车载测试:智能座舱测试中多屏联动与语音交互的挑战
智能座舱作为汽车智能化发展的核心,集成了多屏联动和语音交互功能,为驾驶员和乘客提供更便捷的体验。然而,这些功能的测试面临诸多挑战,包括多屏同步性、噪声干扰和复杂场景的处理。本文将详细分析这些挑战,探讨测试方法,并结合实际案例和最佳实践,为读者提供全面指导。
本文基于多个权威来源整理了相关信息,包括 智能座舱测试指南、车载语音交互测试 和相关行业博客,结合测试人员的实际经验,探讨智能座舱测试中的多屏联动和语音交互问题。内容包括功能背景、挑战分析、测试方法、社交现象分析和最佳实践,旨在为读者提供一个完整的学习框架
近年来,汽车从单纯的交通工具逐渐演变为“第三生活空间”,而智能座舱正是这一变革的核心载体。
从全液晶仪表、中控大屏到副驾娱乐屏,从语音助手到多音区交互,座舱的智能化水平已成为消费者购车的关键指标。
然而,功能越复杂,测试挑战越大。
多屏联动卡顿、语音指令误识别、多设备兼容性冲突——这些问题轻则影响用户体验,重则危及驾驶安全。
今天我们就来聊一聊智能座舱测试的两大核心难点:多屏联动与语音交互。
智能座舱的背景
智能座舱是指汽车内部集成了先进技术的区域,通常包括多个显示屏(如仪表盘、娱乐系统、乘客屏幕)和语音交互系统(如语音助手)。这些功能通过车载操作系统实现,允许驾驶员和乘客通过触摸或语音控制车内设备,如导航、娱乐、空调等。智能座舱的普及反映了汽车从机械驱动向软件定义的转变,测试其多屏联动和语音交互成为确保用户体验的关键。
多屏联动测试
现代智能座舱通常包含仪表屏、中控屏、副驾屏、HUD甚至后排娱乐屏,各屏幕之间通过CAN总线、车载以太网或无线协议实现数据互通。
例如:导航路线从中控屏拖拽至仪表屏;副驾屏播放的视频通过手势“甩”至后排屏幕。
这种“分布式显示+集中式控制”的架构,对系统资源分配、通信延迟和同步性提出了极高要求。
多屏联动的挑战与测试方法
多屏联动是指车内多个屏幕协同工作,共享信息或独立操作。以下是主要挑战和测试方法:
挑战分析
- 同步性问题:确保屏幕内容实时更新。例如,导航信息需同时显示在仪表盘和娱乐系统上,若仪表盘延迟,驾驶员可能错过关键信息。
- 资源竞争:多个屏幕同时使用(如驾驶员查看导航,乘客看视频)可能导致系统资源不足,出现卡顿或崩溃。
- 用户体验一致性:不同屏幕的界面设计和操作逻辑需统一,否则可能导致用户混淆。例如,娱乐系统和仪表盘的字体大小、颜色需一致。
- 模式切换复杂性:当驾驶员和乘客同时操作不同屏幕,系统如何处理优先级?例如,驾驶员调整导航,乘客试图切换视频,是否会冲突?
- 性能瓶颈:多屏高负载下(如导航、视频、空调控制同时运行),系统是否能保持响应速度?
测试方法
- 模拟测试:使用自动化工具如 Selenium 或 Appium 模拟多屏操作,检查同步性。例如,模拟驾驶员在仪表盘上查看导航,乘客在娱乐系统上播放视频,验证是否卡顿。
- 硬件在环(HIL)测试:使用真实硬件(如仪表盘显示屏和娱乐系统)与模拟环境结合,验证多屏交互的性能。例如,测试在高负载下屏幕刷新率是否下降。
- 真实道路测试:在实际驾驶环境中测试多屏联动,确保在复杂场景(如高速行驶、隧道)下屏幕内容更新正常。例如,测试导航信息在隧道中是否实时同步到所有屏幕。
- 负载测试:模拟多个用户同时操作不同屏幕,检查系统资源利用率(如 CPU、内存),确保不出现瓶颈。
例如,一个案例是测试特斯拉 Model 3 的多屏系统,模拟驾驶员查看仪表盘速度,乘客在娱乐系统上播放 Netflix,验证系统是否稳定。
测试难点与解决方案
难点1:画面同步与延迟
问题场景:主驾操作中控屏时,仪表屏的导航信息更新滞后;多屏同时播放视频时,出现音画不同步。
测试方法:使用高精度时间戳工具,精确测量指令发出到屏幕响应的延迟;模拟极端负载场景,如同时运行导航、视频、游戏等,验证系统资源调度能力。
难点 2:跨屏交互逻辑冲突
问题场景:副驾屏调整空调温度时,主驾屏突然弹出安全警告,导致操作中断;多用户触控指令相互覆盖,造成操作混乱。
测试策略:制定明确的交互优先级规则,如安全类指令 > 舒适类指令 > 娱乐类指令;通过自动化脚本模拟多用户并发操作,检验冲突解决机制的有效性。
难点 3:多设备兼容性
问题场景:不同供应商的屏幕驱动不兼容,导致屏幕分辨率适配异常或色彩失真。
测试工具:利用硬件在环(HIL)测试平台接入各屏幕控制器,验证信号协议的一致性;建立屏幕参数数据库,如亮度、色域、刷新率等,实现自动化比对测试。
语音交互测试
传统语音系统仅支持固定指令,如“打开空调”,而智能座舱的语音交互已迈向全双工连续对话、声纹识别、情感分析等高级功能。
典型场景包括:主驾说“调低温度”时,系统自动定位声源并执行指令:后排乘客说“我想听周杰伦的歌”,系统准确识别并避开主驾隐私信息:方言、中英文混合指令的无缝处理。
语音交互的挑战与测试方法
语音交互是指通过语音命令控制车内功能,如“打开空调”或“导航到最近的加油站”。以下是主要挑战和测试方法:
挑战分析
- 噪声干扰:车内环境噪声(如引擎声、音乐、路噪)可能影响语音识别准确性。例如,在高速行驶时,系统可能误解“导航”为“音乐”。
- 多说话者问题:车内多人同时说话,系统如何区分命令来源?例如,驾驶员说“调高温度”,乘客说“播放音乐”,系统是否能正确执行?
- 口音和语言多样性:不同口音(如普通话、粤语)或方言是否都能被正确识别?例如,四川方言的“开空调”可能被误解。
- 命令复杂性:系统如何处理模糊或复杂的命令?例如,“找个安静的餐厅”可能涉及多步操作,系统是否能正确响应?
- 反馈及时性:语音命令执行后,系统是否及时反馈?例如,命令“导航到家”后,屏幕是否立即显示路线?
- 安全性和干扰:语音命令是否会干扰驾驶?例如,长时间的语音反馈可能分散驾驶员注意力。
测试方法
- 模拟测试:录制不同噪声环境下的语音命令,验证识别率。例如,录制高速行驶时的“打开导航”,检查是否正确执行。
- 自动化语音测试:使用工具如 Google Speech-to-Text 或自定义脚本,播放预录制的语音文件,测试系统响应。例如,模拟车内音乐背景下的“调低音量”,验证是否生效。
- 多说话者测试:模拟车内多人同时说话,测试系统优先级。例如,驾驶员和乘客同时发命令,检查系统是否优先执行驾驶员的指令。
- 口音和语言测试:准备不同口音和方言的语音样本,测试识别准确性。例如,测试四川方言的“开空调”,确保系统理解。
- 真实道路测试:在实际驾驶中测试语音交互,确保在复杂场景下稳定。例如,在隧道中说“导航到最近的出口”,验证屏幕更新和语音反馈。
- 边缘案例测试:测试模糊命令或错误输入,如“找个好吃的”,检查系统是否提供合理反馈。
一个案例是测试蔚来 ES8 的语音助手,模拟车内音乐和路噪下说“调高温度”,发现系统识别率下降,需优化噪声过滤算法。
测试难点与突破路径
难点 1:复杂环境下的语音识别率
干扰因素:高速行驶时的风噪、胎噪;多人同时说话的声音干扰;音乐、导航语音叠加的影响。
测试方案:使用多通道采集设备录制真实道路音频,构建噪声数据库,用于算法训练,提高语音识别准确性。
难点 2:多音区定位与权限管理
问题场景:副驾乘客语音控制车窗,系统误识别为主驾指令;儿童无意间唤醒语音助手,造成不必要操作。
测试技术:部署麦克风阵列,通过声波到达时间差精准定位声源;结合人脸识别摄像头,实现声源与视觉的双重身份验证,确保指令执行的准确性。
难点 3:语义理解与上下文关联
典型缺陷:用户说 “我饿了”,系统无法关联到 “搜索附近餐厅”;连续对话中,上下文信息丢失,导致对话不连贯。
创新测试方法:引入自然语言处理(NLP)测试框架,构建包含数万条泛化指令的测试集;
设计 “对话树” 模型,验证系统在多轮交互中的记忆与推理能力,提高语义理解准确性。
多屏联动与语音交互的交互挑战
多屏联动和语音交互可能相互影响,带来额外挑战。例如:
- 语音命令“显示导航”应在哪个屏幕显示?驾驶员的仪表盘还是娱乐系统?
- 如果语音命令影响多个屏幕(如“同步显示温度”),各屏更新是否一致?
- 语音命令执行中,屏幕操作是否会被中断?例如,驾驶员正在调整导航,语音说“播放音乐”,系统如何处理?
测试方法包括:
- 模拟语音命令影响多屏,验证更新一致性。例如,命令“显示车速”应同时更新仪表盘和娱乐系统。
- 测试语音和屏幕操作的优先级,确保不冲突。例如,语音命令优先级高于屏幕操作,验证系统行为。
- 使用自动化工具记录多屏和语音交互的日志,分析延迟和错误。
最佳实践
- 多场景模拟:覆盖不同噪声环境、驾驶场景和用户行为,确保测试全面。
- 工具集成:使用 Selenium 或 Appium 自动化多屏测试,结合语音测试工具提升效率。
- 文档记录:详细记录测试用例、结果和问题,方便分析和优化。
未来发展趋势
大语言模型(LLM)在座舱测试中的应用
自动化测试脚本生成:通过输入自然语言描述(如“测试主驾屏与HUD的导航同步”),AI自动生成测试用例与脚本。
当屏幕切换如呼吸般自然,当语音交互如好友对话般流畅,智能座舱才能真正成为“第三空间”的核心。
而这一切的背后,正是无数测试工程师对每一个像素、每一毫秒延迟、每一分贝噪声的极致追求。
未来,随着AI与仿真技术的深度融合,智能座舱测试将不再局限于“找问题”,而是主动“设计体验”——这或许才是车载测试的终极使命。
总结
在智能座舱普及的今天,多屏联动和语音交互的测试反映了用户对便捷性和安全的追求。就像年轻人热衷“不好好说话”的梗文化,车载测试也在追求“偷懒的艺术”——通过语音控制减少手动操作,通过多屏联动提升信息共享效率。这体现了现代汽车从机械驱动向软件定义的转变,测试人员需确保这些功能在复杂场景下稳定运行。
一个意料之外的细节是,语音交互测试需考虑不同口音和多说话者的干扰,这对测试复杂性增加。例如,车内有儿童和成人同时说话,系统如何区分命令来源?这超出传统测试的预期,需更多场景覆盖。
智能座舱测试中的多屏联动和语音交互面临同步性、噪声干扰和复杂场景的挑战。通过模拟测试、自动化工具和真实道路测试可有效解决。意料之外的是,语音测试需覆盖不同口音和多说话者,增加复杂性。掌握这些技巧,测试人员能确保智能座舱功能稳定,为用户提供安全便捷的体验。
相关文章:
车载测试:智能座舱测试中多屏联动与语音交互的挑战
智能座舱作为汽车智能化发展的核心,集成了多屏联动和语音交互功能,为驾驶员和乘客提供更便捷的体验。然而,这些功能的测试面临诸多挑战,包括多屏同步性、噪声干扰和复杂场景的处理。本文将详细分析这些挑战,探讨测试方…...
【踩坑随笔】`npm list axios echarts`查看npm依赖包报错
npm list axios echarts查看npm依赖包出现以下报错,原因就是包的版本匹配问题,按照提示降axios版本或者自己升找合适的got版本,我这里是选择了降版本。本文记录仅做解决思路参考不一定适配大家的实际情况。 weed-detection-system1.0.0 E:\P…...
用于管理 Elasticsearch Serverless 项目的 AI Agent
作者:来自 Elastic Fram Souza 由自然语言驱动的 AI 代理,可轻松管理 Elasticsearch Serverless 项目 - 支持项目创建、删除和状态检查。 这个小型命令行工具让你可以用简单的英语管理你的无服务器 Elasticsearch 项目。它通过AI(这里是 Ope…...
【文生图】windows 部署stable-diffusion-webui
windows 部署stable-diffusion-webui AUTOMATIC1111 stable-diffusion-webui Detailed feature showcase with images: 带图片的详细功能展示: Original txt2img and img2img modes 原始的 txt2img 和 img2img 模式 One click install and run script (but you still must i…...
STaR(Self-Taught Reasoner)方法:让语言模型自学推理能力(代码实现)
STaR(Self-Taught Reasoner)方法:让语言模型自学推理能力 在大型语言模型(LLM)的推理能力优化中,STaR(Self-Taught Reasoner) 是一种引人注目的技术,属于“修改提议分布…...
十大经典排序算法简介
一 概述 本文对十大经典排序算法做简要的总结(按常用分类方式排列),包含核心思想、时间/空间复杂度及特点。 二、比较类排序 1. 冒泡排序 (BUBBLE SORT) 思想:重复交换相邻逆序元素,像气泡上浮 复杂度: 时间:O(n^2)(最好情况O(n)) 空间:O(1) 特点:简单但效率低,稳…...
5.训练策略:优化深度学习训练过程的实践指南——大模型开发深度学习理论基础
在实际开发中,训练策略对神经网络的表现起着至关重要的作用。通过合理的训练策略,我们可以有效避免过拟合和欠拟合,加速模型收敛,并提升最终性能。本文将从实际开发角度详细介绍几种关键的训练策略,包括 Early Stoppin…...
道可云人工智能每日资讯|《奇遇三星堆》VR沉浸探索展(淮安站)开展
道可云元宇宙每日简报(2025年3月5日)讯,今日元宇宙新鲜事有: 《奇遇三星堆》VR沉浸探索展(淮安站)开展 近日,《奇遇三星堆》VR沉浸探索展(淮安站)开展。该展将三星堆文…...
Camera相关配置
一、 Purpose目的 通常, 感知模块使用雷达点云和相机图像来对物体进行检测和分类,感知数据分别来自雷达和相机,就传感器数据融合准确性,我们需要雷达和相机同一时间捕捉到同一物体(时间间隔尽可能短),否则一个真实的物…...
PHP Error处理指南
PHP Error处理指南 引言 在PHP开发过程中,错误处理是一个至关重要的环节。正确的错误处理不仅能够提高代码的健壮性,还能提升用户体验。本文将详细介绍PHP中常见的错误类型、错误处理机制以及最佳实践,帮助开发者更好地应对和处理PHP错误。 PHP错误类型 在PHP中,错误主…...
【Pandas】pandas Series argmax
Pandas2.2 Series Computations descriptive stats 方法描述Series.argsort([axis, kind, order, stable])用于返回 Series 中元素排序后的索引位置的方法Series.argmin([axis, skipna])用于返回 Series 中最小值索引位置的方法Series.argmax([axis, skipna])用于返回 Series…...
Gitlab配置personal access token
1.点击左上角个人账号 -> Preferences 2. 点击左边栏 Access Tokens 3. 点击Add new token ,输入token名称,勾选权限(注意截至日期 “Expiration date” 可不填) 4. 创建成功后,显示token信息,复制到本地…...
【MySQL、Oracle、SQLserver、postgresql】查询多条数据合并成一行
四大数据库多行合并为单行:函数详解与对比 一、MySQL**GROUP_CONCAT()** 函数说明:语法结构:参数解释:示例:注意事项: 二、Oracle**LISTAGG()** 函数说明:语法结构:参数解释…...
人机交互进化论:解码智能手机81种交互方式背后的用户体验革命
人机交互进化论:解码智能手机81种交互方式背后的用户体验革命 2023年艾瑞咨询报告显示:中国智能手机用户日均触屏交互超2500次,解锁屏幕达76次/天。在这看似简单的点击与滑动背后,隐藏着一场持续演进的人机交互革命。本文将深度解…...
OCPP扩展机制与自定义功能开发:协议灵活性设计与实践 - 慧知开源充电桩平台
OCPP扩展机制与自定义功能开发:协议灵活性设计与实践 引言 OCPP作为开放协议,其核心价值在于平衡标准化与可扩展性。面对不同充电桩厂商的硬件差异、区域能源政策及定制化业务需求,OCPP通过**扩展点(Extension Points)…...
网络编程之TCP协议
传输层协议:UDP和TCP的区别 UDP:用户数据报协议 1.面向数据报 2.无连接 3.不安全,不可靠(尽最大努力交付) TCP:传输控制协议 1.面向数据流(流式套接字) 2.建立连接 3.安全可靠的传输协议 TCP的传输过程 三次握手:TCP建立…...
策略模式的C++实现示例
核心思想 策略模式是一种行为型设计模式,它定义了一系列算法,并将每个算法封装在独立的类中,使得它们可以互相替换。策略模式让算法的变化独立于使用它的客户端,从而使得客户端可以根据需要动态切换算法,而不需要修改…...
keil软件下载安装使用(STM32篇)
一、前言 Keil软件是一款专为嵌入式系统开发设计的集成开发环境(IDE),由德国Keil公司创立,后被ARM公司收购并持续更新维护。它集成了代码编辑、编译、调试和项目管理等功能,广泛应用于各类单片机的程序开发࿰…...
【简单的C++围棋游戏开发示例】
C围棋游戏开发简单示例(控制台版) 核心代码实现 #include <iostream> #include <vector> #include <queue> using namespace std;const int SIZE 9; // 简化棋盘为9x9:ml-citation{ref"1" data"citationList&…...
【Python 数据结构 4.单向链表】
目录 一、单向链表的基本概念 1.单向链表的概念 2.单向链表的元素插入 元素插入的步骤 3.单向链表的元素删除 元素删除的步骤 4.单向链表的元素查找 元素查找的步骤 5.单向链表的元素索引 元素索引的步骤 6.单向链表的元素修改 元素修改的步骤 二、Python中的单向链表 编辑 三…...
组合逻辑和时序逻辑
组合逻辑 定义 组合逻辑电路是一种输出只取决于当前输入值的电路,即电路的输出状态仅由当前时刻的输入信号组合决定,与电路过去的状态无关。 特点 无记忆功能:组合逻辑电路不具备存储信息的能力,它不会记住之前的输入情况。每次…...
如何有效判断与排查Java GC问题
目录 一、GC的重要性与对性能的影响 (一)GC对性能的影响简要分析 1.GC暂停与应用停顿 2.GC吞吐量与资源利用率 3.GC对内存管理的作用:资源回收 4.GC策略与优化的选择 (二)GC的双刃剑 二、GC性能评价标准 &…...
Ubuntu20.04 在离线机器上安装 NVIDIA Container Toolkit
步骤 1.下载4个安装包 Index of /nvidia-docker/libnvidia-container/stable/ nvidia-container-toolkit-base_1.13.5-1_amd64.deb libnvidia-container1_1.13.5-1_amd64.deb libnvidia-container-tools_1.13.5-1_amd64.deb nvidia-container-toolkit_1.13.5-1_amd64.deb 步…...
【流行病学】Melodi-Presto因果关联工具
title: “[流行病学] Melodi Presto因果关联工具” date: 2022-12-08 lastmod: 2022-12-08 draft: false tags: [“流行病学”,“因果关联工具”] toc: true autoCollapseToc: true 阅读介绍 Melodi-Presto: A fast and agile tool to explore semantic triples derived from …...
Android14 OTA差分包升级报Package is for source build
制作好差分包,使用adb线刷模式验证ota升级,出现E:Package is for source build错误 使用adb方式验证 进入recovery模式 adb reboot recovery稍等一会界面会提示 Now send the package you want to apply to the device with "adb sidelaod <…...
PTA L2一些题目
L2-014 列车调度 - 团体程序设计天梯赛-练习集 样例是怎么来的呢?通过题目我们知道每一条轨道的车牌号必须是依次递减的。那么,我们如果让每条轨道尽可能长就能保证轨道数最少------也就是说,我们要尽可能的找最长降序序列。 但是1e5数据量…...
Harbor端口更改||Harbor端口映射
Harbor端口更改|Harbor端口映射 目标:将端口更改为8930 前言 [rootk8s-node1 harbor]# ls common common.sh docker-compose.yml harbor.v2.5.0.tar.gz harbor.yml harbor.yml.tmpl install.sh LICENSE prepare如上是Harbor的文件目录 更改harbor.yml文件…...
基于STM32的智能家居蓝牙系统(论文+源码)
1总体方案设计 本次基于STM32的智能家居蓝牙系统,其系统总体架构如图2.1所示,采用STM32f103单片机作为控制器,通过DHT11传感器实现温湿度检测,MQ-2烟雾传感器实现烟雾检测,光敏电阻实现光照检测,同时将数据…...
视觉Transformer(DETR)
文章目录 DETR总体流程DETR 中 transformer 结构encoderdecoderObeject Query HEADFFNLOSS正负样本分配 简单的demo不足之处 DETR 是首次将 Transformer结构首次应用到视觉 目标检测中,实现 端到端的目标检测。 传统目标检测路线(yolo代表)…...
Linux下学【MySQL】中如何实现:多表查询(配sql+实操图+案例巩固 通俗易懂版~)
每日激励:“不设限和自我肯定的心态:I can do all things。 — Stephen Curry” 绪论: 本章是MySQL篇中,非常实用性的篇章,相信在实际工作中对于表的查询,很多时候会涉及多表的查询,在多表查询…...
【Office-Word】如何自动生成中英文目录
1.目录介绍 Word这个自动生成目录非常强大,涉及的功能很琐碎,想要完美的生成目录不仅仅是只会目录这么简单,前后涉及到的大纲级别、目标样式和域代码等操作是比较头疼的。 下面就一步一步开始介绍 2.多级标题级别编号设置 目录想要设置好…...
低代码平台的后端架构设计与核心技术解析
引言:低代码如何颠覆传统后端开发? 在传统开发模式下,一个简单用户管理系统的后端开发需要: 3天数据库设计5天REST API开发2天权限模块对接50个易出错的代码文件 而现代低代码平台通过可视化建模自动化生成,可将开发…...
【微信小程序】每日心情笔记
个人团队的比赛项目,仅供学习交流使用 一、项目基本介绍 1. 项目简介 一款基于微信小程序的轻量化笔记工具,旨在帮助用户通过记录每日心情和事件,更好地管理情绪和生活。用户可以根据日期和心情分类(如开心、平静、难过等&#…...
【leetcode hot 100 73】矩阵置零
解法一:(使用两个标记变量)用矩阵的第一行和第一列代替方法一中的两个标记数组(col、row[ ]:第几列、行出现0),以达到 O(1) 的额外空间。 这样会导致原数组的第一行和第一列被修改,…...
【Linux】自定协议和序列化与反序列化
目录 一、序列化与反序列化概念 二、自定协议实现一个加法网络计算器 (一)TCP如何保证接收方的接收到数据是完整性呢? (二)自定义协议 (三)自定义协议的实现 1、基础类 2、序列化与反序列…...
混合专家模型(MoE):高效处理复杂任务的智能架构,DeepSeek性能出色的秘诀
混合专家模型 1. 什么是混合专家模型 混合专家模型(Mixture of Experts,简称 MoE) 是一种先进的神经网络架构,旨在通过整合多个 专门化的子模型(或称为“专家”) 的预测来提升整体模型性能。其核心思想是…...
使用 Spring Boot 实现前后端分离的海康威视 SDK 视频监控
使用 Spring Boot 实现前后端分离的海康威视 SDK 视频监控系统,可以分为以下几个步骤: 1. 系统架构设计 前端:使用 Vue.js、React 或 Angular 等前端框架实现用户界面。后端:使用 Spring Boot 提供 RESTful API,负责与…...
C++ 内存序在多线程中的使用
目录 一、内存顺序 二、 指令重排在多线程中的问题 2.1 问题与原因 2.2 解决方案 三、六种内存序 3.1 memory_order_relaxed 3.2 memory_order_consume 3.3 memory_order_acquire 3.4 memory_order_release 3.5 memory_order_acq_rel 3.6 memory_order_seq_cst 一、…...
【MySQL】表的操作
文章目录 👉表的操作👈创建表查看表修改表删除表 👉表的操作👈 创建表 create tabletable_name (field1 datatype,field2 datatype,field3 datatype ) character set 字符集 collate 校验规则 engine 存储引擎;说明:…...
【Flink银行反欺诈系统设计方案】3.欺诈的7种场景和架构方案、核心表设计
【Flink银行反欺诈系统设计方案】3.欺诈的7种场景和架构方案、核心表设计 1. **欺诈场景分类与案例说明**1.1 **大额交易欺诈**1.2 **异地交易欺诈**1.3 **高频交易欺诈**1.4 **异常时间交易欺诈**1.5 **账户行为异常**1.6 **设备指纹异常**1.7 **交易金额突变** 2. **普适性软…...
DeepSeek-R1本机部署(VLLM+OpenWebUI)
本文搭建环境 系统:Ubuntu 22.04.4 LTS Python版本:Python 3.10 显卡:RTX 4090D 一、DeepSeek-R1-14b原始模型和q8量化模型 1.从modelscope下载模型 官方原始模型:https://modelscope.cn/models/deepseek-ai/DeepSeek-R1-Di…...
计算机网络软考
1.物理层 1.两个主机之间发送数据的过程 自上而下的封装数据,自下而上的解封装数据,实现数据的传输 2.数据、信号、码元 码元就是数字通信里用来表示信息的基本信号单元。比如在二进制中,用高电平代表 “1”、低电平代表 “0”,…...
vscode 查看3d
目录 1. vscode-3d-preview obj查看ok 2. vscode-obj-viewer 没找到这个插件: 3. 3D Viewer for Vscode 查看obj失败 1. vscode-3d-preview obj查看ok 可以查看obj 显示过程:开始是绿屏,过了1到2秒,后来就正常看了。 2. vsc…...
HTML第三节
一.初识CSS 1.CSS定义 A.内部样式表 B.外部样式表 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title&g…...
爬虫去重:数据采集时如何进行去重,及去重优化策略
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 1. 去重的核心思路2. 常见的去重方法2.1 基于集合(Set)的去重2.2 基于布隆过滤器(Bloom Filter)的去重2.3 基于数据库的去重2.4 基于文件存储的去重2.5 基于 Redis 的去重3. 去重的优化策略3.1 URL 规范化3.2 分片去…...
IDEA集成DeepSeek,通过离线安装解决无法安装Proxy AI插件问题
文章目录 引言一、安装Proxy AI1.1 在线安装Proxy AI1.2 离线安装Proxy AI 二、Proxy AI中配置DeepSeek2.1 配置本地部署的DeepSeek(Ollama方式)2.2 通过第三方服务商提供的API进行配置 三、效果测试 引言 许多开发者尝试通过安装Proxy AI等插件将AI能力…...
【电子基础】运算放大器应用笔记(持续更新)
目录 运放应用1: 运放基础知识同相比例运算放大器计算放大倍数 电压比较器 运放应用2:500W调压器同相比例运算放大器计算放大倍数计算平衡电阻 积分电路 运放应用3:逆变电焊机电压跟随器积分电路 加油站1. 为什么比例运算放大电路要加平衡电阻…...
计算机网络核心知识点:信道容量、OSI模型与调制技术详解
目录 一、信道容量与调制技术 奈奎斯特定理(无噪声环境) 核心公式: 参数说明: 应用场景: 香农定理(有噪声环境) 核心公式: 参数说明: 应用场景: 奈奎…...
AI赋能企业协作4-NL2Sql技术路线
1.1 对话即服务的一点思考 在数智化转型的过程中,基于即时通信(IM)的协作平台正悄然成为企业智能化转型的“新基建”。协作平台天然具备高频交互、实时协同和场景化落地的特性,仿佛是为对话式AI量身定制的试验场——员工在熟悉的聊…...
如何用FFmpeg高效拉流(避坑指南)
FFmpeg作为音视频处理领域的“瑞士军刀”,其拉流功能在直播、监控、流媒体分析等场景中应用广泛。本文从实战角度出发,系统梳理FFmpeg拉流的核心工具链、协议适配技巧及高频踩坑点,助你快速掌握流媒体处理核心技能! 一、FFmpeg拉流工具链全解析 核心工具 ffplay:快速验证…...