Java 并发编程之synchronized
一、前言
在并发编程中,多个线程访问同一个共享资源时,我们必须考虑如何维护数据的原子性。在JDK1.5之前,Java是依靠Synchronized关键字实现锁功能来做到这点的。Synchronized是JVM实现的一种内置锁,锁的获取和释放是由JVM隐式实现。
到了JDK1.5版本,并发包中新增了Lock接口来实现锁功能,它提供了与Synchronized关键字类似的同步功能,只是在使用时需要显式获取和释放锁。
Lock同步锁是基于Java实现的,而Synchronized是基于底层操作系统的Mutex Lock实现的,每次获取和释放锁操作都会带来用户态和内核态的切换,从而增加系统性能开销。因此,在锁竞争激烈的情况下,Synchronized同步锁在性能上就表现得非常糟糕,它也常被大家称为重量级锁。
特别是在单个线程重复申请锁的情况下,JDK1.5版本的Synchronized锁性能要比Lock的性能差很多。例如,在Dubbo基于Netty实现的通信中,消费端向服务端通信之后,由于接收返回消息是异步,所以需要一个线程轮询监听返回信息。而在接收消息时,就需要用到锁来确保request session的原子性。如果我们这里使用Synchronized同步锁,那么每当同一个线程请求锁资源时,都会发生一次用户态和内核态的切换。
到了JDK1.6版本之后,Java对Synchronized同步锁做了充分的优化,甚至在某些场景下,它的性能已经超越了Lock同步锁。这一讲我们就来看看Synchronized同步锁究竟是通过了哪些优化,实现了性能地提升。
二、synchronized 实现原理
了解Synchronized同步锁优化之前,我们先来看看它的底层实现原理,这样可以帮助我们更好地理解后面的内容。
通常Synchronized实现同步锁的方式有两种,一种是修饰方法,一种是修饰方法块。以下就是通过Synchronized实现的两种同步方法加锁的方式:
// 关键字在实例方法上,锁为当前实例public synchronized void method1() {// code}// 关键字在代码块上,锁为括号里面的实例对象public void method2() {Object o = new Object();synchronized (o) {// code}}
下面我们可以通过反编译看下具体字节码的实现,运行以下反编译命令,就可以输出我们想要的字节码:
javac -encoding UTF-8 SyncTest.java //先运行编译class文件命令
javap -v SyncTest.class //再通过javap打印出字节文件
通过输出的字节码,你会发现:Synchronized在修饰同步代码块时,是由 monitorenter和monitorexit指令来实现同步的。进入monitorenter 指令后,线程将持有Monitor对象,退出monitorenter指令后,线程将释放该Monitor对象。
public void method2();descriptor: ()Vflags: ACC_PUBLICCode:stack=2, locals=4, args_size=10: new #2 3: dup4: invokespecial #1 7: astore_18: aload_19: dup10: astore_211: monitorenter //monitorenter 指令12: aload_213: monitorexit //monitorexit 指令14: goto 2217: astore_318: aload_219: monitorexit20: aload_321: athrow22: returnException table:from to target type12 14 17 any17 20 17 anyLineNumberTable:line 18: 0line 19: 8line 21: 12line 22: 22StackMapTable: number_of_entries = 2frame_type = 255 /* full_frame */offset_delta = 17locals = [ class com/demo/io/SyncTest, class java/lang/Object, class java/lang/Object ]stack = [ class java/lang/Throwable ]frame_type = 250 /* chop */offset_delta = 4
再来看以下同步方法的字节码,你会发现:当Synchronized修饰同步方法时,并没有发现monitorenter和monitorexit指令,而是出现了一个ACC_SYNCHRONIZED标志。
这是因为JVM使用了ACC_SYNCHRONIZED访问标志来区分一个方法是否是同步方法。当方法调用时,调用指令将会检查该方法是否被设置ACC_SYNCHRONIZED访问标志。如果设置了该标志,执行线程将先持有Monitor对象,然后再执行方法。在该方法运行期间,其它线程将无法获取到该Mointor对象,当方法执行完成后,再释放该Monitor对象。
public synchronized void method1();descriptor: ()Vflags: ACC_PUBLIC, ACC_SYNCHRONIZED // ACC_SYNCHRONIZED 标志Code:stack=0, locals=1, args_size=10: returnLineNumberTable:line 8: 0
通过以上的源码,我们再来看看Synchronized修饰方法是怎么实现锁原理的。
JVM中的同步是基于进入和退出管程(Monitor)对象实现的。每个对象实例都会有一个Monitor,Monitor可以和对象一起创建、销毁。Monitor是由ObjectMonitor实现,而ObjectMonitor是由C++的ObjectMonitor.hpp文件实现,如下所示:
ObjectMonitor() {_header = NULL;_count = 0; //记录个数_waiters = 0,_recursions = 0;_object = NULL;_owner = NULL;_WaitSet = NULL; //处于wait状态的线程,会被加入到_WaitSet_WaitSetLock = 0 ;_Responsible = NULL ;_succ = NULL ;_cxq = NULL ;FreeNext = NULL ;_EntryList = NULL ; //处于等待锁block状态的线程,会被加入到该列表_SpinFreq = 0 ;_SpinClock = 0 ;OwnerIsThread = 0 ;
}
当多个线程同时访问一段同步代码时,多个线程会先被存放在ContentionList和_EntryList 集合中,处于block状态的线程,都会被加入到该列表。接下来当线程获取到对象的Monitor时,Monitor是依靠底层操作系统的Mutex Lock来实现互斥的,线程申请Mutex成功,则持有该Mutex,其它线程将无法获取到该Mutex,竞争失败的线程会再次进入ContentionList被挂起。
如果线程调用wait() 方法,就会释放当前持有的Mutex,并且该线程会进入WaitSet集合中,等待下一次被唤醒。如果当前线程顺利执行完方法,也将释放Mutex。
看完上面的讲解,相信你对同步锁的实现原理已经有个深入的了解了。总结来说就是,同步锁在这种实现方式中,因Monitor是依赖于底层的操作系统实现,存在用户态与内核态之间的切换,所以增加了性能开销。
三、锁升级优化
为了提升性能,JDK1.6引入了偏向锁、轻量级锁、重量级锁概念,来减少锁竞争带来的上下文切换,而正是新增的Java对象头实现了锁升级功能。
当Java对象被Synchronized关键字修饰成为同步锁后,围绕这个锁的一系列升级操作都将和Java对象头有关。
1.1 Java对象头
在JDK1.6 JVM中,对象实例在堆内存中被分为了三个部分:对象头、实例数据和对齐填充。其中Java对象头由Mark Word、指向类的指针以及数组长度三部分组成。
Mark Word记录了对象和锁有关的信息。Mark Word在64位JVM中的长度是64bit,我们可以一起看下64位JVM的存储结构是怎么样的。如下图所示:
锁升级功能主要依赖于Mark Word中的锁标志位和释放偏向锁标志位,Synchronized同步锁就是从偏向锁开始的,随着竞争越来越激烈,偏向锁升级到轻量级锁,最终升级到重量级锁。
所以目前锁一共有4种状态,级别从低到高依次是:无锁、偏向锁、轻量级锁和重量级锁。锁状态只能升级不能降级。
下面我们就沿着这条优化路径去看下具体的内容。
1.2 无锁
无锁没有对资源进行锁定,所有的线程都能访问并修改同一个资源,但同时只有一个线程能修改成功。
无锁的特点就是修改操作在循环内进行,线程会不断的尝试修改共享资源。如果没有冲突就修改成功并退出,否则就会继续循环尝试。如果有多个线程修改同一个值,必定会有一个线程能修改成功,而其他修改失败的线程会不断重试直到修改成功。上面我们介绍的CAS原理及应用即是无锁的实现。无锁无法全面代替有锁,但无锁在某些场合下的性能是非常高的。
1.3 偏向锁
偏向锁是指JVM认为只有某个线程才会执行同步代码(没有竞争的环境)。
在大多数情况下,锁总是由同一线程多次获得,不存在多线程竞争,所以出现了偏向锁。其目标就是在只有一个线程执行同步代码块时能够提高性能。
当一个线程访问同步代码块并获取锁时,会在Mark Word里存储锁偏向的线程ID。在线程进入和退出同步块时不再通过CAS操作来加锁和解锁,而是检测Mark Word里是否存储着指向当前线程的偏向锁。引入偏向锁是为了在无多线程竞争的情况下尽量减少不必要的轻量级锁执行路径,因为轻量级锁的获取及释放依赖多次CAS原子指令,而偏向锁只需要在置换ThreadID的时候依赖一次CAS原子指令即可。
偏向锁只有遇到其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁,线程不会主动释放偏向锁。偏向锁的撤销,需要等待全局安全点(在这个时间点上没有字节码正在执行),它会首先暂停拥有偏向锁的线程,判断锁对象是否处于被锁定状态。撤销偏向锁后恢复到无锁(标志位为“01”)或轻量级锁(标志位为“00”)的状态。
偏向锁在JDK 6及以后的JVM里是默认启用的。可以通过JVM参数关闭偏向锁:-XX:-UseBiasedLocking=false,关闭之后程序默认会进入轻量级锁状态。
1.4 轻量级锁
是指当锁是偏向锁的时候,被另外的线程所访问,偏向锁就会升级为轻量级锁,其他线程会通过自旋的形式尝试获取锁,不会阻塞,从而提高性能。
在代码进入同步块的时候,如果同步对象锁状态为无锁状态(锁标志位为“01”状态,是否为偏向锁为“0”),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝,然后拷贝对象头中的Mark Word复制到锁记录中。
拷贝成功后,虚拟机将使用CAS操作尝试将对象的Mark Word更新为指向Lock Record的指针,并将Lock Record里的owner指针指向对象的Mark Word。
如果这个更新动作成功了,那么这个线程就拥有了该对象的锁,并且对象Mark Word的锁标志位设置为“00”,表示此对象处于轻量级锁定状态。
如果轻量级锁的更新操作失败了,虚拟机首先会检查对象的Mark Word是否指向当前线程的栈帧,如果是就说明当前线程已经拥有了这个对象的锁,那就可以直接进入同步块继续执行,否则说明多个线程竞争锁。
若当前只有一个等待线程,则该线程通过自旋进行等待。但是当自旋超过一定的次数,或者一个线程在持有锁,一个在自旋,又有第三个来访时,轻量级锁升级为重量级锁。
1.4 重量级锁
升级为重量级锁时,锁标志的状态值变为“10”,此时Mark Word中存储的是指向重量级锁的指针,此时等待锁的线程都会进入阻塞状态。
整体的锁状态升级流程如下:
综上,偏向锁通过对比Mark Word解决加锁问题,避免执行CAS操作。而轻量级锁是通过用CAS操作和自旋来解决加锁问题,避免线程阻塞和唤醒而影响性能。重量级锁是将除了拥有锁的线程以外的线程都阻塞。
只有一个线程进入临界区就是偏向锁;多个线程交替进入临界区就是轻量级锁;多线程同时进入临界区就是重量级锁。
四、动态编译实现锁消除和锁粗化
除了锁升级优化,Java还使用了编译器对锁进行优化。JIT 编译器在动态编译同步块的时候,借助了一种被称为逃逸分析的技术,来判断同步块使用的锁对象是否只能够被一个线程访问,而没有被发布到其它线程。
确认是的话,那么 JIT 编译器在编译这个同步块的时候不会生成 synchronized 所表示的锁的申请与释放的机器码,即消除了锁的使用。在 Java7 之后的版本就不需要手动配置了,该操作可以自动实现。
锁粗化同理,就是在 JIT 编译器动态编译时,如果发现几个相邻的同步块使用的是同一个锁实例,那么 JIT 编译器将会把这几个同步块合并为一个大的同步块,从而避免一个线程“反复申请、释放同一个锁”所带来的性能开销。
五、减小锁粒度
除了锁内部优化和编译器优化之外,我们还可以通过代码层来实现锁优化,减小锁粒度就是一种惯用的方法。
当我们的锁对象是一个数组或队列时,集中竞争一个对象的话会非常激烈,锁也会升级为重量级锁。我们可以考虑将一个数组和队列对象拆成多个小对象,来降低锁竞争,提升并行度。
最经典的减小锁粒度的案例就是JDK1.8之前实现的ConcurrentHashMap版本。我们知道,HashTable是基于一个数组+链表实现的,所以在并发读写操作集合时,存在激烈的锁资源竞争,也因此性能会存在瓶颈。而ConcurrentHashMap就很很巧妙地使用了分段锁Segment来降低锁资源竞争,如下图所示:
六、总结
JVM在JDK1.6中引入了分级锁机制来优化Synchronized,当一个线程获取锁时,首先对象锁将成为一个偏向锁,这样做是为了优化同一线程重复获取导致的用户态与内核态的切换问题;其次如果有多个线程竞争锁资源,锁将会升级为轻量级锁,它适用于在短时间内持有锁,且分锁有交替切换的场景;轻量级锁还使用了自旋锁来避免线程用户态与内核态的频繁切换,大大地提高了系统性能;但如果锁竞争太激烈了,那么同步锁将会升级为重量级锁。
减少锁竞争,是优化Synchronized同步锁的关键。我们应该尽量使Synchronized同步锁处于轻量级锁或偏向锁,这样才能提高Synchronized同步锁的性能;通过减小锁粒度来降低锁竞争也是一种最常用的优化方法;另外我们还可以通过减少锁的持有时间来提高Synchronized同步锁在自旋时获取锁资源的成功率,避免Synchronized同步锁升级为重量级锁。
相关文章:
Java 并发编程之synchronized
一、前言 在并发编程中,多个线程访问同一个共享资源时,我们必须考虑如何维护数据的原子性。在JDK1.5之前,Java是依靠Synchronized关键字实现锁功能来做到这点的。Synchronized是JVM实现的一种内置锁,锁的获取和释放是由JVM隐式实…...
Windows 11【1001问】查看Windows 11 版本的18种方法
随着技术的飞速发展,操作系统作为连接硬件与软件的核心桥梁,其版本管理和更新变得尤为重要。对于用户而言,了解自己设备上运行的具体Windows 11版本不仅有助于优化系统性能,还能确保安全性和兼容性。然而,不同场景和需…...
python 元组tuple
元组:有序不可变列表 (相当于只读的list) 注意:元组里的普通元素不可以修改,但是元组里的list可以修改 index(元素) 查找某个元素,有的话返回下标,没有的话报错 count(元素) 统计某元素在元组中出现的次数 len(元组) 统计元组内的元素个数 #定义元组,元组支持嵌套 t1("…...
485 多路信号采集,校验干扰问题
在RS-485总线中同时采集多路信号时,若某一路出现CRC校验失败,通常由总线冲突、信号干扰或硬件设计缺陷引起。以下是具体影响分析和解决方案: 一、多路信号同时采集的影响 1. 总线冲突风险 现象:多路信号同时发送时,485总线(半双工)无法区分信号,导致数据叠加损坏。 后…...
【Eureka 缓存机制】
今天简单介绍一下Eureka server 的缓存机制吧✌️✌️✌️ 一、先来个小剧场:服务发现的"拖延症" 想象你是个外卖小哥(客户端),每次接单都要打电话问调度中心(Eureka Server):“现在…...
MySQL并发知识(面试高频)
mysql并发事务解决 不同隔离级别下,mysql解决并发事务的方式不同。主要由锁机制和MVCC(多版本并发控制)机制来解决并发事务问题。 1. mysql中的锁有哪些? 表级锁: 场景:表级锁适用于需要对整个表进行操作的情况,例如…...
Git GitHub基础
git是什么? Git是一个分布式版本控制系统,用于管理源代码的变更。它允许多个开发者在同一个项目上协作,同时跟踪每个修改的历史记录。 关键词: 分布式版本控制软件 软件 安装到我们电脑上的一个工具 版本控制 例如论文&…...
Rabbit MQ 高频面试题【刷题系列】
文章目录 一、公司生产环境用的什么消息中间件?二、Kafka、ActiveMQ、RabbitMQ、RocketMQ有什么优缺点?三、解耦、异步、削峰是什么?四、消息队列有什么缺点?五、RabbitMQ一般用在什么场景?六、简单说RabbitMQ有哪些角…...
Ubantu22.04系统docker部署Open WebUI+Ollama【教程】
Open WebUI 是一个可扩展、功能丰富且用户友好的自托管 AI 平台,旨在完全离线运行。它支持各种 LLM 运行器,如 Ollama 和 OpenAI 兼容的 API,并内置了 RAG 推理引擎,使其成为强大的 AI 部署解决方案。 1.docker拉取镜像 &#x…...
知识图谱科研文献推荐系统vue+django+Neo4j的知识图谱
文章结尾部分有CSDN官方提供的学长 联系方式名片 文章结尾部分有CSDN官方提供的学长 联系方式名片 关注B站,有好处! 📑 编号:D030 📑 vuedjangoneo4jmysql 前后端分离架构、图数据库 📑 文献知识图谱&#…...
我的世界开发模组的心得体会
最头疼的问题 本人也是小白,也就跟着ai学学怎么开发模组,不会的上网搜搜,但是目前最令我头疼的就是运行rundata和runcilent时的模块冲突,解决办法就是使用以下的build.gradle代码,不要接受人工智能的建议,…...
HTML:自闭合标签简单介绍
1. 什么是自结束标签? 定义:自结束标签(Self-closing Tag)是指 不需要单独结束标签 的 HTML 标签,它们通过自身的语法结构闭合。语法形式: 在 HTML5 中:直接写作 <tag>,例如 …...
Oracle性能调优(一):时间模型统计
Oracle性能调优(一):时间模型统计 时间模型统计视图时间模型统计指标时间模型统计视图 📖 DB Time的含义: DB Time表示前台会话在数据库调用中所花费的总时间,它是衡量数据库实例总负载的一个重要指标。DB Time是从实例启动时开始累计测量的,其计算方法是将所有前台会话…...
MacBook Pro使用FFmpeg捕获摄像头与麦克风推流音视频
FFmpeg查看macos系统音视频设备列表 ffmpeg -f avfoundation -list_devices true -i "" 使用摄像头及麦克风同时推送音频及视频流: ffmpeg -f avfoundation -pixel_format yuyv422 -framerate 30 -i "0:1" -c:v libx264 -preset ultrafast -b:v 1000k -…...
【构建工具】Gradle Kotlin DSL中的大小写陷阱:BuildConfigField
在Android开发当中,BuildConfig是一个非常有用的功能,它允许我们在构建过程中定义常量,并在运行时使用它们。But!!当我们从传统的Groovy DSL迁移到Kotlin DSL时或者被Android Studio坑的时候,有一些细微的差…...
Linux网络 TCP全连接队列与tcpdump抓包
TCP全连接队列 在 Linux 网络中,TCP 全连接队列(也称为 Accept 队列)是一个重要的概念,用于管理已经完成三次握手,即已经处于 established 状态但尚未被应用程序通过 accept( ) 函数处理的 TCP 连接,避免因…...
ChatGPT与DeepSeek:开源与闭源的AI模型之争
目录 一、模型架构与技术原理 二、性能能力与应用场景 三、用户体验与部署灵活性 四、成本与商业模式 五、未来展望与市场影响 六、总结 随着人工智能技术的飞速发展,ChatGPT和DeepSeek作为两大领先的AI语言模型,成为了行业内外关注的焦点。它们在…...
泛微Ecode新增Button调用服务器中的JSP页面里的方法
前言 前端Ecode调用 后端接口编写 JSP文件方法 总结 前言 因为我们是从之前E8版本升级到E9的,所以会有一些接口是通过jsp文件来实现前后端调用的,这里介绍的就是如果你有接口是写在jsp文件里面调用的,但是你又想在Ecode中调用的对应的接…...
知识图谱+智能问诊预诊系统vue+django+neo4j架构、带问诊历史
文章结尾部分有CSDN官方提供的学长 联系方式名片 文章结尾部分有CSDN官方提供的学长 联系方式名片 关注B站,有好处! 🤍编号:D032 🤍智能问答:智能问答自诊、预诊功能,同时可以保存问答历史 &…...
redis repl_backlog_first_byte_offset 这个字段的作用
repl_backlog_first_byte_offset 是 Redis 复制积压缓冲区(Replication Backlog)中的一个关键字段,其作用是 标识积压缓冲区中第一个字节对应的全局复制偏移量。 通俗解释 当主从节点断开重连时,Redis 需要通过复制积压缓冲区&am…...
第49天:Web开发-JavaEE应用SpringBoot栈模版注入ThymeleafFreemarkerVelocity
#知识点 1、安全开发-JavaEE-开发框架-SpringBoot&路由&传参 2、安全开发-JavaEE-模版引擎-Thymeleaf&Freemarker&Velocity 一、开发框架-SpringBoot 参考:https://springdoc.cn/spring-boot/ 访问SpringBoot创建的网站 1、路由映射 RequestMapping…...
python数据容器切片
从一个序列中取出一个子序列 序列[起始位置:结束位置:步长] 起始位置和结束位置 省略,表示从头取到尾 步长省略表示1 步长负数,表示从后往前取 步长-1 等同于将序列反转了...
GCM模式在IPSec中的应用
本文详细介绍使用GCM模式加密的IPSec数据包的组成部分及验证方法。 关联RFC-4106 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP) GCM数据包格式:此处采用ESP封装(未加密)数据包。用于介绍数据包的详…...
Zynq移植canopen协议站canfestival+控制电机运动
一、 内容介绍 从零开始,在ZYNQ开发板上移植cnafestival,并最终控制电机运动。主要分别五部分 1. Vivado导出硬件XSA文件 2. 创建vitis工程,并移植Canfestival 3. 对象字典工具的安装及使用 4. 开发板通过SDO报文配置电机PDO参数 5. 开发板通…...
弱监督语义分割学习计划(2)-使用CoT进行Open Vocabulary Label简单实现类激活图
零: 项目说明 是这样的一个事情,经过与deepseek的一番讨论和交流,DeepSeek为我设计了一个30天高强度学习计划,重点聚焦弱监督/无监督语义分割在野外场景的应用,结合理论与实践,并最终导向可落地的开源项目。目前开始了…...
TCP/IP 5层协议簇:网络层(IP数据包的格式、路由器原理)
目录 1. TCP/IP 5层协议簇 2. IP 三层包头协议 3. 路由器原理 4. 交换机和路由的对比 1. TCP/IP 5层协议簇 如下: 2. IP 三层包头协议 数据包如下:IP包头不是固定的,每一个数字是一个bit 其中数据部分是上层的内容,IP包头最…...
ISP 常见流程
1.sensor输出:一般为raw-OBpedestal。加pedestal避免减OB出现负值,同时保证信号超过ADC最小电压阈值,使信号落在ADC正常工作范围。 2. pedestal correction:移除sensor加的基底,确保后续处理信号起点正确。 3. Linea…...
Mybatis调用存储过程
在mysql数据库中创建一个存储过程: DELIMITER $$ CREATEPROCEDURE mybatisdemo1.pgetallusers(IN sid INT,IN eid INT)BEGINSELECT * FROM sb_users WHERE id>sid AND id<eid;END$$ DELIMITER ;在Mapper接口里创建方法,和普通的查询数据方法没区别…...
uniapp 系统学习,从入门到实战(六)—— 样式与布局
全篇大概 4700 字(含代码),建议阅读时间 30min 📚 目录 Flex 布局在 UniApp 中的应用响应式设计与适配多端使用 SCSS 提升样式开发效率实战案例演示总结 1. Flex 布局在 UniApp 中的应用 1.1 基础布局实现 通过 display: flex 快速构建弹性容器&#…...
微服务学习(1):RabbitMQ的安装与简单应用
目录 RabbitMQ是什么 为什么要使用RabbitMQ RabbitMQ的安装 RabbitMQ架构及其对应概念 队列的主要作用 交换机的主要作用 RabbitMQ的应用 通过控制面板操作(实现收发消息) RabbitMQ是什么 RabbitMQ是一个开源的消息队列软件(消息代理…...
【Spring】Spring AOP原理
目录 前言 代理模式 静态代理 优缺点 动态代理 JDK动态代理 工作原理 JDK动态原理实现关键步骤 CGLib动态代理 CGLIB动态代理实现关键步骤 总结 前言 在上一篇中,我们讲解了什么是AOP,以及Spring AOP是如何使用的,那么本篇我们就…...
CentOS vs Ubuntu - 常用命令深度对比及最佳实践指南20250302
CentOS vs Ubuntu - 常用命令深度对比及最佳实践指南 引言 在 Linux 服务器操作系统领域,CentOS 和 Ubuntu 是广泛采用的发行版。它们在命令集、默认工具链及生态系统方面各有特点。本文深入剖析 CentOS 与 Ubuntu 在常用命令层面的异同,并结合实践案例…...
【JavaScript】《JavaScript高级程序设计 (第4版) 》笔记-Chapter27-工作者线程
二十七、工作者线程 工作者线程 前端开发者常说:“JavaScript 是单线程的。”这种说法虽然有些简单,但描述了 JavaScript 在浏览器中的一般行为。因此,作为帮助 Web 开发人员理解 JavaScript 的教学工具,它非常有用。单线程就意味…...
微信小程序 - 页面跳转(wx.navigateTo、wx.redirectTo、wx.switchTab、wx.reLaunch)
API 跳转 1、wx.navigateTo (1)基本介绍 功能:保留当前页面,跳转到应用内的某个页面,使用该方法跳转后可以通过返回按钮返回到原页面 使用场景:适用于需要保留当前页面状态,后续还需返回的情…...
vscode使用豆包MARSCode----集成doubao1.5 DeepSeekR1 DeepseekV3模型的ai编程插件
引入扩展 打开VSCode扩展窗口,在搜索窗口搜索MarsCode,找到MarsCode 插件单击「install」,完成安装,登录即可使用MarsCode 编程助手。 主要功能 主要快捷键 / explain 解释项目代码,AI 返回的内容有结构分类&#…...
C 语言共用体:深入理解与实践】
目录 一、引言 二、共用体的定义和基本语法 三、共用体的使用 3.1 声明共用体变量 3.2 给共用体成员赋值 3.3 共用体的内存布局 四、共用体的应用场景 4.1 节省内存空间 4.2 处理不同类型的数据 五、共用体使用的注意事项 六、总结 一、引言 在 C 语言中,共…...
Cherry Studio + 火山引擎 构建个人AI智能知识库
🍉在信息化时代,个人知识库的构建对于提高工作效率、知识管理和信息提取尤为重要。尤其是当这些知识库能结合人工智能来智能化地整理、分类和管理数据时,效果更为显著。我最近尝试通过 Cherry Studio 和 火山引擎 来搭建个人智能知识库&#…...
曹操智行构建国内首个全域自研闭环智驾生态
2月28日,曹操出行举办曹操智行自动驾驶平台上线仪式,宣布已成功构建国内首个“F立方”全域自研闭环智驾生态,同时在苏杭两地开启Robotaxi运营试点,并投放搭载吉利最新智驾系统的车辆。 此次试点运营,标志着曹操出行在…...
在 ASP.NET Core 中压缩并减少图像的文件大小
示例代码:https://download.csdn.net/download/hefeng_aspnet/90294127 在当今的数字时代,图像是 Web 应用程序和用户体验不可或缺的一部分。但是,处理大型图像文件可能会导致网页加载缓慢和更高的存储费用。为了解决这个问题,在…...
58、深度学习-自学之路-自己搭建深度学习框架-19、RNN神经网络梯度消失和爆炸的原因(从公式推导方向来说明),通过RNN的前向传播和反向传播公式来理解。
一、RNN神经网络的前向传播图如下: 时间步 t1: x₁ → (W_x) → [RNN Cell] → h₁ → (W_y) → y₁ ↑ (W_h) h₀ (初始隐藏状态) 时间步 t2: x₂ → (W_x) → [RNN Cell] → h₂ → (W_y) → y₂ ↑ (W_h) h₁ 时间…...
【Qt-信号与槽】connect函数的用法
🏠个人主页:Yui_ 🍑操作环境:Qt Creator 🚀所属专栏:Qt 文章目录 1.信号和槽的概念1.1 信号的本质1.2 槽的本质1.3 补充说明2. 信号和槽的使用2.1 connect函数介绍2.2 connect函数的简单使用2.2.1 图形化方…...
sql深入学习
文章目录 前言知识学习注释的两种形式字符型注入万能密码 布尔盲注报错注入堆叠注入时间盲注二次注入 小技巧 前言 这次学习建立在对数据库有基本的认识,了解基础的增删改查语句,数字型注入和字符型注入的基础上,进一步深入学习知识…...
Canvas修仙传·第三重天金丹境(上集) ——九转游戏开发心法之《灵蛇奇谭》
各位道友,历经前两重天的修炼,恭喜诸位突破"动画"与"交互"桎梏!今日我们将解锁Canvas修仙路上第一个质变境界——将代码炼化为游戏元神!(ノ◕ヮ◕)ノ*:・゚✧ 章前黑话词典 🔍 金丹境术语表: 游戏循环(Game Loop):驱动游戏逻辑的灵气泵状态机(Sta…...
Matplotlib基础知识总结
1、简介 安装使用pip install matplotlib命令即可; 2、基本绘图流程 3、pyplot基础语法 (1)创建画布与创建子图 figure语法说明:figure(numNone, figsizeNone, dpiNone, facecolorNone, edgecolorNone, frameonTrue)࿱…...
linux vim 撤销 回退操作
在Linux的vim编辑器中,撤销和回退操作是非常基本的,但它们可以通过不同的方式实现,具体取决于你想要的精确效果。下面是一些常用的方法: 1. 撤销(Undo) 单个撤销: 你可以通过按下u键来撤销上一…...
kubernetes Device Plugin原理与源码分析
一、背景与核心概念 1.1 Kubernetes设备管理演进之路 1.1.1 Extended Resource的局限性 在Kubernetes早期版本中,管理非标准硬件资源(如GPU、FPGA)主要依赖 Extended Resource(扩展资源) 机制,Extended …...
天佐.乾坤袋 基于抽屉式文件存储的NoSql数据库
天佐.乾坤袋 天佐.乾坤袋 简介 天佐.乾坤袋 基于抽屉式文件存储的NoSql数据库,可用于文件打包,数据整合,加密存放等多种用途。可以方便快捷的搭建和部署存储应用的系统。 传说: 弥勒所有,专做储物之用。拥有不可思议之力&#x…...
Spring Boot 消息队列(以RabbitMQ为例)
文章目录 RabbitMQ 简介与安装1. RabbitMQ 简介2. RabbitMQ 安装 Spring Boot 集成 RabbitMQ1. 创建 Spring Boot 项目2. 配置 RabbitMQ3. 定义消息队列和交换机4. 发送消息5. 接收消息6. 测试消息发送和接收 RabbitMQ 简介与安装 1. RabbitMQ 简介 RabbitMQ 是一个开源的消息…...
深度学习原理与Pytorch实战
深度学习原理与Pytorch实战 第2版 强化学习人工智能神经网络书籍 python动手学深度学习框架书 TransformerBERT图神经网络: 技术讲解 编辑推荐 1.基于PyTorch新版本,涵盖深度学习基础知识和前沿技术,由浅入深,通俗易懂…...
WPF-ReactiveUi
文章目录 依赖属性和命令的绑定弱绑定强绑定界面后台的cs文件强捆绑方式定义属性和命令第一种方法第二种方法第三种方法动态数据集合whenAny监听单个监听单个对象的多个属性监听多个对象对各属性whenAnyValue例程一例程二WhenAnyValue属性WhenAnyValue(x => x.SearchTerm)Th…...