当前位置: 首页 > news >正文

计算机视觉(opencv-python)入门之图像的读取,显示,与保存

        在计算机视觉领域,Python的cv2库是一个不可或缺的工具,它提供了丰富的图像处理功能。作为OpenCV的Python接口,cv2使得图像处理的实现变得简单而高效。

 示例图片


目录

opencv获取方式

图像基本知识

颜色空间

RGB

HSV

图像格式

BMP格式

  TIFF格式

GIF格式

JPEG格式

PNG格式

读取图像cv2.imread()

  imread各flags参数含义详解

读取结果说明

Ndarray说明

获取单通道颜色矩阵

显示图像

使用cv2.imshow()显示图像

cv2.waitKey()

cv2.destroyAllWindows()

使用plt.imshow()显示图像

保存图像cv2.imwrite()

总结


 opencv获取方式

pip install -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple opencv-python

图像基本知识

颜色空间

        颜色空间是一种用来表示颜色的数学模型,它描述了如何将颜色信息数字化,以便于计算机进行处理和分析。在计算机视觉和图像处理领域,常见的颜色空间包括RGB、HSV等。

RGB

        RGB颜色空间是最常用的颜色空间之一,它基于红(Red)、绿(Green)、蓝(Blue)三种基本颜色,通过调整这三种颜色的强度和组合,可以产生各种颜色。

        在RGB颜色空间中,每个颜色的强度值范围通常在0到255之间,分别代表红、绿、蓝三种颜色的亮度。通过调整这些亮度值,可以混合出各种颜色。例如,当RGB三个通道的强度值都为0时,表示黑色;当RGB三个通道的强度值都为255时,表示白色。

RGB颜色调色板 

        HEX是一种常用于网页设计和图像处理中的颜色表示方法,它通过六位十六进制数来表示RGB颜色空间中的颜色。在HEX表示法中,前两位代表红色强度,中间两位代表绿色强度,最后两位代表蓝色强度。 

        通过改变这三个值的不同组合,可以得到一个包含2^24=16777216种颜色的调色板,但是人眼可见的却远远少于这个数字。

        例如我们总是认为乌鸦是黑色的,但其实在不同的光照条件下,乌鸦的羽毛可能会呈现出彩色的光泽。这正是因为RGB颜色空间虽然能够表示大量的颜色,但人眼的颜色感知却受到环境、光照等多种因素的影响。

 乌鸦羽毛五彩斑斓的黑

HSV

        HSV(Hue, Saturation, Value)是根据颜色的直观特性 色调(Hue)、饱和度(Saturation)和明度(Value)三个参数。由A. R. Smith在1978年创建的一种颜色空间, 也称六角锥体模型(Hexcone Model)。

 HSV分量可以通过RGB各分量值转化得到,计算公式如下:

其中,R,G,B分别为RGB颜色空间中的3个分量。 


图像格式

常见的图像格式有BMP格式,TiIFF格式,GIF格式,JPEG格式,PNG格式等。

BMP格式

        BMP格式是windows环境中的一种标准(但很多microsoft应用程序不支持它),这种格式采用位映射存储格式,除了图像深度可选以外,不采用其他任何压缩,因此,BMP文件所占用的空间很大。BMP文件的图像深度可选lbit、4bit、8bit及24bit。BMP文件存储数据时,图像的扫描方式是按从左到右、从下到上的顺序。由于BMP文件格式是Windows环境中交换与图有关的数据的一种标准,因此在Windows环境中运行的图形图像软件都支持BMP图像格式。

  TIFF格式

        TIFF格式是一种灵活的图像存储格式,广泛应用于印刷、出版和扫描领域。它支持多种色彩模式,包括灰度、RGB、CMYK等,并允许无损压缩,以在保证图像质量的同时减少文件大小。TIFF格式还支持多层图像和透明度,使其在处理复杂图像时具有显著优势。此外,TIFF格式具有良好的兼容性,能够被多种图像编辑和处理软件所支持。

GIF格式

        GIF格式是一种广泛用于网络传输的图像格式。GIF格式以其独特的无损压缩技术和支持透明背景的特性而著称,这使得GIF图像在保持高质量的同时,文件大小相对较小,非常适合在网络上快速加载和显示。此外,GIF格式还支持动画效果,能够创建简单的动态图像,这一特性使其在社交媒体和网页设计中备受欢迎。尽管GIF格式的色彩深度有限,通常只能显示256种颜色,但这并不妨碍它在特定应用场景下的广泛应用。

JPEG格式

        JPEG格式源自对相对静止灰度或彩色图像的一种压缩标准,在使用有损压缩方法时可节省的空间是相当大的,目前数码相机中均使用这种格式。尽管JPEG格式采用有损压缩,可能会导致一定的图像质量损失,但通过调整压缩级别,用户可以在图像质量和文件大小之间找到理想的平衡点。这种灵活性使得JPEG格式成为存储和传输大量图片的优选方案,尤其是在存储空间有限或网络带宽受限的情况下。此外,JPEG格式还具有良好的跨平台兼容性,几乎可以被所有主流的图像查看器和编辑器所支持。

PNG格式

        PNG是一种无损压缩的图像格式,支持透明背景和Alpha通道,使得图像在保持高质量的同时,还能展现出更为丰富的层次感和细腻度。与GIF格式相比,PNG格式在色彩深度上不再受限,能够显示1600多万种颜色,这为图像的色彩表现提供了更广阔的空间。此外,PNG格式还支持多种图像编辑功能,如伽玛校正、文本注释等,进一步增强了其在图像处理和编辑领域的实用性。由于其无损压缩的特性,PNG格式在需要保持图像原始质量和细节的应用场景中,如网页设计中的图标、按钮等,具有不可替代的优势。

需要注意的是PNG格式的图片相对于其他格式图片来说,除了RGB三通道以外还多了一层alpha通道,这一层alpha通道使得PNG图片支持透明度设置,即可以实现图片的半透明效果,或者是抠图后的图片背景透明化。


读取图像cv2.imread()

#cv2.imread读取图像
import cv2
image=cv2.imread(filename='test.jpg',flags=cv2.IMREAD_UNCHANGED)
#filename:图像文件的路径
#flags:#cv2.IMREAD_COLOR:BGR格式彩色图像 #cv2.IMREAD_GRAYSCALE:灰度图像,是单通道的 #cv2.IMREAD_UNCHANGED:包括alpha通道,即透明通道#cv2.IMREAD_COLOR_BGR,以BGR格式读取图像,彩色#cv2.IMREAD_COLOR_RGB,以RGB格式读取图像,彩色#cv2.IMREAD_ANYDEPTH:读取任意深度的图像#cv2.IMREAD_ANYCOLOR:读取任意颜色的图像#cv2.IMREAD_LOAD_GDAL:使用GDAL读取图像#cv2.IMREAD_REDUCED_COLOR_2:读取1/2的彩色图像#cv2.IMREAD_REDUCED_COLOR_4:读取1/4的彩色图像#cv2.IMREAD_REDUCED_COLOR_8:读取1/8的彩色图像#cv2.IMREAD_REDUCED_GRAYSCALE_2:读取1/2的灰度图像#cv2.IMREAD_REDUCED_GRAYSCALE_4:读取1/4的灰度图像#cv2.IMREAD_REDUCED_GRAYSCALE_8:读取1/8的灰度图像#cv2.IMREAD_IGNORE_ORIENTATION:忽略图像的方向信息#cv2.IMREAD_COLOR是默认值,读取的图像是彩色BGR格式相当与cv2.IMREAD_COLOR_BGR
print(image.shape)

  cv2.imread()函数各flags参数含义详解

                cv2.imread()函数只有两个参数,filename与flages,filename指图像文件路径,flags是指定图像读取的方式。

以下是所有flags释义:
         

flags
cv2.IMREAD_COLOR读取彩色图像
cv2.IMREAD_GRAYSCALE读取单通道的灰度图像
cv2.IMREAD_UNCHANGED:按照图像原格式读取图像,若图像是png图像那么包括alpha通道,即透明通道,此时图像是四通道的,若图像不是png格式那么还是三通道。
 cv2.IMREAD_COLOR_BGR以BGR格式读取图像,彩色
 cv2.IMREAD_COLOR_RGB以RGB格式读取图像,彩色
cv2.IMREAD_ANYDEPTH读取任意深度的图像
 cv2.IMREAD_ANYCOLOR读取图像时自动检测并保留图像的原始颜色通道数。
cv2.IMREAD_LOAD_GDAL使用GDAL读取图像。GDAL 是专门用于处理地理空间数据格式的库,如 GeoTIFF、ENVI、HFA 等。
cv2.IMREAD_REDUCED_COLOR_2读取1/2的彩色图像
cv2.IMREAD_REDUCED_COLOR_4读取1/4的彩色图像
 cv2.IMREAD_REDUCED_COLOR_8:读取1/8的彩色图像
cv2.IMREAD_REDUCED_GRAYSCALE_2读取1/2的灰度图像
cv2.IMREAD_REDUCED_GRAYSCALE_4读取1/4的灰度图像
cv2.IMREAD_REDUCED_GRAYSCALE_8读取1/8的灰度图像
cv2.IMREAD_IGNORE_ORIENTATION忽略图像的方向信息

读取结果说明

Ndarray说明

          Ndarray的一般结构为:

[行数,列数,深度]

        其中行和列都是一维数组,我们知道行*列便可以构成矩阵,而深度则用来表示不同的行*列构成的矩阵的在最外层的数组中的索引。简而言之,ndarray就是数组内嵌套矩阵的格式,这样会十分方便理解。

          上述代码中的image为读取结果,由于我们的示例图片是.jpg格式没有alpha通道,所以flags使用cv2.IMREAD_UNCHANGED与cv2.IMREAD_COLOR并没有区别,通道数都为3。

 image的shape:(1161, 1080, 3)

        cv2.imread()函数的结果是ndarray,我们打印出其shape的结果中前两个参数是图像的高与宽,第三个参数是image的维度,这里的维度其实就是图像的RGB通道数。

获取单通道颜色矩阵

        倘若我们想要分别切片获取image的三个通道数对应的颜色矩阵那么我们可以这样写.

blue=image[:,:,0]
green=image[:,:,1]
red=image[:,:,2]
#或者
blue=image[0:1161,0:1080,0]
green=image[0:1161,0:1080,1]
red=image[0:1161,0:1080,2]

           在第一种写法中,这里要说明一下的是,ndarray的切片方法与python的list切片方法一致,切片时有一个特殊用法就是[:],它相当与[0:len(array)]用来直接获取整个数组所有值,倘若你要是不知道某一维这个数组的长度(比如上边我们读取的图像高1161宽1080,直接切片需[0:1161,0:1080]),又想获取整个数组的所有内容,可以使用这种方法。

        当然,为了方便,cv2已经内置了split函数替我们直接获取三个颜色通道的矩阵。

blue,green,red=cv2.split(image)

显示图像

使用cv2.imshow()显示图像

import cv2#opencv读取的格式是BGR
image=cv2.imread('test.jpg')
image=cv2.resize(image,(500,500))#更改一下图像大小,为了方便显示
cv2.imshow('image',image)
cv2.waitKey(0)
cv2.destroyAllWindows()

        这里的image是一个shape为(500,500,3)的ndarray,表示这是一个500x500像素的彩色图像,具有红、绿、蓝三个颜色通道。每个颜色通道都是一个500x500的二维数组。

结果

cv2.waitKey()

        cv2.waitKey()是用来在OpenCV(cv2)库中暂停程序执行并等待用户按键的函数。这个函数通常在显示图像时使用,比如在一个窗口中显示图像后,我们希望程序在用户按下任意键后再继续执行后续操作,这时就可以使用cv2.waitKey()函数。该函数接受一个整数参数,表示等待的毫秒数。如果参数为0,则表示无限期等待,直到用户按下键盘上的任意键。在按下键后,cv2.waitKey()会返回按键的ASCII码值,我们可以根据这个返回值来判断用户按下了哪个键。需要注意的是,在使用cv2.waitKey()之前,必须已经创建了一个图像显示窗口,否则该函数将无法正常工作。

cv2.destroyAllWindows()

      cv2.destroywindows()是用来关闭所有OpenCV创建过的窗口的,这些窗口实际是都是使用python内置库tkinter编写的,先前的tkinter窗口会阻塞主线程。所以,当我们完成图像处理或显示操作后,经常需要关闭这些窗口以释放资源。倘若不将他们关闭当前图像窗口可能无法显示。

使用plt.imshow()显示图像

import cv2#opencv读取的格式是BGR
import matplotlib.pyplot as plt#matplotlib读取的格式是RGB
image=cv2.imread('test.jpg')
image=cv2.resize(image,(500,500))
#使用plt.imshow(),需要先将BGR转化成RGB,这里使用cv2.cvtColor颜色通道转换函数完成
image=cv2.cvtColor(image,cv2.COLOR_RGB2BGR)
plt.axis('off')
plt.imshow(image)

结果

        这里需要注意的是opencv读取的图像时默认格式是BGR,而matplotlib读取的格式是RGB,如果我们在读取图像时不指定读取方式且不使用cv2.cvtColor()通道转换函数将颜色通道转换成RGB的话,那么显示出来的图像的颜色便会怪怪的。。。

        这是因为,matplotlib把原本是红色的通道误认为是蓝色通道,而原本是蓝色的通道则被认为是红色通道。这种颜色通道的错位就会导致图像颜色显示异常、

        但是,无论如何,cv2.imshow与plt.imshow这两个函数在显示图像时,需要传入的都是图像的ndarray数据。

保存图像cv2.imwrite()

#cv2.imwrite保存图像
import cv2
image=cv2.imread(filename='test.jpg',flags=cv2.IMREAD_UNCHANGED)
#图像经过某些变换或操作后需要保存
cv2.imwrite(filename='newImage.jpg',img=image,params=[int(cv2.IMWRITE_JPEG_QUALITY), 50])
#filename:保存图像文件名称
#img:图像颜色矩阵
#params:参数是一个可选的序列(通常是列表或元组),用于传递图像编码和压缩相关的参数。

        当我们需要保存图像时,直接调用cv2.imwrite()函数即可。 

总结

        本文主要介绍了opencv图像的读取与显示,后序还将分享更多相关图像处理技术,以及如何利用cv2进行图像特征提取和匹配。并且还会将所有内容合并到专栏中,免费订阅。

        通过本专栏的学习,读者将能够利用cv2库解决实际的图像处理问题,为计算机视觉项目打下坚实基础。

相关文章:

计算机视觉(opencv-python)入门之图像的读取,显示,与保存

在计算机视觉领域,Python的cv2库是一个不可或缺的工具,它提供了丰富的图像处理功能。作为OpenCV的Python接口,cv2使得图像处理的实现变得简单而高效。 示例图片 目录 opencv获取方式 图像基本知识 颜色空间 RGB HSV 图像格式 BMP格式 …...

现代前端框架渲染机制深度解析:虚拟DOM到编译时优化

引言:前端框架的性能进化论 TikTok Web将React 18迁移至Vue 3后,点击响应延迟降低42%,内存占用减少35%。Shopify采用Svelte重构核心交互模块,首帧渲染速度提升580%。Discord在Next.js 14中启用React Server Components后&#xf…...

Selenium自动化测试:如何搭建自动化测试环境,搭建环境过程应该注意的问题

最近也有很多人私下问我,selenium学习难吗,基础入门的学习内容很多是3以前的版本资料,对于有基础的人来说,3到4的差别虽然有,但是不足以影响自己,但是对于没有学过的人来说,通过资料再到自己写的…...

Linux服务升级:Almalinux 升级 DeepSeek-R1

目录 一、实验 1.环境 2.Almalinux 部署 Ollama 3.Almalinux 升级 DeepSeek-R1 4.Almalinux 部署 docker 5. docker 部署 DeepSeek-R1 6.Almalinux 部署 Cpolar (内网穿透) 7.使用cpolar内网穿透 二、问题 1.构建容器失败 一、实验 1.环境 (1&#xff09…...

《HelloGitHub》第 107 期

兴趣是最好的老师,HelloGitHub 让你对编程感兴趣! 简介 HelloGitHub 分享 GitHub 上有趣、入门级的开源项目。 github.com/521xueweihan/HelloGitHub 这里有实战项目、入门教程、黑科技、开源书籍、大厂开源项目等,涵盖多种编程语言 Python、…...

【实战 ES】实战 Elasticsearch:快速上手与深度实践-1.3.2Kibana可视化初探

👉 点击关注不迷路 👉 点击关注不迷路 👉 点击关注不迷路 文章大纲 10分钟快速部署Kibana可视化平台1. Kibana与Elasticsearch关系解析1.1 架构关系示意图1.2 核心功能矩阵 2. 系统环境预检2.1 硬件资源配置2.2 软件依赖清单 3. Docker快速部…...

网络七层模型—OSI参考模型详解

网络七层模型:OSI参考模型详解 引言 在网络通信的世界中,OSI(Open Systems Interconnection)参考模型是一个基础且核心的概念。它由国际标准化组织(ISO)于1984年提出,旨在为不同厂商的设备和应…...

老旧android项目编译指南(持续更)

原因 编译了很多项目,找到了一些可观的解决办法 1. android studio里面的jdk版本切换 jdk版本切换在这里,一般安卓开发需要用到4个版本的jdk,jdk8, jdk11, jdk17, jdk21新版的android stuio是默认使用高版本的jdk,所以切换版本是很有必要的 2. 命令…...

测试金蝶云的OpenAPI

如何使用Postman测试K3Cloud的OpenAPI 1. 引言 在本篇博客中,我将带你逐步了解如何使用Postman测试和使用K3Cloud的OpenAPI。内容包括下载所需的SDK文件、配置文件、API调用及测试等步骤。让我们开始吧! 2. 下载所需的SDK文件 2.1 获取SDK 首先&…...

从零基础到通过考试

1. 学习资源与实践平台 使用Proving Grounds进行靶机练习 OSCP的备考过程中,实战练习占据了非常重要的地位。Proving Grounds(PG)是一个由Offensive Security提供的练习平台,拥有152个靶机,涵盖了从基础到进阶的多种…...

AI人工智能机器学习之神经网络

1、概要 本篇学习AI人工智能机器学习之神经网络,以MLPClassifier和MLPRegressor为例,从代码层面讲述最常用的神经网络模型MLP。 2、神经网络 - 简介 在 Scikit-learn 中,神经网络是通过 sklearn.neural_network 模块提供的。最常用的神经网…...

【原创】Open WebUI 本地部署

使用官网的默认部署,遇到不少的问题。比如白屏问题,其实需要修改几个参数即可。 其实在部署的时候有不少参数 WEBUI_AUTH False ENABLE_OPENAI_API 0 PATH /usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LANG C.UTF-8…...

基于SpringBoot的绿城郑州爱心公益网站设计与实现现(源码+SQL脚本+LW+部署讲解等)

专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…...

【天地图-点线面最全功能】天地图实现功能:回显、绘制、编辑、删除任意点线面

实现效果图 实现功能 1. 回显点线面数据 2. 绘制点线面,保存可获取点线面数据 3. 编辑点线面,保存可获取最新编辑后的点线面数据 4. 删除任意点线面(解决删除按钮不能随元素位置变化(地图拖拽/放大缩小时)而变化问题-&…...

003 SpringBoot集成Kafka操作

4.SpringBoot集成Kafka 文章目录 4.SpringBoot集成Kafka1.入门示例2.yml完整配置3.关键配置注释说明1. 生产者优化参数2. 消费者可靠性配置3. 监听器高级特性4. 安全认证配置 4.配置验证方法5.不同场景配置模板场景1:高吞吐日志收集场景2:金融级事务消息…...

【工具篇】【深度解析:2025 AI视频工具的全面指南】

随着人工智能技术的飞速发展,AI视频工具已经成为内容创作者、营销人员、教育工作者以及普通用户的得力助手。这些工具不仅简化了视频制作流程,还提供了前所未有的创意可能性。本文将详细介绍各类AI视频工具,帮助你找到最适合自己需求的工具。 1. 文生视频工具 智谱清影:这…...

前端面试真题 2025最新版

文章目录 写在前文CSS怪异盒模型JS闭包闭包的形成闭包注意点 CSS选择器及优先级优先级 说说flex布局及相关属性Flex 容器相关属性:Flex 项目相关属性 响应式布局如何实现是否用过tailwindcss,有哪些好处好处缺点 说说对象的 prototype属性及原型说说 pro…...

数据结构课程设计(java实现)---九宫格游戏,也称幻方

【问题描述】 九宫格,一款数字游戏,起源于河图洛书,与洛书是中国古代流传下来的两幅神秘图案,历来被认为是河洛文化的滥觞,中华文明的源头,被誉为"宇宙魔方"。九宫格游戏对人们的思维锻炼有着极大…...

一文掌握Charles抓包工具的详细使用

Charles是一款强大的HTTP代理/HTTP监视器/反向代理工具,广泛用于开发和测试网络应用程序。在爬虫开发中,Charles可以帮助开发者拦截、查看和修改HTTP/HTTPS请求和响应,从而更好地理解网络通信过程,分析和调试爬虫程序。本文将详细介绍Charles的安装、配置、基本使用方法以及…...

Ollama下载安装+本地部署DeepSeek+UI可视化+搭建个人知识库——详解!(Windows版本)

目录 1️⃣下载和安装Ollama 1. 🥇官网下载安装包 2. 🥈安装Ollama 3.🥉配置Ollama环境变量 4、🎉验证Ollama 2️⃣本地部署DeepSeek 1. 选择模型并下载 2. 验证和使用DeepSeek 3️⃣使用可视化工具 1. Chrome插件-Page …...

Rk3568驱动开发_点亮led灯(手动挡)_5

1.MMU简介 完成虚拟空间到物理空间的映射 内存保护设立存储器的访问权限,设置虚拟存储空间的缓冲特性 stm32点灯可以直接操作寄存器,但是linux点灯不能直接访问寄存器,linux会使能mmu linux中操作的都是虚拟地址,要想访问物理地…...

【服务治理中间件】consul介绍和基本原理

目录 一、CAP定理 二、服务注册中心产品比较 三、Consul概述 3.1 什么是Consul 3.2 Consul架构 3.3 Consul的使用场景 3.4 Consul健康检查 四、部署consul集群 4.1 服务器部署规划 4.2 下载解压 4.3 启动consul 五、服务注册到consul 一、CAP定理 CAP定理&#xff…...

Docker下ARM64架构的源码编译Qt5.15.1,并移植到开发板上

Docker下ARM64架构的源码编译Qt5.15.1,并移植到开发板上 1、环境介绍 QT版本:5.15.1 待移植环境: jetson nano 系列开发板 aarch64架构(arm64) 编译环境: 虚拟机Ubuntu18.04(x86_64) 2、…...

对话Stack Overflow,OceanBase CTO 杨传辉谈分布式数据库的“前世今生”

近日, OceanBase CTO 杨传辉受邀出席全球知名开发者论坛 Stack Overflow 的最新一期播客节目,与 Stack Overflow 高级内容创作官 Ryan Donovan 展开对话。双方围绕分布式数据库的可靠性、一致性保障、HTAP 架构以及 AI 时代分布式数据库的发展趋势等热点…...

ds回答-开源llm应用开发平台

以下是几个著名的开源 LLM 应用开发平台,涵盖不同场景和技术特点: 1. Dify 特点:低代码 / 无代码开发、支持 RAG 检索、Agent 智能体、模型管理、LLMOps 全流程优化。核心功能:可视化工作流编排、数百种模型兼容(如 GP…...

C++ Qt常见面试题(4):Qt事件过滤器

在 Qt 中,事件过滤器(Event Filter)提供了一种机制,可以拦截并处理对象的事件(如鼠标事件、键盘事件等),在事件到达目标对象之前对其进行预处理。事件过滤器通常用于以下场景: 捕获和处理特定的事件(如鼠标点击、按键等);对事件进行筛选或修改;实现全局的事件监听功…...

CF 109A.Lucky Sum of Digits(Java实现)

题目分析 给定一个值,判断这个值能否被4和7组成,如果能就输出最小的组合。不能就输出-1。 思路分析 由于是最小组合,即判断4能最多有多少个。但是如果一个值能完全被7整除,那就不需要4了,只用7组合的话位数会更短。(例…...

计算机毕业设计Python+DeepSeek-R1大模型游戏推荐系统 Steam游戏推荐系统 游戏可视化 游戏数据分析(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

生鲜行业智能化供应链解决方案技术白皮书

行业痛点与技术挑战 损耗控制难题 行业平均损耗率达18%-25%,需构建动态定价模型与智能分拣系统 冷链管理复杂度 全程温控数据采集点超过23个/车次,异常响应延迟需压缩至90秒内 供需预测偏差 传统模式预测准确率不足65%,亟需AI驱动需求预测体…...

《每天搞懂一道Hard》之数独终结者(LeetCode 37)

📌《每天搞懂一道Hard》之数独终结者(LeetCode 37) 🔗原题链接:https://leetcode.com/problems/sudoku-solver/ 今天我们来解剖一个经典回溯算法问题——数独求解器!这道题在算法面试中出现频率高达35%&a…...

论文笔记-NeurIPS2017-DropoutNet

论文笔记-NeurIPS2017-DropoutNet: Addressing Cold Start in Recommender Systems DropoutNet:解决推荐系统中的冷启动问题摘要1.引言2.前言3.方法3.1模型架构3.2冷启动训练3.3推荐 4.实验4.1实验设置4.2在CiteULike上的实验结果4.2.1 Dropout率的影响4.2.2 实验结…...

【后端开发面试题】每日 3 题(四)

✍个人博客:Pandaconda-CSDN博客 📣专栏地址:https://blog.csdn.net/newin2020/category_12903849.html 📚专栏简介:在这个专栏中,我将会分享后端开发面试中常见的面试题给大家~ ❤️如果有收获的话&#x…...

使用AoT让.NetFramework4.7.2程序调用.Net8编写的库

1、创建.Net8的库&#xff0c;双击解决方案中的项目&#xff0c;修改如下&#xff0c;启用AoT&#xff1a; <Project Sdk"Microsoft.NET.Sdk"><PropertyGroup><OutputType>Library</OutputType><PublishAot>true</PublishAot>&…...

c++中的静态多态和动态多态简介

在 C 中&#xff0c;多态性&#xff08;Polymorphism&#xff09; 分为 静态多态&#xff08;Static Polymorphism&#xff09; 和 动态多态&#xff08;Dynamic Polymorphism&#xff09;&#xff0c;二者通过不同的机制实现代码的灵活性。以下是详细对比和核心要点&#xff1…...

FastExcel与Reactor响应式编程深度集成技术解析

一、技术融合背景与核心价值 在2025年企业级应用开发中&#xff0c;大规模异步Excel处理与响应式系统架构的结合已成为技术刚需。FastExcel与Reactor的整合方案&#xff0c;通过以下技术协同实现突破性性能&#xff1a; 内存效率革命&#xff1a;FastExcel的流式字节操作与Re…...

【MySQL篇】数据类型

目录 前言&#xff1a; 1&#xff0c;数据类型的分类 ​编辑 2 &#xff0c;数值类型 2.1 tinyint类型 2.2 bit类型 2.3 小数类型 2.3.1 float类型 2.3.2 decimal类型 3&#xff0c;字符串类型 3.1 char 3.2 varchar 3.3 char与varchar的比较 3.4日期和时间类型 3.5 …...

haclon固定相机位标定

什么是标定&#xff1f; 工业应用中相机拍到一个mark点的坐标为C1&#xff08;Cx,Cy&#xff09;&#xff0c;C1点对应的龙门架/机械手等执行端对应的坐标是多少&#xff1f; 标定就是解决这个问题&#xff0c;如相机拍到一个点坐标C1&#xff08;Cx,Cy&#xff09;&#xff0c…...

Token相关设计

文章目录 1. 双Token 机制概述1.1 访问令牌&#xff08;Access Token&#xff09;1.2 刷新令牌&#xff08;Refresh Token&#xff09; 2. 双Token 认证流程3. Spring Boot 具体实现3.1 生成 Token&#xff08;使用 JWT&#xff09;3.2 解析 Token3.3 登录接口&#xff08;返回…...

vue3:四嵌套路由的实现

一、前言 1、嵌套路由的含义 嵌套路由的核心思想是&#xff1a;在某个路由的组件内部&#xff0c;可以定义子路由&#xff0c;这些子路由会渲染在父路由组件的特定位置&#xff08;通常是 <router-view> 标签所在的位置&#xff09;。通过嵌套路由&#xff0c;你可以实…...

在 Element Plus 的 <el-select> 组件中,如果需要将 <el-option> 的默认值设置为 null。 用于枚举传值

文章目录 引言轻松实现 `<el-option>` 的默认值为 `null`I 实现方式监听清空事件 【推荐】使用 v-model 绑定 null添加一个值为 null 的选项处理 null 值的显示引言 背景:接口签名规则要求空串参与,空对象不参与签名计算 // 空字符串“” 参与签名组串,null不参与签…...

List(3)

前言 上一节我们讲解了list主要接口的模拟实现&#xff0c;本节也是list的最后一节&#xff0c;我们会对list的模拟实现进行收尾&#xff0c;并且讲解list中的迭代器失效的情况&#xff0c;那么废话不多说&#xff0c;我们正式进入今天的学习 list的迭代器失效 之前在讲解vec…...

算法-二叉树篇23-二叉搜索树中的插入操作

二叉搜索树中的插入操作 力扣题目链接 题目描述 给定二叉搜索树&#xff08;BST&#xff09;的根节点 root 和要插入树中的值 value &#xff0c;将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据 保证 &#xff0c;新值和原始二叉搜索树中的任意节点值都不同…...

React底层常见的设计模式

在React中&#xff0c;常见的设计模式为开发者提供了结构化和可重用的解决方案&#xff0c;有助于提高代码的可维护性和可扩展性。以下是对React中几种常见设计模式的详细解析&#xff0c;并附上示例代码和注释&#xff1a; 1. 容器组件与展示组件模式&#xff08;Container/P…...

【PHP脚本语言详解】为什么直接访问PHP文件会显示空白?从错误示例到正确执行!

前言 作为一名开发者&#xff0c;你是否曾经遇到过这样的问题&#xff1a;写了一个PHP脚本&#xff0c;放到服务器根目录后&#xff0c;直接通过file:///路径访问却显示空白页面&#xff1f;而换成http://localhost却能正常显示&#xff1f;这篇文章将带你深入理解PHP脚本语言…...

小程序性能优化-预加载

在微信小程序中&#xff0c;数据预加载是提升用户体验的重要优化手段。以下是处理数据预加载的完整方案&#xff1a; 一、预加载的适用场景 跳转页面前的数据准备 如从列表页进入详情页前&#xff0c;提前加载详情数据首屏加载后的空闲时间 在首页加载完成后&#xff0c;预加载…...

Docker 数据卷管理及优化

Docker 数据卷是一个可供容器使用的特殊目录&#xff0c;它绕过了容器的文件系统&#xff0c;直接将数据存储在宿主机上。通过数据卷&#xff0c;可以实现数据的持久化、共享以及独立于容器生命周期的管理。 1.1 为什么要用数据卷 Docker 分层文件系统的特点 性能差&#xff…...

MySQL实现文档全文搜索,分词匹配多段落重排展示,知识库搜索原理分享

一、背景 在文档搜索场景中&#xff0c;高效精准的搜索功能至关重要&#xff0c;能提升检索效率&#xff0c;为用户提供精准、快速的信息获取体验&#xff0c;提高工作效率。在文档管理系统里&#xff0c;全文搜索是非常重要的功能之一。随着文档数量增长&#xff0c;如何快速…...

C#内置委托(Action)(Func)

概述 在 C# 中&#xff0c;委托是一种类型&#xff0c;它表示对具有特定参数列表和返回类型的方法的引用。C# 提供了一些内置委托&#xff0c;使得开发者可以更方便地使用委托功能&#xff0c;无需手动定义委托类型。本文将详细介绍 Action 和 Func 这两个常用的内置委托。 A…...

OpenCV计算摄影学(3)CUDA 图像去噪函数fastNlMeansDenoising()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 使用非局部均值去噪算法&#xff08;Non-local Means Denoising algorithm&#xff09;执行图像去噪&#xff0c;该算法来源于 http://www.ipol.…...

Kafka生产者相关

windows中kafka集群部署示例-CSDN博客 先启动集群或者单机也OK 引入依赖 <dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>3.9.0</version></dependency>关于主题创建 理论…...