当前位置: 首页 > news >正文

用MATLAB符号工具建立机器人的动力学模型

目录

  • 介绍
  • 代码功能演示
  • 拉格朗日方法回顾
  • 求解符号表达式
  • 数值求解

介绍

开发机器人过程中经常需要用牛顿-拉格朗日法建立机器人的动力学模型,表示为二阶微分方程组。本文以一个二杆系统为例,介绍如何用MATLAB符号工具得到微分方程表达式,只需要编辑好物点的位置公式和系统动能、势能,就能得到微分方程组,避免繁琐的手工推导工作。

代码功能演示

先放运行效果:没有外力:
请添加图片描述
施加5N向上外力:
请添加图片描述
采用《机器人学导论——分析、控制及应用(第二版)》一书中例4.4的自由二连杆,原例题和建模过程如下:
在这里插入图片描述
在这里插入图片描述
全部代码如下,直接复制到Matlab中即可运行,其中第一节是建模,得到加速度项的表达式,第二节是带入数据进行数值求解:

% 以自由二连杆为例,展示Matlab符号工具建立牛顿-拉格朗日动力学方程,并用ODE45函数数值求解的过程%% 建模
syms m1 m2 L1 L2 g % 结构常量
syms t x1(t) x2(t) % 将系统的广义坐标定义为时间函数IA=1/3*m1*L1^2; % 连杆1惯量
ID=1/12*m2*L2^2;% 连杆2惯量pD=[L1*cos(x1)+1/2*L2*cos(x1+x2); %连杆2质心位置L1*sin(x1)+1/2*L2*sin(x1+x2)];
vD=diff(pD,t); %对时间求导得到速度K=1/2*IA*diff(x1,t)^2+1/2*ID*(diff(x1,t)+diff(x2,t))^2+1/2*m2*sum(vD.^2); %系统动能P=m1*g*L1/2*sin(x1)+m2*g*(L1*sin(x1)+L2/2*sin(x1+x2)); % 系统势能L=K-P; %拉格朗日函数syms dx1 dx2 ddx1 ddx2
temp=diff(diff(L,diff(x1,t)),t)-diff(L,x1); % 展开拉格朗日函数,得到二阶微分式
temp=subs(temp,diff(x1,t,t),ddx1); % 用新定义的符号代替广义坐标的一二阶导数,简化公式表达
temp=subs(temp,diff(x2,t,t),ddx2);
temp=subs(temp,diff(x1,t),dx1);
temp=subs(temp,diff(x2,t),dx2);
diff1=collect(temp,[ddx1,ddx2,dx1^2,dx2^2,dx1*dx2,dx1,dx2]); % 合并同类项,整理成便于阅读的形式temp=diff(diff(L,diff(x2,t)),t)-diff(L,x2); % 对第二个广义坐标θ2做同样操作
temp=subs(temp,diff(x1,t,t),ddx1);
temp=subs(temp,diff(x2,t,t),ddx2);
temp=subs(temp,diff(x1,t),dx1);
temp=subs(temp,diff(x2,t),dx2);
diff2=collect(temp,[ddx1,ddx2,dx1^2,dx2^2,dx1*dx2,dx1,dx2]);syms T1 T2 Fx Fy
syms x1v x2v %求雅可比矩阵不能用时间函数x1(t)和x2(t),因此先定义临时变量,求雅可比后再替换为x1和x2
p_end = [L1*cos(x1v)+L2*cos(x1v+x2v);L1*sin(x1v)+L2*sin(x1v+x2v)];% 末端位置
J_end = jacobian(p_end,[x1v;x2v]);% 末端雅可比矩阵
J_end = subs(J_end,{x1v,x2v},{x1,x2});
eqn = [diff1;diff2] == [T1;T2] + J_end.'*[Fx;Fy]; %构建动力学矩阵方程式
sol = solve(eqn,[ddx1;ddx2]); %求出二阶项[ddx1;ddx2]的解析解%输出求解结果,需要把结果表达式粘贴到新文件中,将其中的(t)全都删掉,然后粘贴到最下面odefun中v1和v2的表达式
fprintf("ddx1=");
disp(sol.ddx1);
fprintf("ddx2=");
disp(sol.ddx2);
fprintf("需要把结果表达式中的(t)全都删掉,然后粘贴到最下面odefun中ddx1和ddx2的表达式\n");%% 数值求解
clear;
global m1 m2 L1 L2 g d1 d2 Fx Fy
m1=1; m2=1; L1=0.5; L2=0.5; g=9.81;d1=0.8;d2=d1;Fx=0;Fy=0;%设置机器人参数,关节阻尼和外力tspan = 0:0.01:5; % 时间范围
[t,y] = ode45(@odefun,tspan,[0;0;0;0]); % 求解figure(1);clf; % 绘制运动动画
set(gcf,'Position',[0 300 600 350]);
for i = 1:10:size(y,1)x1=y(i,1);x2=y(i,2);x_loc = [0 L1*cos(x1) L1*cos(x1)+L2*cos(x1+x2)];y_loc = [0 L1*sin(x1) L1*sin(x1)+L2*sin(x1+x2)];clf; hold on;plot(x_loc,y_loc,'k - o','LineWidth',2);arrow_rate = 0.05;%箭头大小比例quiver(x_loc(end), y_loc(end), Fx*arrow_rate, Fy*arrow_rate, 0, 'LineWidth', 2, 'MaxHeadSize', 1, 'Color', 'r');  xlim([-1 1]);ylim([-1.22 0]);tit = sprintf("%.2f s",t(i));title(tit);
%     saveas(gcf,['Fig/',sprintf('%03d',size(y,1)-i),'.jpg']);pause(0.001);
endfigure(2); % 绘制关节角变化曲线
set(gcf,'Position',[0+600 300 600 500]);
subplot(211);
plot(t,rad2deg(y(:,1)+pi/2));
xlabel('Time (s)');ylabel('\theta_1');grid on;
subplot(212);
plot(t,rad2deg(y(:,2)));
xlabel('Time (s)');ylabel('\theta_2');grid on;% 为了求数值解需要化为一阶系统,以下为一阶系统的状态向量:
% x = [x1 x2 dx1 dx2]
% dxdt = [dx1 dx2 ddx1 ddx2]
function dxdt=odefun(t,x)global m1 m2 L1 L2 g d1 d2 Fx Fyx1=x(1);x2=x(2);dx1=x(3);dx2=x(4); %状态向量即为θ1,θ及其一阶导数T1 = -d1*dx1;T2 = -d2*dx2;% 根据符号工具的求解结果,得到θ1,θ2二阶导的表达式如下,需要删掉符号表达式中所有的(t)以免报错ddx1 = -(3*(2*L2*T2 - 2*L2*T1 - 6*L2*T1*sin(x1 + x2)^2 + 6*L2*T2*sin(x1 + x2)^2 - 6*L2*T1*cos(x1 + x2)^2 + 6*L2*T2*cos(x1 + x2)^2 + 12*L1*T2*sin(x1)*sin(x1 + x2) - 2*Fy*L1*L2*cos(x1)...  + 2*Fx*L1*L2*sin(x1) + 12*L1*T2*cos(x1)*cos(x1 + x2) + L1*L2*g*m1*cos(x1) + 2*L1*L2*g*m2*cos(x1) + 6*Fy*L1*L2*cos(x1)*cos(x1 + x2)^2 + 6*Fx*L1*L2*sin(x1)*cos(x1 + x2)...^2 - 6*Fy*L1*L2*cos(x1)*sin(x1 + x2)^2 - 6*Fx*L1*L2*sin(x1)*sin(x1 + x2)^2 + 3*L1*L2*g*m1*cos(x1)*cos(x1 + x2)^2 + 3*L1*L2*g*m1*cos(x1)*sin(x1 + x2)^2 + 6*L1*L2*g*m2*cos(x1)...    *sin(x1 + x2)^2 - L1*L2^2*dx1^2*m2*cos(x1)*sin(x1 + x2) + L1*L2^2*dx1^2*m2*sin(x1)*cos(x1 + x2) - L1*L2^2*dx2^2*m2*cos(x1)*sin(x1 + x2) + L1*L2^2*dx2^2*m2*sin(x1)*cos(x1 + x2)...  - 12*Fx*L1*L2*cos(x1)*cos(x1 + x2)*sin(x1 + x2) - 3*L1*L2^2*dx1^2*m2*cos(x1)*sin(x1 + x2)^3 + 3*L1*L2^2*dx1^2*m2*sin(x1)*cos(x1 + x2)^3 - 3*L1*L2^2*dx2^2*m2*cos(x1)*sin(x1 + x2)...^3 + 3*L1*L2^2*dx2^2*m2*sin(x1)*cos(x1 + x2)^3 + 12*Fy*L1*L2*sin(x1)*cos(x1 + x2)*sin(x1 + x2) + 6*L1^2*L2*dx1^2*m2*cos(x1)*sin(x1)*cos(x1 + x2)^2 - 6*L1^2*L2*dx1^2*m2*cos(x1)...  *sin(x1)*sin(x1 + x2)^2 - 6*L1*L2*g*m2*sin(x1)*cos(x1 + x2)*sin(x1 + x2) - 3*L1*L2^2*dx1^2*m2*cos(x1)*cos(x1 + x2)^2*sin(x1 + x2) - 6*L1^2*L2*dx1^2*m2*cos(x1)^2*cos(x1 + x2)...    *sin(x1 + x2) - 3*L1*L2^2*dx2^2*m2*cos(x1)*cos(x1 + x2)^2*sin(x1 + x2) - 2*L1*L2^2*dx1*dx2*m2*cos(x1)*sin(x1 + x2) + 2*L1*L2^2*dx1*dx2*m2*sin(x1)*cos(x1 + x2)...+ 3*L1*L2^2*dx1^2*m2*sin(x1)*cos(x1 + x2)*sin(x1 + x2)^2 + 6*L1^2*L2*dx1^2*m2*sin(x1)^2*cos(x1 + x2)*sin(x1 + x2) + 3*L1*L2^2*dx2^2*m2*sin(x1)*cos(x1 + x2)*sin(x1 + x2)...^2 - 6*L1*L2^2*dx1*dx2*m2*cos(x1)*sin(x1 + x2)^3 + 6*L1*L2^2*dx1*dx2*m2*sin(x1)*cos(x1 + x2)^3 - 6*L1*L2^2*dx1*dx2*m2*cos(x1)*cos(x1 + x2)^2*sin(x1 + x2)...+ 6*L1*L2^2*dx1*dx2*m2*sin(x1)*cos(x1 + x2)*sin(x1 + x2)^2))/(2*(L1^2*L2*m1 + 3*L1^2*L2*m2*cos(x1)^2 + 3*L1^2*L2*m2*sin(x1)^2 + 3*L1^2*L2*m1*cos(x1 + x2)...^2 + 3*L1^2*L2*m1*sin(x1 + x2)^2 + 9*L1^2*L2*m2*cos(x1)^2*sin(x1 + x2)^2 + 9*L1^2*L2*m2*sin(x1)^2*cos(x1 + x2)^2 - 18*L1^2*L2*m2*cos(x1)*sin(x1)*cos(x1 + x2)*sin(x1 + x2)));ddx2 = (3*(8*L1^2*T2*m1 - 2*L2^2*T1*m2 + 2*L2^2*T2*m2 + 24*L1^2*T2*m2*cos(x1)^2 + 24*L1^2*T2*m2*sin(x1)^2 - 6*L2^2*T1*m2*cos(x1 + x2)^2 + 6*L2^2*T2*m2*cos(x1 + x2)...^2 - 6*L2^2*T1*m2*sin(x1 + x2)^2 + 6*L2^2*T2*m2*sin(x1 + x2)^2 - 2*Fy*L1*L2^2*m2*cos(x1) + 2*Fx*L1*L2^2*m2*sin(x1) + 8*Fy*L1^2*L2*m1*cos(x1 + x2) - 8*Fx*L1^2*L2*m1*sin(x1 + x2)...+ 2*L1*L2^2*g*m2^2*cos(x1) - 4*L1^2*L2*g*m1*m2*cos(x1 + x2) - 3*L1*L2^3*dx1^2*m2^2*cos(x1)*sin(x1 + x2)^3 + 3*L1*L2^3*dx1^2*m2^2*sin(x1)*cos(x1 + x2)...^3 - 12*L1^3*L2*dx1^2*m2^2*cos(x1)^3*sin(x1 + x2) + 12*L1^3*L2*dx1^2*m2^2*sin(x1)^3*cos(x1 + x2) - 3*L1*L2^3*dx2^2*m2^2*cos(x1)*sin(x1 + x2)^3 + 3*L1*L2^3*dx2^2*m2^2*sin(x1)...   *cos(x1 + x2)^3 + 6*Fy*L1*L2^2*m2*cos(x1)*cos(x1 + x2)^2 + 12*Fy*L1^2*L2*m2*cos(x1)^2*cos(x1 + x2) + 6*Fx*L1*L2^2*m2*sin(x1)*cos(x1 + x2)^2 - 24*Fx*L1^2*L2*m2*cos(x1)...^2*sin(x1 + x2) - 6*Fy*L1*L2^2*m2*cos(x1)*sin(x1 + x2)^2 + 24*Fy*L1^2*L2*m2*sin(x1)^2*cos(x1 + x2) - 6*Fx*L1*L2^2*m2*sin(x1)*sin(x1 + x2)^2 - 12*Fx*L1^2*L2*m2*sin(x1)...^2*sin(x1 + x2) - 12*L1*L2*T1*m2*cos(x1)*cos(x1 + x2) + 24*L1*L2*T2*m2*cos(x1)*cos(x1 + x2) - 12*L1*L2*T1*m2*sin(x1)*sin(x1 + x2) + 24*L1*L2*T2*m2*sin(x1)*sin(x1 + x2)...- L1*L2^3*dx1^2*m2^2*cos(x1)*sin(x1 + x2) + L1*L2^3*dx1^2*m2^2*sin(x1)*cos(x1 + x2) - L1*L2^3*dx2^2*m2^2*cos(x1)*sin(x1 + x2) + L1*L2^3*dx2^2*m2^2*sin(x1)*cos(x1 + x2)...+ 6*L1*L2^2*g*m2^2*cos(x1)*sin(x1 + x2)^2 - 12*L1^2*L2*g*m2^2*sin(x1)^2*cos(x1 + x2) + L1*L2^2*g*m1*m2*cos(x1) - 6*L1*L2^2*g*m2^2*sin(x1)*cos(x1 + x2)*sin(x1 + x2)...- 12*L1^2*L2^2*dx1^2*m2^2*cos(x1)^2*cos(x1 + x2)*sin(x1 + x2) - 6*L1^2*L2^2*dx2^2*m2^2*cos(x1)^2*cos(x1 + x2)*sin(x1 + x2) - 6*L1*L2^3*dx1*dx2*m2^2*cos(x1)*sin(x1 + x2)...^3 + 6*L1*L2^3*dx1*dx2*m2^2*sin(x1)*cos(x1 + x2)^3 + 12*L1^2*L2^2*dx1^2*m2^2*sin(x1)^2*cos(x1 + x2)*sin(x1 + x2) + 6*L1^2*L2^2*dx2^2*m2^2*sin(x1)^2*cos(x1 + x2)*sin(x1 + x2)...+ 12*Fx*L1^2*L2*m2*cos(x1)*sin(x1)*cos(x1 + x2) - 12*Fy*L1^2*L2*m2*cos(x1)*sin(x1)*sin(x1 + x2) + 12*L1^3*L2*dx1^2*m2^2*cos(x1)^2*sin(x1)*cos(x1 + x2) - 12*Fx*L1*L2^2*m2*cos(x1)...*cos(x1 + x2)*sin(x1 + x2) - 12*L1^3*L2*dx1^2*m2^2*cos(x1)*sin(x1)^2*sin(x1 + x2) + 12*Fy*L1*L2^2*m2*sin(x1)*cos(x1 + x2)*sin(x1 + x2) - 3*L1*L2^3*dx1^2*m2^2*cos(x1)*cos(x1 + x2)...^2*sin(x1 + x2) - 3*L1*L2^3*dx2^2*m2^2*cos(x1)*cos(x1 + x2)^2*sin(x1 + x2) + 3*L1*L2^2*g*m1*m2*cos(x1)*cos(x1 + x2)^2 + 6*L1^2*L2*g*m1*m2*cos(x1)^2*cos(x1 + x2)...+ 12*L1^2*L2*g*m2^2*cos(x1)*sin(x1)*sin(x1 + x2) - 2*L1*L2^3*dx1*dx2*m2^2*cos(x1)*sin(x1 + x2) + 2*L1*L2^3*dx1*dx2*m2^2*sin(x1)*cos(x1 + x2) + 3*L1*L2^3*dx1^2*m2^2*sin(x1)...*cos(x1 + x2)*sin(x1 + x2)^2 + 3*L1*L2^3*dx2^2*m2^2*sin(x1)*cos(x1 + x2)*sin(x1 + x2)^2 - 4*L1^3*L2*dx1^2*m1*m2*cos(x1)*sin(x1 + x2) + 4*L1^3*L2*dx1^2*m1*m2*sin(x1)*cos(x1 + x2)...+ 12*L1^2*L2^2*dx1^2*m2^2*cos(x1)*sin(x1)*cos(x1 + x2)^2 + 6*L1^2*L2^2*dx2^2*m2^2*cos(x1)*sin(x1)*cos(x1 + x2)^2 + 3*L1*L2^2*g*m1*m2*cos(x1)*sin(x1 + x2)...^2 - 12*L1^2*L2^2*dx1^2*m2^2*cos(x1)*sin(x1)*sin(x1 + x2)^2 - 6*L1^2*L2^2*dx2^2*m2^2*cos(x1)*sin(x1)*sin(x1 + x2)^2 - 12*L1^2*L2^2*dx1*dx2*m2^2*cos(x1)*sin(x1)*sin(x1 + x2)...^2 - 12*L1^2*L2^2*dx1*dx2*m2^2*cos(x1)^2*cos(x1 + x2)*sin(x1 + x2) + 12*L1^2*L2^2*dx1*dx2*m2^2*sin(x1)^2*cos(x1 + x2)*sin(x1 + x2) - 6*L1*L2^3*dx1*dx2*m2^2*cos(x1)*cos(x1 + x2)...^2*sin(x1 + x2) + 6*L1*L2^3*dx1*dx2*m2^2*sin(x1)*cos(x1 + x2)*sin(x1 + x2)^2 + 6*L1^2*L2*g*m1*m2*cos(x1)*sin(x1)*sin(x1 + x2) + 12*L1^2*L2^2*dx1*dx2*m2^2*cos(x1)*sin(x1)...*cos(x1 + x2)^2))/(2*(3*L1^2*L2^2*m2^2*cos(x1)^2 + 3*L1^2*L2^2*m2^2*sin(x1)^2 + L1^2*L2^2*m1*m2 + 9*L1^2*L2^2*m2^2*cos(x1)^2*sin(x1 + x2)^2 + 9*L1^2*L2^2*m2^2*sin(x1)...^2*cos(x1 + x2)^2 + 3*L1^2*L2^2*m1*m2*cos(x1 + x2)^2 + 3*L1^2*L2^2*m1*m2*sin(x1 + x2)^2 - 18*L1^2*L2^2*m2^2*cos(x1)*sin(x1)*cos(x1 + x2)*sin(x1 + x2)));dxdt=[dx1;dx2;ddx1;ddx2];%返回状态向量的一阶导
end

拉格朗日方法回顾

系统广义坐标为两个关节角 θ 1 \theta_1 θ1 θ 2 \theta_2 θ2,拉格朗日公式为:
L = K − P . . . . . . ( 1 ) d d t ( ∂ L ∂ θ ˙ i ) − ∂ L ∂ θ i = Q i , i = 1 , 2...... ( 2 ) L=K-P......(1)\newline \frac{d}{dt}(\frac{\partial L}{\partial \dot \theta_i})-\frac{\partial L}{\partial \theta_i}=Q_i, i=1,2 ......(2) L=KP......(1)dtd(θ˙iL)θiL=Qi,i=1,2......(2)
其中L是拉格朗日函数,K是系统动能,P是系统势能, Q i Q_i Qi表示关节力矩 + 所有外力等效到该关节的力矩。将公式(2)求导展开,并考虑机器人末端受力,会得到如下形式:
M ( Θ ) Θ ¨ + C ( Θ , Θ ˙ ) = Q + J e T F e , where  Θ = ( θ 1 θ 2 ) . . . . . . ( 3 ) \bold M(\Theta)\ddot\Theta +\bold C(\Theta,\dot\Theta)=\bold Q+\bold J_{e}^\text T\bold F_{e}, \text{where } \Theta=\begin{pmatrix} \ \theta_1 \\ \ \theta_2 \end{pmatrix}......(3) M(Θ)Θ¨+C(Θ,Θ˙)=Q+JeTFe,where Θ=( θ1 θ2)......(3)
其中M是加速度矩阵,C是低阶项,Q表示关节自身力矩,如关节阻尼力、电机驱动力等,Fe是末端受到的外力,Je是机器人末端雅可比矩阵,可以把笛卡尔坐标系下定义的外力映射到关节空间,化为等效的关节力矩。
实际上这个“末端”也可以是机器人身上任意一点,把每个受力点对应的 J T F J^\text{T}F JTF项直接加在公式(3)右边就行了。本文案例中只有一个全局坐标系,Fe也是定义在这个坐标系下。

求解符号表达式

首先用syms语句定义结构常量和广义坐标,需要把广义坐标定义为关于时间的函数,方便后面求导:

syms m1 m2 L1 L2 g % 结构常量
syms t x1(t) x2(t) % 将系统的广义坐标定义为时间函数

定义连杆转动惯量,后面要用:

IA=1/3*m1*L1^2; % 连杆1惯量
ID=1/12*m2*L2^2;% 连杆2惯量

定义连杆2中心的位置公式,用diff函数对时间求导得到速度:

pD=[L1*cos(x1)+1/2*L2*cos(x1+x2); %连杆2质心位置L1*sin(x1)+1/2*L2*sin(x1+x2)];
vD=diff(pD,t); %对时间求导得到速度

编辑动能和势能,得到拉格朗日函数:

K=1/2*IA*diff(x1,t)^2+1/2*ID*(diff(x1,t)+diff(x2,t))^2+1/2*m2*sum(vD.^2); %系统动能
P=m1*g*L1/2*sin(x1)+m2*g*(L1*sin(x1)+L2/2*sin(x1+x2)); % 系统势能
L=K-P; %拉格朗日函数

按公式2展开:

temp=diff(diff(L,diff(x1,t)),t)-diff(L,x1); % 展开拉格朗日函数,得到二阶微分式

matlab生成的表达式中,会用diff(x1,t)表示速度,用diff(x1,t,t)表示加速度,为了便于后面代入数值,需要定义新的符号变量,表示关节角的速度和加速度,然后替换到公式里:

syms dx1 dx2 ddx1 ddx2
temp=subs(temp,diff(x1,t,t),ddx1); % 用新定义的符号代替广义坐标的一二阶导数,简化公式表达
temp=subs(temp,diff(x2,t,t),ddx2);
temp=subs(temp,diff(x1,t),dx1);
temp=subs(temp,diff(x2,t),dx2);

按关节角的加速度项、平方项、交叉项,对微分式进行合并同类项:

diff1=collect(temp,[ddx1,ddx2,dx1^2,dx2^2,dx1*dx2,dx1,dx2]); % 合并同类项,整理成便于阅读的形式

这时候用pretty(diff1)指令,可以看到微分式的内容:
在这里插入图片描述
matlab不会把sin^2+cos^2替换为1,不会合并因子,所以比较冗长,但也够用了。
对第二个关节角做同样操作,得到第二行微分式:

temp=diff(diff(L,diff(x2,t)),t)-diff(L,x2); % 对第二个广义坐标θ2做同样操作
temp=subs(temp,diff(x1,t,t),ddx1);
temp=subs(temp,diff(x2,t,t),ddx2);
temp=subs(temp,diff(x1,t),dx1);
temp=subs(temp,diff(x2,t),dx2);
diff2=collect(temp,[ddx1,ddx2,dx1^2,dx2^2,dx1*dx2,dx1,dx2]);

为了加入外力,需要求末端雅可比矩阵,这里有个技巧,如果直接用刚才定义的x1(t), x2(t)会导致 jacobian() 返回一个时间函数,不能参与矩阵运算了,因此需要先定义普通符号变量x1v, x2v,求出雅可比后再用x1(t)和x2(t)替换。

syms x1v x2v %求雅可比矩阵不能用时间函数x1(t)和x2(t),因此先定义临时变量,求雅可比后再替换为x1和x2
p_end = [L1*cos(x1v)+L2*cos(x1v+x2v);L1*sin(x1v)+L2*sin(x1v+x2v)]; % 末端位置
J_end = jacobian(p_end,[x1v;x2v]); % 末端雅可比矩阵
J_end = subs(J_end,{x1v,x2v},{x1,x2}); %替换时间变量

定义符号变量表示关节力矩和外力,然后构建微分方程组,即为机器人动力学模型:

syms T1 T2 Fx Fy
eqn = [diff1;diff2] == [T1;T2] + J_end.'*[Fx;Fy]; %构建动力学矩阵方程式

这时候标准做法是通过对比公式(3)得到矩阵M,C的表达式,在后面数值求解函数中带入数据得到M,C的数值,再解出 Θ ¨ \ddot\Theta Θ¨
但是对于自由度较少的系统,可以直接让matlab解出 Θ ¨ \ddot\Theta Θ¨的解析式,更加省事:

sol = solve(eqn,[ddx1;ddx2]); %求出二阶项[ddx1;ddx2]的解析解
fprintf("ddx1=");%输出求解结果
disp(sol.ddx1);
fprintf("ddx2=");
disp(sol.ddx2);

会得到很长的代数式,为了方面后面使用,在GPT帮助下生成了一段python代码,它先把表达式中所有"(t)"去掉,再把公式拆分为多行,python代码如下:

# 把很长的Matlab符号表达式拆分为多行def format_matlab_expression(expression, line_length=180):  # 定义运算符  operators = ['+', '-', '*', '/', '(', ')']  # 初始化变量  formatted_expression = ""  current_line = ""  # 遍历表达式中的每个字符  for char in expression:  current_line += char  # 检查当前行的长度  if len(current_line) >= line_length:  # 找到最近的运算符  for op in reversed(operators):  if op in current_line:  # 找到运算符的位置  op_index = current_line.rfind(op)  # 在运算符前换行  formatted_expression += current_line[:op_index + 1] + "...\n"  # 更新当前行  current_line = current_line[op_index + 1:].lstrip()  # 去掉运算符前的空格  break  # 添加最后一行(如果有剩余内容)  if current_line:  formatted_expression += current_linereturn formatted_expression  # 示例 MATLAB 表达式  
matlab_expression = "-(3*(2*L2*T2 - 2*L2*T1 - 6*L2*T1*sin(x1(t) + x2(t))^2 + 6*L2*T2*sin(x1(t) + x2(t))^2 - 6*L2*T1*cos(x1(t) + x2(t))^2 + 6*L2*T2*cos(x1(t) + x2(t))^2 + 12*L1*T2*sin(x1(t))*sin(x1(t) + x2(t)) - 2*Fy*L1*L2*cos(x1(t)) + 2*Fx*L1*L2*sin(x1(t)) + 12*L1*T2*cos(x1(t))*cos(x1(t) + x2(t)) + L1*L2*g*m1*cos(x1(t)) + 2*L1*L2*g*m2*cos(x1(t)) + 6*Fy*L1*L2*cos(x1(t))*cos(x1(t) + x2(t))^2 + 6*Fx*L1*L2*sin(x1(t))*cos(x1(t) + x2(t))^2 - 6*Fy*L1*L2*cos(x1(t))*sin(x1(t) + x2(t))^2 - 6*Fx*L1*L2*sin(x1(t))*sin(x1(t) + x2(t))^2 + 3*L1*L2*g*m1*cos(x1(t))*cos(x1(t) + x2(t))^2 + 3*L1*L2*g*m1*cos(x1(t))*sin(x1(t) + x2(t))^2 + 6*L1*L2*g*m2*cos(x1(t))*sin(x1(t) + x2(t))^2 - L1*L2^2*dx1^2*m2*cos(x1(t))*sin(x1(t) + x2(t)) + L1*L2^2*dx1^2*m2*sin(x1(t))*cos(x1(t) + x2(t)) - L1*L2^2*dx2^2*m2*cos(x1(t))*sin(x1(t) + x2(t)) + L1*L2^2*dx2^2*m2*sin(x1(t))*cos(x1(t) + x2(t)) - 12*Fx*L1*L2*cos(x1(t))*cos(x1(t) + x2(t))*sin(x1(t) + x2(t)) - 3*L1*L2^2*dx1^2*m2*cos(x1(t))*sin(x1(t) + x2(t))^3 + 3*L1*L2^2*dx1^2*m2*sin(x1(t))*cos(x1(t) + x2(t))^3 - 3*L1*L2^2*dx2^2*m2*cos(x1(t))*sin(x1(t) + x2(t))^3 + 3*L1*L2^2*dx2^2*m2*sin(x1(t))*cos(x1(t) + x2(t))^3 + 12*Fy*L1*L2*sin(x1(t))*cos(x1(t) + x2(t))*sin(x1(t) + x2(t)) + 6*L1^2*L2*dx1^2*m2*cos(x1(t))*sin(x1(t))*cos(x1(t) + x2(t))^2 - 6*L1^2*L2*dx1^2*m2*cos(x1(t))*sin(x1(t))*sin(x1(t) + x2(t))^2 - 6*L1*L2*g*m2*sin(x1(t))*cos(x1(t) + x2(t))*sin(x1(t) + x2(t)) - 3*L1*L2^2*dx1^2*m2*cos(x1(t))*cos(x1(t) + x2(t))^2*sin(x1(t) + x2(t)) - 6*L1^2*L2*dx1^2*m2*cos(x1(t))^2*cos(x1(t) + x2(t))*sin(x1(t) + x2(t)) - 3*L1*L2^2*dx2^2*m2*cos(x1(t))*cos(x1(t) + x2(t))^2*sin(x1(t) + x2(t)) - 2*L1*L2^2*dx1*dx2*m2*cos(x1(t))*sin(x1(t) + x2(t)) + 2*L1*L2^2*dx1*dx2*m2*sin(x1(t))*cos(x1(t) + x2(t)) + 3*L1*L2^2*dx1^2*m2*sin(x1(t))*cos(x1(t) + x2(t))*sin(x1(t) + x2(t))^2 + 6*L1^2*L2*dx1^2*m2*sin(x1(t))^2*cos(x1(t) + x2(t))*sin(x1(t) + x2(t)) + 3*L1*L2^2*dx2^2*m2*sin(x1(t))*cos(x1(t) + x2(t))*sin(x1(t) + x2(t))^2 - 6*L1*L2^2*dx1*dx2*m2*cos(x1(t))*sin(x1(t) + x2(t))^3 + 6*L1*L2^2*dx1*dx2*m2*sin(x1(t))*cos(x1(t) + x2(t))^3 - 6*L1*L2^2*dx1*dx2*m2*cos(x1(t))*cos(x1(t) + x2(t))^2*sin(x1(t) + x2(t)) + 6*L1*L2^2*dx1*dx2*m2*sin(x1(t))*cos(x1(t) + x2(t))*sin(x1(t) + x2(t))^2))/(2*(L1^2*L2*m1 + 3*L1^2*L2*m2*cos(x1(t))^2 + 3*L1^2*L2*m2*sin(x1(t))^2 + 3*L1^2*L2*m1*cos(x1(t) + x2(t))^2 + 3*L1^2*L2*m1*sin(x1(t) + x2(t))^2 + 9*L1^2*L2*m2*cos(x1(t))^2*sin(x1(t) + x2(t))^2 + 9*L1^2*L2*m2*sin(x1(t))^2*cos(x1(t) + x2(t))^2 - 18*L1^2*L2*m2*cos(x1(t))*sin(x1(t))*cos(x1(t) + x2(t))*sin(x1(t) + x2(t))))"
matlab_expression = matlab_expression.replace("(t)", "") # 删掉所有(t)
# 格式化表达式  
formatted = format_matlab_expression(matlab_expression)  # 打印结果  
print(formatted)

把python脚本输出的表达式放在最后的自定义函数odefun中,用来数值求解。

数值求解

网上已经有很多ode45函数的用法了。在这部分是先把公式中的参数定义为全局变量并赋值,以便被脚本代码和odefun函数共享:

global m1 m2 L1 L2 g d1 d2 Fx Fy
m1=1; m2=1; L1=0.5; L2=0.5; g=9.81;d1=0.8;d2=d1;Fx=0;Fy=0;%设置机器人参数,关节阻尼和外力

然后设置好时间向量和初始状态,执行ode45函数:

tspan = 0:0.01:5; % 时间范围
initial_state = [0;0;0;0]; % 初始状态
[t,y] = ode45(@odefun,tspan,initial_state); % 求解

为了用ode45求解,需要把公式(3)化为一阶系统,新的状态向量是:
x = [ θ 1 θ 2 θ ˙ 1 θ ˙ 2 ] \bold{x}= \begin{bmatrix} \ \theta_1 \\ \ \theta_2 \\ \ \dot\theta_1 \\ \ \dot\theta_2 \end{bmatrix} x=  θ1 θ2 θ˙1 θ˙2
一阶系统方程为
x ˙ = [ θ ˙ 1 θ ˙ 2 θ ¨ 1 θ ¨ 2 ] = [ x ( 3 ) x ( 4 ) θ ¨ 1 θ ¨ 2 ] \bold{\dot x}= \begin{bmatrix} \ \dot\theta_1 \\ \ \dot\theta_2 \\ \ \ddot\theta_1 \\ \ \ddot\theta_2 \end{bmatrix}= \begin{bmatrix} \ \bold{x}(3) \\ \ \bold{x}(4) \\ \ \ddot\theta_1 \\ \ \ddot\theta_2 \end{bmatrix} x˙=  θ˙1 θ˙2 θ¨1 θ¨2 =  x(3) x(4) θ¨1 θ¨2
其中 θ ¨ 1 \ddot\theta_1 θ¨1 θ ¨ 2 \ddot\theta_2 θ¨2就来自前面求解得到的加速度项解析式。

此外在odefun中需要指定关节力矩和外力的数值,示例代码中是给两个关节添加了阻尼力矩,给末端添加了一个恒定的外力。实际项目中可以根据需要,设置变化的力。odefun如下:

function dxdt=odefun(t,x)global m1 m2 L1 L2 g d1 d2 Fx Fyx1=x(1);x2=x(2);dx1=x(3);dx2=x(4); %状态向量即为θ1,θ及其一阶导数T1 = -d1*dx1;T2 = -d2*dx2;% 根据符号工具的求解结果,得到θ1,θ2二阶导的表达式如下,需要删掉符号表达式中所有的(t)以免报错ddx1 = (省略)ddx2 = (省略)dxdt=[dx1;dx2;ddx1;ddx2];%返回状态向量的一阶导
end

ode45返回的y的两列数据即为广义坐标θ1,θ2随时间变化的数值,绘制成曲线如下:
在这里插入图片描述

相关文章:

用MATLAB符号工具建立机器人的动力学模型

目录 介绍代码功能演示拉格朗日方法回顾求解符号表达式数值求解 介绍 开发机器人过程中经常需要用牛顿-拉格朗日法建立机器人的动力学模型,表示为二阶微分方程组。本文以一个二杆系统为例,介绍如何用MATLAB符号工具得到微分方程表达式,只需要…...

全面解析 MySQL 常见问题的排查与解决方法

目录 前言1. 查看 MySQL 日志信息1.1 日志文件的种类与路径1.2 查看日志内容的方法1.3 日志分析的关键点 2. 查看 MySQL 服务状态2.1 查看服务状态2.2 检查进程运行情况2.3 常见启动失败问题与解决 3. 检查 MySQL 配置信息3.1 配置文件的路径与内容3.2 验证配置文件的正确性 4.…...

泷羽Sec-星河飞雪-BurpSuite之解码、日志、对比模块基础使用

免责声明 学习视频来自 B 站up主泷羽sec,如涉及侵权马上删除文章。 笔记的只是方便各位师傅学习知识,以下代码、网站只涉及学习内容,其他的都与本人无关,切莫逾越法律红线,否则后果自负。 泷羽sec官网:http…...

【小白学机器学习34】基础统计2种方法:用numpy的方法np().mean()等进行统计,pd.DataFrame.groupby() 分组统计

目录 1 用 numpy 快速求数组的各种统计量:mean, var, std 1.1 数据准备 1.2 直接用np的公式求解 1.3 注意问题 1.4 用print() 输出内容,显示效果 2 为了验证公式的背后的理解,下面是详细的展开公式的求法 2.1 均值mean的详细 2.2 方差…...

【C++】stack和queue

目录 1. stack的介绍和使用 1.1 stack的介绍 1.2 stack的使用 2. queue的介绍和使用 2.1 queue的介绍 2.2 queue的使用 3. 容器适配器 3.1 什么是适配器 3.2 STL标准库中stack和queue的底层结构 3.3 deque的简单介绍(了解) 3.3.1 deque的原理介绍 3.3.2 deque优势与…...

向量的内积和外积 为什么这样定义

向量的内积和外积 为什么这样定义 flyfish 定义、公理与证明的区别 定义: 定义是人为规定的,用于描述概念的含义。例如,内积和外积是根据实际需求定义的,目的是描述几何和代数性质。定义不需要证明。 公理: 公理是数…...

简述循环神经网络RNN

1.why RNN CNN:处理图像之间没有时间/先后关系 RNN:对于录像,图像之间也许有时间/先后顺序,此时使用CNN效果不会很好,同理和人类的语言相关的方面时间顺序就更为重要了 2.RNN和CNN之间的关联 RNN和CNN本质上其实一…...

【Electron学习笔记(四)】进程通信(IPC)

进程通信(IPC) 进程通信(IPC)前言正文1、渲染进程→主进程(单向)2、渲染进程⇌主进程(双向)3、主进程→渲染进程 进程通信(IPC) 前言 在Electron框架中&…...

APP自动化测试框架的开发

基于appium的APP自动化测试框架的开发流程概览 1. 环境搭建 安装Appium Server 下载与安装:可以从Appium官方网站(Redirecting)下载安装包。对于Windows系统,下载.exe文件后双击安装;对于Mac系统,下载.dmg…...

【深度学习】各种卷积—卷积、反卷积、空洞卷积、可分离卷积、分组卷积

在全连接神经网络中,每个神经元都和上一层的所有神经元彼此连接,这会导致网络的参数量非常大,难以实现复杂数据的处理。为了改善这种情况,卷积神经网络应运而生。 一、卷积 在信号处理中,卷积被定义为一个函数经过翻转…...

pytorch 融合 fuse 学习笔记

目录 fuse_lora 作用是什么 fuse_modules源码解读 fuse_lora 作用是什么 在深度学习模型微调场景下(与 LoRA 相关) 参数融合功能 在使用 LoRA(Low - Rank Adaptation)对预训练模型进行微调后,fuse_lora函数的主要作…...

41 基于单片机的小车行走加温湿度检测系统

目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 基于51单片机,采样DHT11温湿度传感器检测温湿度,滑动变阻器连接数码转换器模拟电量采集传感器, 电机采样L298N驱动,各项参数通过LCD1602显示&#x…...

GitLab: You cannot create a branch with a SHA-1 or SHA-256 branch name

最近在迁移git库,把代码从gerrit迁移到gitlab,有几个库报错如下: GitLab: You cannot create a branch with a SHA-1 or SHA-256 branch name ! [remote rejected] refs/users/73/373/edit-95276/1 -> refs/users/73/373/edit-95276/1 (p…...

YOLOv9改进,YOLOv9引入TransNeXt中的ConvolutionalGLU模块,CVPR2024,二次创新RepNCSPELAN4结构

摘要 由于残差连接中的深度退化效应,许多依赖堆叠层进行信息交换的高效视觉Transformer模型往往无法形成足够的信息混合,导致视觉感知不自然。为了解决这个问题,作者提出了一种聚合注意力(Aggregated Attention),这是一种基于仿生设计的token混合器,模拟了生物的中央凹…...

TorchMoji使用教程/环境配置(2024)

TorchMoji使用教程/环境配置(2024) TorchMoji简介 这是一个基于pytorch库,用于将文本分类成不同的多种emoji表情的库,适用于文本的情感分析 配置流程 从Anaconda官网根据提示安装conda git拉取TorchMoji git clone https://gi…...

uniapp运行时,同步资源失败,未得到同步资源的授权,请停止运行后重新运行,并注意手机上的授权提示。

遇到自定义基座调试时安装无效或无反应?本文教你用 ADB 工具快速解决:打开 USB 调试,连接设备,找到应用包名,一键卸载问题包,清理干净后重新运行调试基座,轻松搞定! 问题场景&#…...

uniapp中父组件调用子组件方法

实现过程&#xff08;setup语法糖形式下&#xff09; 在子组件完成方法逻辑&#xff0c;并封装。在子组件中使用defineExpose暴露子组件的该方法。在父组件完成子组件ref的绑定。通过ref调用子组件暴露的方法。 子组件示例 <template> </template><script se…...

腾讯云 AI 代码助手:单元测试应用实践

引言 在软件开发这一充满创造性的领域中&#xff0c;开发人员不仅要构建功能强大的软件&#xff0c;还要确保这些软件的稳定性和可靠性。然而&#xff0c;开发过程中并非所有任务都能激发创造力&#xff0c;有些甚至是重复且乏味的。其中&#xff0c;编写单元测试无疑是最令人…...

ArcGIS栅格影像裁剪工具

1、前言 在最近的栅格转矢量处理过程中&#xff0c;发现二值化栅格规模太大&#xff0c;3601*3601&#xff0c;并且其中的面元太过细碎&#xff0c;通过arcgis直接栅格转面有将近几十万的要素&#xff0c;拿这样的栅格数据直接运行代码&#xff0c;发现速度很慢还难以执行出来结…...

VueWordCloud标签云初实现

文章目录 VueWordCloud学习总结安装初使用在组件中注册该组件简单使用项目中实现最终实现效果 VueWordCloud学习总结 本次小组官网的项目中自己要负责标签模块&#xff0c;想要实现一个标签云的效果&#xff0c;搜索了很多&#xff0c;发现vue有一个VueWordCloud库&#xff0c…...

AI数据分析工具(二)

豆包-免费 优点 强大的数据处理能力&#xff1a; 豆包能够与Excel无缝集成&#xff0c;支持多种数据类型的导入&#xff0c;包括文本、数字、日期等&#xff0c;使得数据整理和分析变得更加便捷。豆包提供了丰富的数据处理功能&#xff0c;如数据去重、填充缺失值、转换格式等…...

sizeof和strlen区分,(好多例子)

sizeof算字节大小 带\0 strlen算字符串长度 \0之前...

求100之内的素数-多语言

目录 C 语言实现 方法 1: 使用 for 循环 方法 2: 使用埃拉托斯特尼筛法 方法 3: 使用自定义判断素数 Python 实现 方法 1: 使用自定义函数判断素数 方法 2: 使用埃拉托斯特尼筛法&#xff08;Sieve of Eratosthenes&#xff09; 方法 3: 使用递归方法 Java 实现 方法…...

0.shell 脚本执行方式

1.脚本格式要求 &#x1f951;脚本以 #!/bin/bash 开头 &#x1f966; 脚本要有可执行权限 2.执行脚本的两种方式 &#x1f96c; 方式1&#xff1a;赋予x执行权限 &#x1f952; ​​​​​​​方式2&#xff1a; sh执行 ​​​​​​​...

Web实时通信@microsoft/signalr

概要说明 signalr 是微软对 websocket技术的封装; build() 与后端signalR服务建立链接&#xff1b;使用 on 方法监听后端定义的函数&#xff1b;ps&#xff1a;由后端发起&#xff0c;后端向前端发送数据使用 invoke 主动触发后端的函数&#xff1b;ps&#xff1a;由前端发起&a…...

智截违规,稳保安全 | 聚铭视频专网违规外联治理系统新品正式发布

“千里之堤&#xff0c;毁于蚁穴”。 违规外联作为网络安全的一大隐患&#xff0c; 加强防护已刻不容缓。 这一次&#xff0c; 我们带着全新的解决方案来了 ——聚铭视频专网违规外联治理系统&#xff0c; 重磅登场&#xff01;...

博弈论算法详解与Python实现

目录 博弈论算法详解与Python实现第一部分:博弈论简介与算法概述1.1 博弈论概述1.2 博弈论算法概述第二部分:纳什均衡算法2.1 纳什均衡的定义2.2 纳什均衡算法的实现2.2.1 算法思路2.2.2 Python实现2.2.3 设计模式分析第三部分:囚徒困境问题的博弈论算法3.1 囚徒困境的定义3…...

Python学习笔记之IP监控及告警

一、需求说明 作为一名运维工程师&#xff0c;监控系统必不可少。不过我们的监控系统往往都是部署在内网的&#xff0c;如果互联网出口故障&#xff0c;监控系统即使发现了问题&#xff0c;也会告警不出来&#xff0c;这个时候我们就需要补充监控措施&#xff0c;增加从外到内的…...

2024/11/30 RocketMQ本机安装与SpringBoot整合

目录 一、RocketMQ简介 1.1、核心概念 1.2、应用场景 1.3、架构设计 2、RocketMQ Server安装 3、RocketMQ可视化控制台安装与使用 4、SpringBoot整合RocketMQ实现消息发送和接收 4.1、添加maven依赖 4.2、yaml配置 4.3、生产者 4.4、消费者 4.5、接口 4.6、接口测试 一、R…...

解决“磁盘已插上,但Windows系统无法识别“问题

电脑上有2块硬盘&#xff0c;一块是500GB的固态硬盘&#xff0c;另一块是1000GB的机械硬盘&#xff0c;按下开机键&#xff0c;发现500G的固态硬盘识别了&#xff0c;但1000GB的机械硬盘却无法识别。后面为了描述方便&#xff0c;将"500GB的固态硬盘"称为X盘&#xf…...

解决vue3,动态添加路由,刷新页面出现白屏或者404

解决vue3&#xff0c;动态添加路由&#xff0c;刷新页面出现白屏或者404 1.解决出现刷新页面&#xff0c;出现404的情况 1.问题的出现 在做毕设的时候&#xff0c;在权限路由得到时候&#xff0c;我问通过router**.**addRoute(item)的方式&#xff0c;在路由守卫动态添加路由…...

大数据新视界 -- 大数据大厂之 Hive 数据质量监控:实时监测异常数据(下)(18/ 30)

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...

可视化建模以及UML期末复习篇----相关软件安装

作为一个过来人&#xff0c;我的建议是别过来。 一、可视化建模 <1>定义: 官方&#xff1a;一种使用图形符号来表示系统结构和行为的建模技术。 我&#xff1a;其实说白了就是把工作流程用图形画出来。懂不&#xff1f; <2>作用: 提高理解和分析复杂系统的能力。促…...

Flask项目入门—request以及Response

导入 request&#xff08;请求&#xff09;以及Response&#xff08;响应&#xff09;通过flask导入&#xff0c;如下&#xff1a; from flask import Blueprint, request, render_template, \jsonify, make_response, Response, redirect, url_for, abort request&#xff…...

【VUE3】【Naive UI】<n-button> 标签

【VUE3】【Naive UI】&#xff1c;n-button&#xff1e; 标签 **type**- 定义按钮的类型&#xff0c;这会影响按钮的颜色和样式。**size**- 设置按钮的大小。**disabled**- 布尔值&#xff0c;控制按钮是否处于禁用状态。**loading**- 布尔值&#xff0c;表示按钮是否处于加载状…...

接口测试工具:reqable

背景 在众多接口测试工具中挑选出一个比较好用的接口测试工具。使用过很多工具&#xff0c;如Postman、Apifox、ApiPost等&#xff0c;基本上是同类产品&#xff0c;一般主要使用到的功能就是API接口和cURL&#xff0c;其他的功能目前还暂未使用到。 对比 性能方面&#xff…...

autoware.universe源码略读(3.20)--perception:radar_tracks_msgs_converter

autoware.universe源码略读3.20--perception:radar_tracks_msgs_converter Overviewradar_tracks_msgs_converter_node Overview 这里看起来是非常简单的一个模块&#xff0c;作用就是把radar_msgs/msg/RadarTracks类型的消息数据转换到autoware_auto_perception_msgs/msg/Tra…...

【论文阅读】Multi-level Semantic Feature Augmentation for One-shot Learning

用于单样本学习的多层语义特征增强 引用&#xff1a;Chen, Zitian, et al. “Multi-level semantic feature augmentation for one-shot learning.” IEEE Transactions on Image Processing 28.9 (2019): 4594-4605. 论文地址&#xff1a;下载地址 论文代码&#xff1a;https:…...

说说Elasticsearch查询语句如何提升权重?

大家好&#xff0c;我是锋哥。今天分享关于【说说Elasticsearch查询语句如何提升权重&#xff1f;】面试题。希望对大家有帮助&#xff1b; 说说Elasticsearch查询语句如何提升权重&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在 Elasticsearch 中&…...

jeecgbootvue2重新整理数组数据或者添加合并数组并遍历背景图片或者背景颜色

想要实现处理后端返回数据并处理&#xff0c;添加已有静态数据并遍历快捷菜单背景图 遍历数组并使用代码 需要注意&#xff1a; 1、静态数组的图片url需要的格式为 require(../../assets/b.png) 2、设置遍历背景图的代码必须是: :style"{ background-image: url( item…...

Vue-常用指令-02

目录 Vue常用指令 实操 v-bind、v-model v-bind v-model 总结 v-on 总结 ​编辑 v-if、v-show v-if v-show 总结 v-for 总结 综合案例 ​编辑 Vue常用指令 Vue指令:在HTML文件或者HTML标签中涉及的带有v-..的指令都是Vue的指令。不同指令不同含义不同作用。v-…...

ESLint 配置文件全解析:格式、层叠与扩展(3)

配置文件系统处于一个更新期&#xff0c;存在两套配置文件系统&#xff0c;旧的配置文件系统适用于 v9.0.0 之前的版本&#xff0c;而新的配置文件系统适用于 v9.0.0之后的版本&#xff0c;但是目前还处于 v8.x.x 的大版本。 配置文件格式 在 ESLint 中&#xff0c;支持如下格…...

曲面单值化定理

曲面单值化定理&#xff08;Uniformization Theorem&#xff09;是复分析、几何和拓扑学中的一个重要结果。它为紧致黎曼曲面提供了标准化的几何结构&#xff0c;是研究复几何和代数几何的基础。以下是对曲面单值化定理的详细介绍以及其应用场景。 曲面单值化定理的陈述 基本版…...

数据预处理方法—数据增强、数据平衡

1.数据增强 1.1 原理 通过对数据进行变换增加数据的多样性&#xff0c;提高模型泛化能力&#xff0c;常用于图像和文本处理任务。 1.2 核心公式 例如&#xff1a;图像旋转&#xff1a; 其中&#xff0c;R()是旋转矩阵&#xff0c;是旋转角度。 1.3 Python案例 下面是一个…...

从扩散模型开始的生成模型范式演变--SDE

SDE是在分数生成模型的基础上&#xff0c;将加噪过程扩展时连续、无限状态&#xff0c;使得扩散模型的正向、逆向过程通过SDE表示。在前文讲解DDPM后&#xff0c;本文主要讲解SDE扩散模型原理。本文内容主要来自B站Up主deep_thoughts分享视频Score Diffusion Model分数扩散模型…...

基于Java Springboot 协同过滤算法音乐推荐系统

一、作品包含 源码数据库设计文档万字全套环境和工具资源部署教程 二、项目技术 前端技术&#xff1a;Html、Css、Js、Vue2、Element-ui 数据库&#xff1a;MySQL 后端技术&#xff1a;Java、Spring Boot、MyBatis 三、运行环境 开发工具&#xff1a;IDEA 数据库&#x…...

【NLP高频面题 - LLM架构篇】旋转位置编码RoPE相对正弦位置编码有哪些优势?

【NLP高频面题 - LLM架构篇】旋转位置编码RoPE相对正弦位置编码有哪些优势&#xff1f; 重要性&#xff1a;⭐⭐⭐ &#x1f4af; NLP Github 项目&#xff1a; NLP 项目实践&#xff1a;fasterai/nlp-project-practice 介绍&#xff1a;该仓库围绕着 NLP 任务模型的设计、训练…...

win10中使用ffmpeg的filter滤镜

1 给视频加文字水印 1.1 添加播放时间 ffmpeg -i input.mp4 -vf "drawtextfontfileC\\:/Windows/fonts/consola.ttf:fontsize30:fontcolorwhite:timecode00\:00\:00\:00:rate25:textTCR\::boxcolor0x000000AA:box1:x20:y20" -y output.mp4 在视频的x20:y20位置添加t…...

shell编程7,bash解释器的 for循环+while循环

声明&#xff01; 学习视频来自B站up主 泷羽sec 有兴趣的师傅可以关注一下&#xff0c;如涉及侵权马上删除文章&#xff0c;笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人以及泷羽sec团队无关&#…...

Flutter 1.2:flutter配置gradle环境

1、在android的模块中进行gradle环境配置 ①在 gradle-wrapper.properties文件中将url配置为阿里云镜像&#xff0c;因为gradle的服务器在国外&#xff0c;国内下载非常慢&#xff0c;也可在官网进行下载 gradle版本下载 gradle版本匹配 阿里云镜像gradle下载 可以通过复制链…...