当前位置: 首页 > news >正文

【向量数据库Weaviate】 和Elasticsearch的区别

Weaviate 和 Elasticsearch 是两种不同类型的数据库,设计目标和应用场景有显著差异。以下是它们的核心区别和适用场景的详细对比:


1. 设计目标与核心能力

维度WeaviateElasticsearch
核心能力向量数据库 + 图数据库(语义搜索优先)全文搜索引擎(关键词搜索优先)
数据模型基于对象和图结构,支持向量嵌入基于文档的 NoSQL 存储(JSON 文档)
搜索机制向量相似性搜索 + 关键词搜索(BM25)倒排索引 + BM25/ TF-IDF 关键词搜索
AI 原生支持内置向量化模型和机器学习能力需插件(如 Elastic Learned Sparse Encoder)
适用场景语义搜索、推荐系统、知识图谱日志分析、全文检索、结构化数据分析

2. 数据存储与索引

维度WeaviateElasticsearch
数据存储存储原始数据 + 向量嵌入存储原始文档(文本、数值等)
索引类型向量索引(HNSW、ANN) + 倒排索引倒排索引(文本)、BKD 树(数值/地理)
动态字段需预定义 Schema(强类型)支持动态字段映射(弱类型)
扩展性通过分片(Sharding)扩展分片 + 副本(成熟的分片策略)

3. 搜索功能对比

Weaviate
  • 语义搜索
    • 直接通过向量相似性查找相关内容(如 nearText 搜索)。
    • 示例:搜索“适合家庭的酒店”,返回包含“儿童乐园”“游泳池”的酒店。
  • 混合搜索
    • 结合向量搜索和关键词搜索(BM25),支持权重调整。
  • 图遍历
    • 支持在图结构中遍历关联对象(如“查找与用户A喜好相似的酒店”)。
Elasticsearch
  • 全文搜索
    • 基于关键词的精确匹配、模糊搜索、短语匹配。
    • 示例:搜索“pool”,返回包含“swimming pool”的文档。
  • 聚合分析
    • 对数值、地理数据进行统计聚合(如平均价格、热门区域)。
  • 复杂查询
    • 支持布尔逻辑、嵌套查询、脚本排序等。

4. 性能与扩展性

维度WeaviateElasticsearch
高维向量性能优化向量索引(毫秒级响应)需插件(如 k-NN 插件),性能较弱
文本搜索性能支持 BM25,但弱于 Elasticsearch极快的文本检索(纳秒级延迟)
大规模数据适合千万级向量数据适合 PB 级文本和日志数据
分布式架构支持分片,但成熟度较低成熟的分布式架构(分片、副本、选举)

5. AI 与机器学习集成

维度WeaviateElasticsearch
内置向量化支持(如 OpenAI、BERT 模型)需外部模型生成向量后导入
自动分类支持零样本分类(Zero-shot)需自定义插件或外部工具
推荐系统基于向量相似性的推荐(开箱即用)需开发复杂查询逻辑
自然语言理解原生支持语义理解依赖外部 NLP 服务

6. 典型应用场景

Weaviate 更适合
  • 语义驱动场景
    • 问答系统(如基于知识库的语义问答)。
    • 个性化推荐(如根据用户行为推荐相似商品)。
  • 多模态搜索
    • 混合搜索文本、图片、音频的向量化内容。
  • 知识图谱
    • 存储和查询实体关系(如人物、地点、事件的关联)。
Elasticsearch 更适合
  • 文本驱动场景
    • 日志分析(如 ELK 栈分析服务器日志)。
    • 电商商品搜索(如关键词过滤、价格排序)。
  • 结构化数据分析
    • 实时监控(如统计 API 请求次数、错误率)。

7. 生态与工具链

维度WeaviateElasticsearch
生态系统轻量级,聚焦 AI 集成成熟的 ELK 生态(Kibana、Logstash)
可视化工具需第三方工具(如自定义前端)Kibana(强大的仪表盘和可视化)
社区支持较小但快速增长庞大的社区和企业支持(Elastic 公司)

8. 如何选择?

  • 选 Weaviate

    • 需要结合语义理解和向量搜索(如聊天机器人、推荐引擎)。
    • 数据以非结构化为主(文本、图像、音频)。
    • 希望减少机器学习工程复杂度。
  • 选 Elasticsearch

    • 需要高性能全文检索和复杂聚合(如日志分析、电商搜索)。
    • 数据以结构化文本和数值为主。
    • 依赖成熟的运维工具和社区支持。

9. 协同使用案例

实际项目中,二者可互补使用:

  1. 粗筛 + 精排
    • 用 Elasticsearch 快速过滤(如价格范围、关键词),再用 Weaviate 做语义精排。
  2. 多模态搜索
    • Elasticsearch 处理文本元数据,Weaviate 处理图像/音频的向量搜索。

示例代码:

# Elasticsearch 过滤低价酒店
es_results = elasticsearch.search(query={"range": {"price": {"gte": 500}}}, size=100)# Weaviate 语义排序
weaviate_results = weaviate.sort_by_vector(es_results, vector=user_preference_vector)

总结

  • Weaviate 是面向 AI 的语义搜索引擎,适合需要理解数据语义的场景。
  • Elasticsearch 是全文检索引擎,适合结构化数据的高性能检索和分析。
  • 选择时需根据数据类型、搜索需求和团队技术栈综合评估。

相关文章:

【向量数据库Weaviate】 和Elasticsearch的区别

Weaviate 和 Elasticsearch 是两种不同类型的数据库,设计目标和应用场景有显著差异。以下是它们的核心区别和适用场景的详细对比: 1. 设计目标与核心能力 维度WeaviateElasticsearch核心能力向量数据库 图数据库(语义搜索优先)全…...

【Wireshark 02】抓包过滤方法

一、官方教程 Wireshark 官网文档 : Wireshark User’s Guide 二、显示过滤器 2.1、 “数据包列表”窗格的弹出过滤菜单 例如,源ip地址作为过滤选项,右击源ip->prepare as filter-> 选中 点击选中完,显示过滤器&#…...

【零基础到精通Java合集】第十五集:Map集合框架与泛型

课程标题:Map集合框架与泛型(15分钟) 目标:掌握泛型在Map中的键值类型约束,理解类型安全的键值操作,熟练使用泛型Map解决实际问题 0-1分钟:泛型Map的意义引入 以“字典翻译”类比泛型Map:明确键和值的类型(如英文→中文)。说明泛型Map的作用——确保键值对的类型一…...

三参数水质在线分析仪:从源头保障饮用水安全

【TH-ZS03】饮用水安全是人类健康的重要保障,其质量直接关系到人们的生命健康。随着工业化、城市化的快速发展,水体污染问题日益严峻,饮用水安全面临着前所未有的挑战。为了从源头保障饮用水安全,科学、高效的水质监测手段必不可少…...

Java8-Stream流介绍和使用案例

Java 8 引入了 Stream API,它提供了一种高效且声明式的方式来处理集合数据。Stream 的核心思想是将数据的操作分为中间操作(Intermediate Operations)和终端操作(Terminal Operations),并通过流水线&#x…...

FieldFox 手持射频与微波分析仪

FieldFox 手持射频与微波分析仪 简述 Keysight FieldFox 便携式分析仪可以在非常恶劣的工作环境中,轻松完成从日常维护到深入故障诊断的各项工作。 选择最适合您需求且有强大软件支持的 Keysight FieldFox 配置。 主要特性 特点: FieldFox 分析仪可…...

JQuery学习笔记,点击按钮加载更多的图片

利用点击按钮模拟某京&#xff0c;某宝&#xff0c;滚动页面加载图片的效果&#xff0c;代码&#xff1a; <!DOCTYPE html> <html><head><meta charset"utf-8"><title>Ajax请求</title></head><body><button id…...

swift4-汇编分析枚举内存布局

一、枚举的内存原理 1.1 常规case enum TestEnum { case test1, test2, test3 } var t TestEnum.test1 t .test2 t .test3枚举是常规的case的情况-是采取一个字节来存枚举变量通过拿到枚举的内存地址&#xff0c;看地址里面存的枚举值情况窥探枚举内存存储情况 var t Te…...

Vue 3 整合 WangEditor 富文本编辑器:从基础到高级实践

本文将详细介绍如何在 Vue 3 项目中集成 WangEditor 富文本编辑器&#xff0c;实现图文混排、自定义扩展等高阶功能。 一、为什么选择 WangEditor&#xff1f; 作为国内流行的开源富文本编辑器&#xff0c;WangEditor 具有以下优势&#xff1a; 轻量高效&#xff1a;压缩后仅…...

Docker安装嵌入框架Text Embeddings Inference (TEI)

Docker安装Text Embeddings Inference (TEI) 1 简单介绍 文本嵌入推理&#xff08;TEI&#xff0c;Text Embeddings Inference &#xff09;是HuggingFace研发的一个用于部署和服务开源文本嵌入和序列分类模型的工具包。TEI兼容OpenAI的嵌入模型的规范。 # 官网地址 https:/…...

【HeadFirst系列之HeadFirst设计模式】第14天之与设计模式相处:真实世界中的设计模式

与设计模式相处&#xff1a;真实世界中的设计模式 设计模式是软件开发中的经典解决方案&#xff0c;它们帮助我们解决常见的设计问题&#xff0c;并提高代码的可维护性和可扩展性。在《Head First设计模式》一书中&#xff0c;作者通过生动的案例和通俗的语言&#xff0c;深入…...

java后端开发day27--常用API(二)正则表达式爬虫

&#xff08;以下内容全部来自上述课程&#xff09; 1.正则表达式&#xff08;regex&#xff09; 可以校验字符串是否满足一定的规则&#xff0c;并用来校验数据格式的合法性。 1.作用 校验字符串是否满足规则在一段文本中查找满足要求的内容 2.内容定义 ps&#xff1a;一…...

【UCB CS 61B SP24】Lecture 22 23: Tree and Graph Traversals, DFS, BFS 学习笔记

本文讲解了二叉树的四种遍历方式&#xff0c;以及如何通过前/后序遍历与中序遍历重建出二叉树&#xff0c;接着介绍了新的非线性数据结构&#xff1a;图&#xff0c;详细讲解了图的存储方式与遍历方式&#xff0c;最后使用 Java 基于邻接表的存储方式实现了图与 DFS、BFS 两种遍…...

Redis100道高频面试题

一、Redis基础 Redis是什么&#xff1f;主要应用场景有哪些&#xff1f; Redis 是一个开源的、基于内存的数据结构存储系统&#xff0c;支持多种数据结构&#xff08;如字符串、哈希、列表、集合等&#xff09;&#xff0c;可以用作数据库、缓存和消息中间件。 主要应用场景&…...

Mac OS Homebrew更换国内镜像源(中科大;阿里;清华)

omebrew官方的源一般下载包之类的会很慢&#xff0c;所以通常我们都是用国内的镜像源来代替&#xff0c;这样会提高我们的效率。Homebrew主要有四个部分组成: brew、homebrew-core 、homebrew-bottles、homebrew-cask。 代码语言&#xff1a;javascript 代码运行次数&#xf…...

excel vlookup的精确查询、模糊查询、反向查询、多列查询

目录 入门 精确查询 模糊查询 反向查询 (搭配 if 函数) 多列查询 (搭配 match 函数) 入门 精确查询 需求: 查找 学生编号是008 所在的班级 操作: 在I2单元格输入公式如下,VLOOKUP(H2,B1:E12,4,FALSE), 得出结果 看一下vlookup 公式每一个参数应该怎么写? 语法: vlookup…...

linux的文件系统及文件类型

目录 一、Linux支持的文件系统 二、linux的文件类型 2.1、普通文件 2.2、目录文件 2.3、链接文件 2.4、字符设备文件: 2.5、块设备文件 2.6、套接字文件 2.7、管道文件 三、linux的文件属性 3.1、关于权限部分 四、Linux的文件结构 五、用户主目录 5.1、工作目录…...

MySQL 安装配置(完整教程)

文章目录 一、MySQL 简介二、下载 MySQL三、安装 MySQL四、配置环境变量五、配置 MySQL 5.1 初始化 MySQL5.2 启动 MySQL 服务 六、修改 MySQL 密码七、卸载 MySQL八、结语 一、MySQL 简介 MySQL 是一款广泛使用的开源关系型数据库管理系统&#xff08;RDBMS&#xff09;&am…...

C# Unity 唐老狮 No.4 模拟面试题

本文章不作任何商业用途 仅作学习与交流 安利唐老狮与其他老师合作的网站,内有大量免费资源和优质付费资源,我入门就是看唐老师的课程 打好坚实的基础非常非常重要: 全部 - 游习堂 - 唐老狮创立的游戏开发在线学习平台 - Powered By EduSoho 如果你发现了文章内特殊的字体格式,…...

给没有登录认证的web应用添加登录认证(openresty lua实现)

这阵子不是deepseek火么&#xff1f;我也折腾了下本地部署&#xff0c;ollama、vllm、llama.cpp都弄了下&#xff0c;webui也用了几个&#xff0c;发现nextjs-ollama-llm-ui小巧方便&#xff0c;挺适合个人使用的。如果放在网上供多人使用的话&#xff0c;得接入登录认证才好&a…...

R语言绘图:韦恩图

韦恩分析 韦恩分析&#xff08;Venn Analysis&#xff09;常用于可视化不同数据集之间的交集和并集。维恩图&#xff08;Venn diagram&#xff09;&#xff0c;也叫文氏图、温氏图、韦恩图、范氏图&#xff0c;用于显示元素集合重叠区域的关系型图表&#xff0c;通过图形与图形…...

STM32——串口通信 UART

一、基础配置 Universal Asynchronous Receiver Transmitter 异步&#xff0c;串行&#xff0c;全双工 TTL电平 &#xff1a;高电平1 低电平0 帧格式&#xff1a; 起始位1bit 数据位8bit 校验位1bit 终止位1bit NVIC Settings一栏使能接受中断。 之前有设置LCD&#xff0c;…...

【大模型基础_毛玉仁】1.3 基于Transformer 的语言模型

【大模型基础_毛玉仁】1.3 基于Transformer 的语言模型 1.3 基于Transformer 的语言模型1.3.1 Transformer1&#xff09;注意力层&#xff08;AttentionLayer&#xff09;2&#xff09;全连接前馈层&#xff08;Fully-connected Feedforwad Layer&#xff09;3&#xff09;层正…...

靶场(二)---靶场心得小白分享

开始&#xff1a; 看一下本地IP 21有未授权访问的话&#xff0c;就从21先看起 PORT STATE SERVICE VERSION 20/tcp closed ftp-data 21/tcp open ftp vsftpd 2.0.8 or later | ftp-anon: Anonymous FTP login allowed (FTP code 230) |_Cant get dire…...

大学至今的反思与总结

现在是2025年的3月5日&#xff0c;我大三下学期。 自大学伊始&#xff0c;我便以考研作为自己的目标&#xff0c;有时还会做自己考研上岸头部985,211&#xff0c;offer如潮水般涌来的美梦。 但是我却忽略了一点&#xff0c;即便我早早下定了决心去考研&#xff0c;但并没有早…...

【大模型】Llama 3.2 大语言模型初探:模型权重下载

文章目录 一、简介二、权重下载2.1 方法一&#xff1a;Meta 官网申请下载2.2 方法二&#xff1a;使用 hugging face 下载 一、简介 Llama&#xff08;Large Language Model Meta AI&#xff09;是 Meta&#xff08;原 Facebook&#xff09;开发的一系列开源大型语言模型。它的目…...

unity学习63,第2个小游戏:用fungus做一个简单对话游戏

目录 1 目标用fungus做一个简单的剧情对话游戏 1.1 先创建一个新的3D项目 1.2 fungus是什么 1.2.1 怎么获得 1.2 在AssetStore里搜索fungus (插件类)--千万别买收费的错的&#xff01; 1.3 fungus的官网 1.3.1 官网给的3个下载链接&#xff0c;unity的果然已经失效了 …...

笔记:代码随想录算法训练营day36:LeetCode1049. 最后一块石头的重量 II、494. 目标和、474.一和零

学习资料&#xff1a;代码随想录 1049.最后一块石头的重量II 力扣题目链接 思路&#xff1a;如何讲该问题转化为背包问题&#xff1a;还是对半分去碰&#xff0c;对半分去碰碰剩下的就是最小的。然后背包容量就是一半儿&#xff0c;物品重量等于物品价值等于stones[i] 和上…...

Elasticsearch:解锁深度匹配,运用Elasticsearch DSL构建闪电般的高效模糊搜索体验

目录 Elasticsearch查询分类 叶子查询 全文检索查询 match查询 multi_match查询 精确查询 term查询 range查询 复杂查询 bool查询简单应用 bool查询实现排序和分页 bool查询实现高亮 场景分析 问题思考 解决方案 search_after方案(推荐) point in time方案 方案…...

Android实现漂亮的波纹动画

Android实现漂亮的波纹动画 本文章讲述如何使用二维画布canvas和camera、矩阵实现二、三维波纹动画效果&#xff08;波纹大小变化、画笔透明度变化、画笔粗细变化&#xff09; 一、UI界面 界面主要分为三部分 第一部分&#xff1a;输入框&#xff0c;根据输入x轴、Y轴、Z轴倾…...

qt实践教学(编写一个代码生成工具)持续更新至完成———

前言&#xff1a; 我的想法是搭建一个和STM32cubemux类似的图形化代码生成工具&#xff0c;可以把我平时用到的代码整合一下全部放入这个软件中&#xff0c;做一个我自己专门的代码生成工具&#xff0c;我初步的想法是在下拉选框中拉取需要配置的功能&#xff0c;然后就弹出对…...

【数据结构】什么是栈||栈的经典应用||分治递归||斐波那契问题和归并算法||递归实现||顺序栈和链栈的区分

文章目录 &#x1f967;栈的初步理解&#xff1a;&#x1f967;易错&#xff1a;如何判断栈满&#x1f967;栈满理解&#x1f967;栈的基本运算&#x1f4da;栈操作的伪代码逻辑&#xff08;顺序和链栈&#xff09;&#x1f4d5;顺序栈运算实现&#xff1a;顺序栈的表示&#x…...

vue3(笔记)4.0 vueRouter.导航守卫.ElementPuls知识点

---vueRouter 创建路由: 完整写法(懒加载): 默认写法与vue2一致: 导入 然后 写成component: LoginPage import { createRouter, createWebHistory } from vue-routerconst router createRouter({history: createWebHistory(import.meta.env.BASE_URL), routes: [{path:/lo…...

[数字图像处理]实验三:直方图增强

目录 一、实验目的 二、实验原理 三、实验内容&#xff08;附代码&#xff09; 四、实验结果及分析 五、实验小结 一、实验目的 1.了解图像增强的意义和目的 2.掌握各种图像增强的基本原理和方法 3.使用MATLAB实现图像增强 二、实验原理 图像增强方法从增强的作用域…...

图像分类项目1:基于卷积神经网络的动物图像分类

1、选题背景及动机 在现代社会中&#xff0c;图像分类是计算机视觉领域的一个重要任务。动物图像分类具有广泛的应用&#xff0c;例如生态学研究、动物保护、农业监测等。通过对动物图像进行自动分类&#xff0c;可以帮助人们更好地了解动物种类、数量和分布情况&#xff0c;从…...

并发编程(线程池)面试题及原理

1. 执行原理/核心参数 1.1 核心参数 核心参数 corePoolSize 核心线程数目maximumPooISize 最大线程数目 &#xff08;核心线程&#xff0b;救急线程的最大数目&#xff09;keepAliveTime 生存时间- 救急线程的生存时间&#xff0c;生存时间内没有新任务&#xff0c;此线程资…...

初次使用 IDE 搭配 Lombok 注解的配置

前言 在 Java 开发的漫漫征程中&#xff0c;我们总会遇到各种提升效率的工具。Lombok 便是其中一款能让代码编写变得更加简洁高效的神奇库。它通过注解的方式&#xff0c;巧妙地在编译阶段为我们生成那些繁琐的样板代码&#xff0c;比如 getter、setter、构造函数等。然而&…...

云原生时代的技术桥梁

在数字化转型的大潮中&#xff0c;企业面临着数据孤岛、应用间集成复杂、高成本与低效率等问题。这些问题不仅阻碍了企业内部信息的流通和资源的共享&#xff0c;也影响了企业对外部市场变化的响应速度。当前&#xff0c;这一转型过程从IT角度来看&#xff0c;已然迈入云原生时…...

2024四川大学计算机考研复试上机真题

2024四川大学计算机考研复试上机真题 2024四川大学计算机考研复试机试真题 历年四川大学计算机考研复试机试真题 在线评测&#xff1a;https://app2098.acapp.acwing.com.cn/ 分数求和 题目描述 有一分数序列&#xff1a; 2/1 3/2 5/3 8/5 13/8 21/13… 求出这个数列的前 …...

【GPU使用】如何在物理机和Docker中指定GPU进行推理和训练

我的机器上有4张H100卡&#xff0c;我现在只想用某一张卡跑程序&#xff0c;该如何设置。 代码里面设置 import os # 记住要写在impot torch前 os.environ[CUDA_VISIBLE_DEVICES] "0, 1"命令行设置 export CUDA_VISIBLE_DEVICES0,2 # Linux 环境 python test.py …...

汽车免拆诊断案例 | 2023款丰田雷凌汽油版车行驶中偶尔出现通信故障

故障现象  一辆2023款丰田雷凌汽油版车&#xff0c;搭载1.5 L发动机&#xff0c;累计行驶里程约为4700 km。车主反映&#xff0c;行驶中偶尔组合仪表上的发动机转速信号丢失&#xff0c;转向变重&#xff0c;且有“闯车”感&#xff0c;同时车辆故障警报蜂鸣器鸣响。 故障诊断…...

千里科技亮相吉利AI智能科技发布会,共启“AI+车”新纪元

今天&#xff0c;在三亚举行的吉利AI智能科技发布会上&#xff0c;千里科技董事长印奇发表了主题为《从“车AI”到“AI车”》的演讲。印奇重点分享了对于“AI车”未来趋势的判断&#xff0c;并重点介绍了在吉利AI科技生态体系下&#xff0c;围绕智驾、智舱等领域的创新合作。基…...

汽车零部件厂如何选择最适合的安灯系统解决方案

在现代制造业中&#xff0c;安灯系统作为一种重要的生产管理工具&#xff0c;能够有效提升生产线的异常处理效率&#xff0c;确保生产过程的顺畅进行。对于汽车零部件厂来说&#xff0c;选择一套适合自身生产需求的安灯系统解决方案尤为重要。 一、安灯系统的核心功能 安灯系统…...

spring boot + vue 搭建环境

参考文档&#xff1a;https://blog.csdn.net/weixin_44215249/article/details/117376417?fromshareblogdetail&sharetypeblogdetail&sharerId117376417&sharereferPC&sharesourceqxpapt&sharefromfrom_link. spring boot vue 搭建环境 一、浏览器二、jd…...

spaCy 入门:自然语言处理的高效工具

spaCy 入门&#xff1a;自然语言处理的高效工具 引言 spaCy 是一个功能强大的开源 Python 库&#xff0c;专注于工业级的自然语言处理&#xff08;NLP&#xff09;。它以其高效的性能、简洁的 API 和对多种语言的支持而闻名。无论是进行文本分析、信息提取还是构建智能聊天机…...

Stable Diffusion模型高清算法模型类详解

Stable Diffusion模型高清算法模型类详细对比表 模型名称核心原理适用场景参数建议显存消耗细节增强度优缺点4x-UltraSharp残差密集块(RDB)结构优化纹理生成真实人像/建筑摄影重绘幅度0.3-0.4&#xff0c;分块尺寸768px★★★★★☆皮肤纹理细腻&#xff0c;但高对比场景易出现…...

数据结构:八大排序(冒泡,堆,插入,选择,希尔,快排,归并,计数)详解

目录 一.冒泡排序 二.堆排序 三.插入排序 四.选择排序 五.希尔排序 六.快速排序 1.Lomuto版本&#xff08;前后指针法&#xff09; 2.Lomuto版本的非递归算法 3.hoare版本&#xff08;左右指针法&#xff09; 4.挖坑法找分界值&#xff1a; 七.归并排序 八.计数排序…...

QT-对象树

思维导图 写1个Widget窗口&#xff0c;窗口里面放1个按钮&#xff0c;按钮随便叫什么 创建2个Widget对象 Widget w1,w2 w1.show() w2不管 要求&#xff1a;点击 w1.btn ,w1隐藏&#xff0c;w2显示 点击 w2.btn ,w2隐藏&#xff0c;w1 显示 #include <QApplication> #inc…...

随机播放音乐 伪随机

import java.util.*;/*** https://cloud.tencent.com.cn/developer/news/1045747* 伪随机播放音乐*/ public class MusicPlayer {private List<String> allSongs; // 所有歌曲列表private List<String> playedSongs; // 已经播放过的歌曲列表private Map<String…...

spring boot打包插件的问题

在spring boot项目中声明了 <build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId></plugin></plugins></build> 执行mvn clean package&…...