio fio参数说明: filename/dev/sdb1:测试文件名称,通常选择需要测试的盘的data目录。 direct1:是否使用directIO,测试过程绕过OS自带的buffer,使测试磁盘的结果更真…...
实现静态网络爬虫(入门篇)
一、了解基本概念以及信息 1.什么是爬虫 爬虫是一段自动抓取互联网信息的程序,可以从一个URL出发,访问它所关联的URL,提取我们所需要的数据。也就是说爬虫是自动访问互联网并提取数据的程序。 它可以将互联网上的数据为我所用,…...
[Web]get请求和post请求
Get get请求的特点是: 1.所有的参数都通过URL进行传递。其中传输的参数的书写的格式为?key1value1&key2value2。具体示例:https://example.com/search?qapple&limit10。访问的时候,先写/xxx,确定本次请求要访问的资源u…...
【落羽的落羽 C++】C++入门基础:引用,内联,nullptr
文章目录 一、引用1. 引用的概念2. 引用的特点3. 引用的使用4. const引用5. 引用和指针 二、inline内联三、nullptr 一、引用 1. 引用的概念 引用是C中的一个较为重要的概念。它是给已存在变量取的“别名”,编译器不会为引用变量开辟内存空间,它和它引…...
RabbitMQ应用问题大全(精心整理版)
前言 其实这部分知识我是整理在语雀上了,这里是直接复制粘贴过来的。不是很好阅读,可以直接点下方链接去语雀看,那个看的会舒服很多。 https://www.yuque.com/g/ngioig/upbg6b/fkarhyo8fpgrtyq8/collaborator/join?tokenGvlO0di8KaIfO8aF&am…...
【人工智能】卷积神经网络的奥秘:深度学习的视觉革命
卷积神经网络(CNN)是深度学习中处理图像、视频等高维数据的主流模型,因其局部特征提取和参数共享特性而效率高且效果优异。本文深入探讨了CNN的理论基础,包括卷积操作、池化层、激活函数和全连接层的数学原理,并通过LaTeX公式推导其前向传播和反向传播过程。接着,我们提供…...
掌握MiniQMT:程序化下单与撤单的高效实现
掌握MiniQMT:程序化下单与撤单的高效实现 🚀量化软件开通 🚀量化实战教程 在量化交易领域,程序化下单与撤单是实现自动化交易策略的关键环节。通过MiniQMT平台,我们可以高效地执行这些操作,从而快速响应…...
【高级篇】大疆Pocket 3加ENC编码器实现无线RTMP转HDMI进导播台
【高级篇】大疆Pocket 3加ENC编码器实现无线RTMP转HDMI进导播台 文章目录 准备工作连接设备RTMP概念ENCSHV2推流地址设置大疆Pocket 3直播设置总结 老铁们好! 很久没写软文了,今天给大家带了一个干货,如上图,大疆Pocket 3加ENC编…...
Nacos学习笔记-占位符读取其他命名空间内容
Nacos当前命名空间下的配置文件需要跨命名空间读取其他配置文件的内容。可以先通过Nacos提供的API接口获取配置文件内容,然后解析数据将其放入环境的PropertySource中。 相关依赖包 <!-- Nacos依赖包 --> <dependency><groupId>com.alibaba.clo…...
每天五分钟深度学习框架PyTorch:使用残差块快速搭建ResNet网络
本文重点 前面我们使用pytorch搭建了残差块,本文我们更进一步,我们使用残差块搭建ResNet网络,当学会如何搭建残差块之后,搭建ResNet就会非常简单了,因为ResNet就是由多个残差块组成的。 残差块 残差块我们前面已经介…...
python操作java文件的一种方法
对于python操作java代码的场景来说,比较多的可能就是涉及加密的场景,尤其涉及到登录的场景,对于输入的账号密码可能会涉及到加密,如果开发告诉我们如何加密,那么,OK,我们可以直接通过代码去实现…...
自然语言处理:最大期望值算法
介绍 大家好,博主又来给大家分享知识了,今天给大家分享的内容是自然语言处理中的最大期望值算法。那么什么是最大期望值算法呢? 最大期望值算法,英文简称为EM算法,它的核心思想非常巧妙。它把求解模型参数的过程分成…...
leetcode-sql数据库面试题冲刺(高频SQL五十题)
题目: 197.上升的温度 表: Weather ---------------------- | Column Name | Type | ---------------------- | id | int | | recordDate | date | | temperature | int | ---------------------- id 是该表具有唯一值的列。 没有具有相同 recordDate …...
开发者社区测试报告(功能测试+性能测试)
功能测试 测试相关用例 开发者社区功能背景 在当今数字化时代,编程已经成为一项核心技能,越来越多的人开始学习编程,以适应快速变化的科技 环境。基于这一需求,我设计开发了一个类似博客的论坛系统,专注于方便程序员…...
环形链表问题的探究与代码实现
在数据结构与算法的学习中,环形链表是一个经典的问题。它不仅考察对链表这种数据结构的理解,还涉及到指针操作和逻辑推理。本文将结合代码和图文,深入分析如何判断链表中是否有环以及如何找到环的入口点。 目录 一、判断链表中是否有环 …...
【C++】vector(下):vector类的模拟实现(含迭代器失效问题)
文章目录 前言一、vector类的常用接口的模拟实现1.头文件(my vector.h)整体框架2.模拟实现vector类对象的常见构造3.模拟实现vector iterator4.模拟实现vector类对象的容量操作5.模拟实现vector类对象的访问6.模拟实现vector类对象的修改操作 二、vector…...
NLTK和jieba
NLTK与jieba概述 自然语言处理(NLP)领域是计算机科学领域与人工智能领域中的一个重要方向,主要研究方向是实现人与计算机之间用自然语言进行有效通信的各种理论和方法。 在自然语言处理领域中,文本类型的数据占据着很大的市场&a…...
Java后端高频面经——计算机网络
TCP/IP四层模型?输入一个网址后发生了什么,以百度为例?(美团) (1)四层模型 应用层:支持 HTTP、SMTP 等最终用户进程传输层:处理主机到主机的通信(TCP、UDP&am…...
CSDN博客:Markdown编辑语法教程总结教程(中)
❤个人主页:折枝寄北的博客 Markdown编辑语法教程总结 前言1. 列表1.1 无序列表1.2 有序列表1.3 待办事项列表1.4 自定义列表 2. 图片2.1 直接插入图片2.2 插入带尺寸的图片2.3 插入宽度确定,高度等比例的图片2.4 插入高度确定宽度等比例的图片2.5 插入居…...
Springboot redis bitMap实现用户签到以及统计,保姆级教程
项目架构,这是作为demo展示使用: Redis config: package com.zy.config;import com.fasterxml.jackson.annotation.JsonAutoDetect; import com.fasterxml.jackson.annotation.PropertyAccessor; import com.fasterxml.jackson.databind.Ob…...
AI Agent系列(一) - Agent概述
AI Agent系列【一】 前言一、AI代理的特点二、 AI Agent的技术框架三、 开源自主代理 前言 AI Agent,即人工智能代理,一般直接叫做智能体 百度百科给AI Agent定义为: “以大语言模型为大脑驱动的系统,具备自主理解、感知、规划、…...
Scala 中trait的线性化规则(Linearization Rule)和 super 的调用行为
在 Scala 中,特质(Trait)是一种强大的工具,用于实现代码的复用和组合。当一个类混入(with)多个特质时,可能会出现方法冲突的情况。为了解决这种冲突,Scala 引入了最右优先原则&#…...
【Linux系统编程】初识系统编程
目录 一、什么是系统编程1. 系统编程的定义2. 系统编程的特点3. 系统编程的应用领域4. 系统编程的核心概念5. 系统编程的工具和技术 二、操作系统四大基本功能1. 进程管理(Process Management)2. 内存管理(Memory Management)3. 文…...
Unsloth - 动态 4 bit 量化
文章目录 💔 量化可能会破坏模型🦙 Llama 3.2 Vision 细节Pixtral (12B) 视觉🦙 Llama 3.2 (90B) 视觉指令 本文翻译自:Unsloth - Dynamic 4-bit Quantization (2024年12月4日 Daniel & Michael https://unsloth.…...
技术领域,有许多优秀的博客和网站
在技术领域,有许多优秀的博客和网站为开发者、工程师和技术爱好者提供了丰富的学习资源和行业动态。以下是一些常用的技术博客和网站,涵盖了编程、软件开发、数据科学、人工智能、网络安全等多个领域: 1. 综合技术博客 1.1 Medium 网址: ht…...
黑金风格人像静物户外旅拍Lr调色教程,手机滤镜PS+Lightroom预设下载!
调色教程 针对人像、静物以及户外旅拍照片,运用 Lightroom 软件进行风格化调色工作。旨在通过软件中的多种工具,如基本参数调整、HSL(色相、饱和度、明亮度)调整、曲线工具等改变照片原本的色彩、明度、对比度等属性,将…...
Manus 与鸿蒙 Next 深度融合:构建下一代空间计算生态
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 https://www.captainbed.cn/north 文章目录 一、技术融合背景与意义1.1 技术栈协同优势1.2 典型应用场景 二、系统架构设计2.1 整体架构图…...
并查集模板
注意理解路径压缩 static class UnionFind {int[] fa;public UnionFind(int n) {fa new int[n];for (int i 0; i < n; i) {fa[i] i;}}public int find(int i) {if (fa[i] ! i) {fa[i] find(fa[i]);}return fa[i];}public void union(int i, int j) {int fai find(i);in…...
推流项目的ffmpeg配置和流程重点总结一下
ffmpeg的初始化配置,在合成工作都是根据这个ffmpeg的配置来做的,是和成ts流还是flv,是推动远端还是保存到本地, FFmpeg 的核心数据结构,负责协调编码、封装和写入操作。它相当于推流的“总指挥”。 先来看一下ffmpeg的…...