当前位置: 首页 > news >正文

AI Agent系列(一) - Agent概述

AI Agent系列【一】

  • 前言
  • 一、AI代理的特点
  • 二、 AI Agent的技术框架
  • 三、 开源自主代理


前言

AI Agent,即人工智能代理,一般直接叫做智能体
百度百科给AI Agent定义为: “以大语言模型为大脑驱动的系统,具备自主理解、感知、规划、记忆和使用工具的能力,能够自动化执行完成复杂任务的系统,一个完整的AI Agent需要能够实现感知,决策和行动的能力。
例如,自动驾驶就是一个AI Agent
这个AI Agent可以感知周围的交通情况、道路状况等信息,这就是感知环境
通过,其根据感知的信息可以实现制订下一步的行动计划。例如,决定是否加速、减速、转弯等,这就是做出决策
最后,根据决策控制汽车的加速器、刹车、方向盘等,这就是采取行动

一、AI代理的特点

1. 具有推理能力
通过将大模型作为主要组件来扩展感知和行动空间,并通过策略如多模态感知和工具使用来制订具体的行动计划。
通过反馈学习和执行新的动作,借助庞大的参数以及大规模的语料库进行预训练,从而得到世界知识(World Knowledge)。
通过思维链(Chain of Thought,CoT)、ReAct(Reasoning and Acting)和问题分解(Problem Decomposition)等逻辑框架,使得Agent展现出非常强大的推理和规划能力。
通过与环境的互动,从反馈中学习并执行新的动作,获得交互能力。
通过结合记忆的知识和上下文来执行任务。此外,还可以通过检索增强生成(RAG)和外部记忆系统(Memory Bank)整合来形成外部记忆

2. 具有感知能力
AI Agent能够理解指令、提出问题、表达观点和情感、进行复杂的对话。
能够处理和解释来自不同感官的信息,如视觉、听觉、触觉等(当然同时也能够种格式输出信息,如文本、图片、音频,甚至视频)。

3. 具有行动能力
Agent能够通过语言输出参与更复杂的社会交流,例如谈判、冲突解决或者教学活动等。
Agent可以通过软件接口与各种系统交互。Agent可以调用外部 API(应用程序接口)来执行各种任务,如获取数据、发送指令或处理信息。例如,天气预报,Agent可能会调用天气服务的API来获取最新的天气信息。
而物理层面的交互通常涉及机器人或其他硬件设备。这些设备被编程来响应Agent的指令,执行具体的物理操作。机器人或自动化设备可以执行物理任务,如移动物体、组装零件等,可以使用传感器获取环境数据(如温度、位置、图像等),并根据这些数据做出相应的物理响应。Agent也可以远程控制无人机、探测车等设备,执行探索、监控或其他任务。
在物理层面,Agent的能力扩展到与现实世界的直接交互,这要求其具备更高级的硬件控制能力和对物理环境的理解。

二、 AI Agent的技术框架

AI Agent的技术框架涉及多个层面,包括规划、记忆、工具和行动。

规划:Agent需要具备规划(同时也包含决策)能力,以有效地执行更复杂的任务,这涉及到子目标的分解、连续的思考、自我反思和批评,以及对表征行动的反思。

记忆: 则包括短期记忆和长期记忆,短期记忆与上下文学习有关,而长期记忆则涉及信息的长时间保留和检索。

工具: 包括Agent可能调用的各种工具,如日历、计算器、代码解释器和搜索功能等,这些工具扩展了Agent的行动能力,使其能够执行更复杂的任务。

行动: Agent基于规划和记忆来执行具体的行动。这可能包括与外部世界互动,或者通过调用工具来完成一个动作(任务)。

三、 开源自主代理

1. AutoGPT
AutoGPT 是早期代理之一,于 2023 年 3 月发布,是根据中岛的论文开发的。它也是今天在 GitHub 上最受欢迎的代理存储库。该工具使用 OpenAI 的 GPT-4 和 GPT-3.5 大型语言模型(LLM),并允许您为各种个人和商业项目构建代理。
开源代码地址:
github:https://github.com/Significant-Gravitas/AutoGPT

2. SuperAGI
SuperAGI 是 AutoGPT 的更灵活、用户友好的替代品,包含了构建、维护和运行自己代理所需的一切。
该框架具有多个人工智能模型,图形用户界面,与向量数据库的集成(用于存储/检索数据)。此外,还提供工具包,可以让您将其连接到流行的应用程序和服务。
开源代码地址:
github:https://github.com/TransformerOptimus/SuperAGI

3. ShortGPT
ShortGPT 是使用大型语言模型来简化诸如视频创作、语音合成和编辑等复杂任务的框架。
ShortGPT 可以处理大多数典型的与视频相关的任务,如撰写视频脚本,生成配音,选择背景音乐,撰写标题和描述,甚至编辑视频。
开源代码地址:
github:https://github.com/RayVentura/ShortGPT

4. ChatDev
ChatDev 被打造成“一个虚拟软件公司”,它通过多个代理人来扮演传统开发组织中的不同角色,代理人通过合作处理各种任务,从设计软件到编写代码和文档。
开源代码地址:
github:https://github.com/OpenBMB/ChatDev

5. AutoGen
AutoGen 是一个用于开发和部署多个代理的开源框架,这些代理可以共同工作以自主实现目标。
AutoGen 试图促进和简化代理之间的通信,减少错误,并最大化 LLMs 的性能。它还具有广泛的定制功能,允许您选择首选模型,通过人类反馈改进输出,并利用额外的工具。
开源代码地址:
github: https://github.com/microsoft/autogen

6. MetaGPT
MetaGPT 与 ChatDev 类似,试图模仿传统软件公司的结构。代理被分配为产品经理、项目经理和工程师的角色,并协作完成用户定义的编码任务。
到目前为止,MetaGPT 只能处理中等难度的任务。
开源代码地址:
github:https://github.com/geekan/MetaGPT

7. OpenAGI

OpenAGI 是一个开源的 AGI(人工通用智能)研究平台,结合了小型专家模型 - 专门针对情感分析或图像去模糊等任务的模型 。 与其他自主开源 AI 框架并没有太大的不同。它汇集了像 ChatGPT、LLMs(如 LLaMa2)和其他专业模型等流行平台,并根据任务的上下文动态选择合适的工具。
开源代码地址:
github:https://github.com/agiresearch/OpenAGI

8. camel

camel是早期的多智能体框架之一,它采用独特的角色扮演设计,使多个智能体能够相互通信和合作。
该框架利用 LLM 的力量动态分配角色给代理人,指定和开发复杂任务,并安排角色扮演场景,以促进代理人之间的协作。这就像是为人工智能设计的戏剧。
开源代码地址:
github:https://github.com/camel-ai/camel

参考链接:https://blog.csdn.net/kaka0722ww/article/details/145873906

相关文章:

AI Agent系列(一) - Agent概述

AI Agent系列【一】 前言一、AI代理的特点二、 AI Agent的技术框架三、 开源自主代理 前言 AI Agent,即人工智能代理,一般直接叫做智能体 百度百科给AI Agent定义为: “以大语言模型为大脑驱动的系统,具备自主理解、感知、规划、…...

Scala 中trait的线性化规则(Linearization Rule)和 super 的调用行为

在 Scala 中,特质(Trait)是一种强大的工具,用于实现代码的复用和组合。当一个类混入(with)多个特质时,可能会出现方法冲突的情况。为了解决这种冲突,Scala 引入了最右优先原则&#…...

【Linux系统编程】初识系统编程

目录 一、什么是系统编程1. 系统编程的定义2. 系统编程的特点3. 系统编程的应用领域4. 系统编程的核心概念5. 系统编程的工具和技术 二、操作系统四大基本功能1. 进程管理(Process Management)2. 内存管理(Memory Management)3. 文…...

Unsloth - 动态 4 bit 量化

文章目录 💔 量化可能会破坏模型🦙 Llama 3.2 Vision 细节Pixtral (12B) 视觉🦙 Llama 3.2 (90B) 视觉指令 本文翻译自:Unsloth - Dynamic 4-bit Quantization (2024年12月4日 Daniel & Michael https://unsloth.…...

技术领域,有许多优秀的博客和网站

在技术领域,有许多优秀的博客和网站为开发者、工程师和技术爱好者提供了丰富的学习资源和行业动态。以下是一些常用的技术博客和网站,涵盖了编程、软件开发、数据科学、人工智能、网络安全等多个领域: 1. 综合技术博客 1.1 Medium 网址: ht…...

黑金风格人像静物户外旅拍Lr调色教程,手机滤镜PS+Lightroom预设下载!

调色教程 针对人像、静物以及户外旅拍照片,运用 Lightroom 软件进行风格化调色工作。旨在通过软件中的多种工具,如基本参数调整、HSL(色相、饱和度、明亮度)调整、曲线工具等改变照片原本的色彩、明度、对比度等属性,将…...

Manus 与鸿蒙 Next 深度融合:构建下一代空间计算生态

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 https://www.captainbed.cn/north 文章目录 一、技术融合背景与意义1.1 技术栈协同优势1.2 典型应用场景 二、系统架构设计2.1 整体架构图…...

并查集模板

注意理解路径压缩 static class UnionFind {int[] fa;public UnionFind(int n) {fa new int[n];for (int i 0; i < n; i) {fa[i] i;}}public int find(int i) {if (fa[i] ! i) {fa[i] find(fa[i]);}return fa[i];}public void union(int i, int j) {int fai find(i);in…...

推流项目的ffmpeg配置和流程重点总结一下

ffmpeg的初始化配置&#xff0c;在合成工作都是根据这个ffmpeg的配置来做的&#xff0c;是和成ts流还是flv&#xff0c;是推动远端还是保存到本地&#xff0c; FFmpeg 的核心数据结构&#xff0c;负责协调编码、封装和写入操作。它相当于推流的“总指挥”。 先来看一下ffmpeg的…...

使用 Python 开发的简单招聘信息采集系统

以下是一个使用 Python 开发的简单招聘信息采集系统,它包含用户登录、招聘信息收集和前后端交互的基本功能。我们将使用 Flask 作为后端框架,HTML 作为前端页面。 项目结构 recruitment_system/ ├── app.py ├── templates/ │ ├── login.html │ ├── index…...

Selenium库打开指定端口(9222、9333等)浏览器【已解决!!!】

就是在写动态爬虫爬取数据的过程中&#xff0c;如果用selenium的话&#xff0c;有一个缺点&#xff0c;就是当我们去测试一个网站能不能爬取&#xff0c;它都会重新换端口打开一个浏览器&#xff0c;不会使用上一次使用的浏览器&#xff0c;在实际使用过程中这样调试很烦&#…...

Android MVI架构模式详解

MVI概念 MVI&#xff08;Model-View-Intent&#xff09;是一种Android应用架构模式&#xff0c;旨在通过单向数据流和不可变性来简化应用的状态管理。MVI的核心思想是将用户操作、状态更新和界面渲染分离&#xff0c;确保应用的状态可预测且易于调试。 MVI的核心组件 Model&a…...

低代码开发直聘管理系统

低代码 DeepSeek 组合的方式开发直聘管理系统&#xff0c;兼职是开挂的存在。整个管理后台系统 小程序端接口的输出&#xff0c;只花了两个星期不到。 一、技术栈 后端&#xff1a;SpringBoot mybatis MySQL Redis 前端&#xff1a;Vue elementui 二、整体效果 三、表结…...

LVGL开发说明

准备工作 LVGL图形化工具&#xff1a;Gui-Guider-Setup-1.8.0-GA.exeLVGL库&#xff1a;lvgl-release-v8.3屏幕触摸驱动&#xff1a;CST816屏幕驱动&#xff1a;ST7789屏幕尺寸&#xff1a;320 * 170 触发事件 按键的点击事件 添加点击事件 触摸屏点击对应的按键后就会触发回…...

推荐优秀的开源软件合集

在信息化高度发达的今天&#xff0c;数据安全与远程协作变得越来越重要。很多企业和个人都在寻找可替代商业闭源软件的开源解决方案。今天&#xff0c;我们向大家推荐几款优秀的开源软件&#xff0c;涵盖私有云存储、远程桌面、团队协作、内容管理等多个领域。 1. Nextcloud —…...

代码随想录刷题day41|(二叉树篇)二叉树的最大深度(递归)

目录 一、二叉树理论基础 二、二叉树的深度和高度 三、递归和迭代思路 3.1 递归法 3.2 迭代法 四、相关算法题目 五、总结 一、二叉树理论基础 详见&#xff1a;代码随想录刷题day34|&#xff08;二叉树篇&#xff09;二叉树的递归遍历-CSDN博客 二、二叉树的深度和高…...

向量内积(点乘)和外积(叉乘)

文章目录 1. 向量的内积&#xff08;点积&#xff09;1.1 定义1.2 几何意义表征两个向量的投影关系计算向量夹角的余弦值 1.3 重要性质1.4 应用场景 2. 向量的外积&#xff08;叉积&#xff09;2.1 定义&#xff08;仅适用于三维空间&#xff09;2.2 几何意义2.3 重要性质2.4 应…...

PDF转JPG(并去除多余的白边)

首先&#xff0c;手动下载一个软件&#xff08;poppler for Windows&#xff09;&#xff0c;下载地址&#xff1a;https://github.com/oschwartz10612/poppler-windows/releases/tag/v24.08.0-0 否则会出现以下错误&#xff1a; PDFInfoNotInstalledError: Unable to get pag…...

【无人机路径规划】基于麻雀搜索算法(SSA)的无人机路径规划(Matlab)

效果一览 代码获取私信博主基于麻雀搜索算法&#xff08;SSA&#xff09;的无人机路径规划&#xff08;Matlab&#xff09; 一、算法背景与核心思想 麻雀搜索算法&#xff08;Sparrow Search Algorithm, SSA&#xff09;是一种受麻雀群体觅食行为启发的元启发式算法&#xff0…...

2020CVPR-SiamBAN:用于视觉跟踪的Siamese框自适应网络

原文标题&#xff1a;Siamese Box Adaptive Network for Visual Tracking 中文标题&#xff1a;用于视觉跟踪的Siamese框自适应网络 代码地址&#xff1a; GitHub - hqucv/siamban: Siamese Box Adaptive Network for Visual Tracking Abstract 大多数现有的跟踪器通常依靠多尺…...

带你从入门到精通——自然语言处理(五. 自注意力机制和transformer的输入部分)

建议先阅读我之前的博客&#xff0c;掌握一定的自然语言处理前置知识后再阅读本文&#xff0c;链接如下&#xff1a; 带你从入门到精通——自然语言处理&#xff08;一. 文本的基本预处理方法和张量表示&#xff09;-CSDN博客 带你从入门到精通——自然语言处理&#xff08;二…...

MySql自动安装脚本

一、脚本安装流程 1. 添加MySQL的Repository 使用wget命令从MySQL官方网站下载Yum Repository的RPM包。使用rpm -ivh命令安装下载的RPM包&#xff0c;以添加MySQL的Yum Repository。 2. 安装mysql-community-server 使用yum install -y mysql-community-server --nogpgchec…...

3.9【Q】csd

在计算机存储领域&#xff0c;CSD是什么&#xff1f; 基于CXL™-Type3 实现内存池化 CPU访问内存的瓶颈是什么&#xff1f;具体矛盾是什么&#xff1f; 计算型存储-2&#xff1a;标准、API实现 NUMA是什么&#xff1f;详细解释一下它的核心思想&#xff1f;...

Qt常用控件之表格QTableWidget

表格QTableWidget QTableWidget 是一个表格控件&#xff0c;行和列交汇形成的每个单元格&#xff0c;是一个 QTableWidgetItem 对象。 1. QTableWidget属性 QTableWidget 的属性只有两个&#xff1a; 属性说明rowCount当前行的个数。columnCount当前列的个数。 2. QTableW…...

数据库批处理

数据库批处理是一种处理数据的方法&#xff0c;通常用于对大量数据进行一次性操作。批处理可以有效地减少数据库操作的次数&#xff0c;提高数据处理的效率。在数据库中&#xff0c;批处理通常通过编写批处理脚本或使用相应的工具来实现。 一般情况下&#xff0c;数据库批处理…...

Flask 框架简介

Flask 框架简介 Flask 框架简介 Flask 框架简介 Flask 是一个 Python 微型网页开发框架。微型指明了 Flash 的核心是轻量级的&#xff0c;但是可以灵活扩展。下面的简单的例子要和一个数据库系统交互。Django附带了与最常见的数据库交互所需的库。另一方面&#xff0c;Flask允…...

KMP 算法的 C 语言实现

# include <stdio.h> # include <stdlib.h> # include <string.h>// 打印 KMP 匹配结果. void ColorPrint(char *T, int *result, int result_size, int m) {int green_size strlen("\x1b[31m");int reset_size strlen("\x1b[0m");cha…...

深入理解 TCP 协议:可靠传输、连接管理与经典面试题解析

TCP&#xff08;Transmission Control Protocol&#xff09;是互联网中最重要的传输层协议之一&#xff0c;其设计目标是提供可靠的、面向连接的、全双工的数据传输服务。本文将从核心机制、工作原理到经典面试题&#xff0c;全面解析 TCP 协议的关键特性。 一、TCP 核心特性 …...

雪花算法

雪花算法&#xff08;Snowflake&#xff09; 雪花算法是一种由Twitter开源的分布式ID生成算法&#xff0c;广泛应用于分布式系统中&#xff0c;用于生成全局唯一的ID。这些ID不仅具有唯一性&#xff0c;还按照时间顺序递增&#xff0c;便于排序和查询。以下是雪花算法的详细解…...

coding ability 展开第二幕(双指针——巩固篇)超详细!!!!

文章目录 前言有效的三角形个数思路 查找总价格为目标值的两个商品思路 两数之和思路 三数之和思路 四数之和思路 总结 前言 本专栏的上篇&#xff0c;讲述了双指针的一些基础的算法习题 今天我们来学习更进一步的双指针用法吧 其实也是大相径庭&#xff0c;和前面的差不多&…...

系统安全阶段练习真题(高软44)

系列文章目录 系统安全阶段练习真题 文章目录 系列文章目录前言一、真题总结 前言 本节就是系统安全的阶段练习真题&#xff0c;带答案与解析。 一、真题 总结 就是高软笔记&#xff0c;大佬请略过&#xff01;...

Mybatis Generator 使用手册

第一章 什么是Mybatis Generator&#xff1f; MyBatis Generator Core – Introduction to MyBatis Generator MyBatis生成器&#xff08;MBG&#xff09;是MyBatis框架的代码生成工具。它支持为所有版本的MyBatis生成代码&#xff0c;通过解析数据库表&#xff08;或多个表&…...

Android中AIDL和HIDL的区别

在Android中&#xff0c;AIDL&#xff08;Android Interface Definition Language&#xff09; 和 HIDL&#xff08;HAL Interface Definition Language&#xff09; 是两种用于定义跨进程通信接口的语言。AIDL 是 Android 系统最早支持的 IPC&#xff08;进程间通信&#xff0…...

Gazebo 启动时候配置物体

1. 准备模型 mkdir -p ~/.gazebo/models/table echo export GAZEBO_MODEL_PATH$HOME/.gazebo/models:$GAZEBO_MODEL_PATH >> ~/.bashrc source ~/.bashrc # 从https://github.com/osrf/gazebo_models下载模型 # 桌子 cd ~/.gazebo/models/table wget https://raw.github…...

展示深拷贝与移动语义的对比

定义 Buffer 类&#xff08;含深拷贝和移动语义&#xff09; #include <iostream> #include <chrono> #include <cstring>class Buffer { public:// 默认构造函数&#xff08;分配内存&#xff09;explicit Buffer(size_t size) : size_(size), data_(new in…...

STM32基础教程——对射式红外传感器计数实验

前言 对射式红外传感器介绍 对射式红外传感器是一种非接触式的距离检测器&#xff0c;主要由发射器和接收器两部分组成。发射器发出特定波长的红外光束&#xff0c;当物体阻挡了这条光束时&#xff0c;接收器无法接收到光线信号&#xff0c;从而产生一个开关信号来判断物体的存…...

Git与GitHub:理解两者差异及其关系

目录 Git与GitHub&#xff1a;理解两者差异及其关系Git&#xff1a;分布式版本控制系统概述主要特点 GitHub&#xff1a;基于Web的托管服务概述主要特点 Git和GitHub如何互补关系现代开发工作流 结论 Git与GitHub&#xff1a;理解两者差异及其关系 Git&#xff1a;分布式版本控…...

【时时三省】(C语言基础)赋值语句2

山不在高&#xff0c;有仙则名。水不在深&#xff0c;有龙则灵。 ----CSDN 时时三省 赋值运算符 赋值符号“”就是赋值运算符&#xff0c;它的作用是将一个数据赋给一个变量。如a 3的作用是执行一次赋值操作&#xff08;或称赋值运算&#xff09;。把常量3赋给变量a。也可以…...

服务器上通过ollama部署deepseek

2025年1月下旬&#xff0c;DeepSeek的R1模型发布后的一周内就火了&#xff0c;性能比肩OpenAI的o1模型&#xff0c;且训练成本仅为560万美元&#xff0c;成本远低于openAI&#xff0c;使得英伟达股票大跌。 下面我们来看下如何个人如何部署deepseek-r1模型。 我是用的仙宫云的…...

自动控制原理【知识点总结、复习笔记】

1.控制系统定义 控制系统是指通过监测和调整系统的行为&#xff0c;以达到预期目标的一套系统。它由一组相互关联的组件组成&#xff0c;这些组件协同工作&#xff0c;用于控制物理过程、机械设备、电子设备或其他系统。例如&#xff0c;一个简单的温控系统可以通过监测房间温…...

【AI】什么是Embedding向量模型?我们应该如何选择?

我们之前讲的搭建本地知识库,基本都是使用检索增强生成(RAG)技术来搭建,Embedding模型则是RAG的核心,同时也是大模型落地必不可少的技术。那么今天我们就来聊聊Embedding向量模型: 一、Embedding模型是什么? Embedding模型是一种将离散数据(如文本、图像、用户行为等)…...

openwrt路由系统------Linux 驱动开发的核心步骤

以下是 Linux 驱动开发的核心步骤,结合实践案例与注意事项,适合嵌入式设备(如 OpenWrt 路由器)开发: 一、驱动开发基本流程 1. 环境准备 工具链与内核源码 # 安装交叉编译工具链(如 ARM) sudo apt-get install gcc-arm-linux-gnueabihf# 获取目标内核源码(需匹配运行的…...

Educational Codeforces Round 7 F. The Sum of the k-th Powers 多项式、拉格朗日插值

题目链接 题目大意 求 ( ∑ i 1 n i k ) (\sum_{i1}^{n} i^k) (∑i1n​ik) m o d ( 1 0 9 7 ) mod(10^97) mod(1097) . 数据范围 &#xff1a; 1 ≤ n ≤ 1 0 9 1 \leq n \leq 10^9 1≤n≤109 , 0 ≤ k ≤ 1 0 6 0 \leq k \leq 10^6 0≤k≤106 . 思路 令 f ( n ) ∑ …...

学习笔记:利用OpenAI实现阅卷智能体

https://zhuanlan.zhihu.com/p/18047953492 ### 学习笔记&#xff1a;利用OpenAI实现阅卷智能体 #### 一、背景与需求 在各类考试中&#xff0c;选择题、判断题、填空题的阅卷相对简单&#xff0c;只需对比答案与作答是否一致。然而&#xff0c;简答题的阅卷较为复杂&#xff…...

进程的简要介绍

一.进程 1.概念&#xff1a;担当分配系统资源的实体 2.进程内核数据结构对象自己的代码和数据 或进程PCB(task_struct)自己的代码和数据 注1&#xff1a;PCB&#xff1a;操作系统中描述进程的结构体 2.进程的所有属性均可在task_struct中找到&#xff0c;管理进程其实就是…...

每日一题——乘积最大子数组

乘积最大子数组问题详解 问题描述示例约束条件 问题分析难点分析解题思路 代码实现代码说明 测试用例测试用例 1测试用例 2测试用例 3 总结 问题描述 给定一个整数数组 nums&#xff0c;请你找出数组中乘积最大的非空连续子数组&#xff08;该子数组中至少包含一个数字&#x…...

HttpServletRequest 和 HttpServletResponse 区别和作用

一、核心作用对比 对象HttpServletRequest&#xff08;请求对象&#xff09;HttpServletResponse&#xff08;响应对象&#xff09;本质客户端发给服务器的 HTTP 请求信息&#xff08;输入&#xff09;服务器返回客户端的 HTTP 响应信息&#xff08;输出&#xff09;生命周期一…...

黄昏时间户外街拍人像Lr调色教程,手机滤镜PS+Lightroom预设下载!

调色介绍 黄昏时分有着独特而迷人的光线&#xff0c;使此时拍摄的人像自带一种浪漫、朦胧的氛围 。通过 Lr 调色&#xff0c;可以进一步强化这种特质并根据不同的风格需求进行创作。Lr&#xff08;Lightroom&#xff09;作为专业的图像后期处理软件&#xff0c;提供了丰富的调色…...

Docker Desktop 安装与使用详解

目录 1. 前言2. Docker Desktop 安装2.1 下载及安装2.2 登录 Docker 账号2.3 进入 Docker Desktop 主界面 3. Docker 版本查看与环境检查3.1 查看 Docker Desktop 支持的 Docker 和 Kubernetes 版本3.2 检查 Docker 版本 4. Docker Hub 和常用镜像管理方式4.1 使用 Docker Hub4…...

DeepSeek-R1与全光网络的医疗技术协同场景深度分析

一、DeepSeek-R1与全光网络的技术协同场景 1. 实时诊疗与数据交互 1. 实时诊疗与数据交互 1.1 场景示例分析 高带宽需求:医疗影像,尤其是CT和MRI影像,通常具有高分辨率和大数据量,要求医疗系统具备超高带宽来实时传输这些数据。全光网络,特别是基于华为F5G的解决方案,…...