当前位置: 首页 > news >正文

【DeepSeek系列】05 DeepSeek核心算法改进点总结

文章目录

    • 一、DeepSeek概要
    • 二、4个重要改进点
      • 2.1 多头潜在注意力
      • 2.2 混合专家模型MoE
      • 2.3 多Token预测
      • 3.4 GRPO强化学习策略
    • 三、2个重要思考
      • 3.1 大规模强化学习
      • 3.2 蒸馏方法:小模型也可以很强大

一、DeepSeek概要

2024年~2025年初,DeepSeek 相继推出了其推理大模型系列:DeepSeek-V2、DeepSeek-V3、DeepSeek-R1-Zero 和 DeepSeek-R1。由于其卓越的性能,以及超高的性价比,让DeepSeek在2025年初迅速风靡全球,被外媒称为“来自东方神秘的力量”。

在这里插入图片描述

二、4个重要改进点

2.1 多头潜在注意力

核心思想:通过低秩压缩技术,将Key和Value映射到一个低维的潜在空间,从而减少KV缓存的大小,显著提高了推理效率。

具体步骤:(优化注意力机制模块)

  • 低秩压缩:将输入的隐藏状态通过一个下投影矩阵映射到低维的潜在空间,生成压缩后的潜在向量。
  • 生成Key和Value:从潜在向量中通过上投影矩阵恢复出Key和Value。
  • 应用RoPE:在生成的Key上应用旋转位置编码(RoPE),以保留位置信息。
  • 计算注意力:将压缩后的Key和Value与查询(Query)结合,通过标准的注意力公式计算注意力输出。
  • 输出:将注意力输出通过一个输出投影矩阵映射回原始维度。
    在这里插入图片描述

2.2 混合专家模型MoE

核心思想:是一种基于混合专家(MoE)架构的前馈网络(FFN),其核心思想是,让不同的Token由不同的“专家”处理,大幅提升计算效率。它结合了负载均衡策略,旨在减少因负载均衡而导致的模型性能下降,同时保持高效的计算资源利用。

具体结构:

  • 共享专家:模型中包含一定数量的共享专家,这些专家对所有token开放,适用于通用任务。
  • 路由专家:每个token根据其输入动态选择一定数量的路由专家进行计算,专门处理某些类别的信息。
  • Router:即路由,类似于门控,其决定哪些专家参与计算;每个token激活的路由专家数量由超参数控制,确保计算效率和负载均衡。
    在这里插入图片描述

2.3 多Token预测

核心思想:扩展了传统的单Token预测任务,允许模型在每个位置预测多个未来的Token。这一方法提高了模型推理过程中的预测效率,同时也增强了模型对未来Token的预测能力。

具体步骤:

  • 模块化设计:MTP通过多个模块实现,每个模块负责预测一个额外的Token。这些模块共享嵌入层和输出头,但各自包含一个Transformer块和一个投影矩阵
  • 因果链保持:在每个预测深度,MTP模块保持完整的因果链,确保预测的Token不会影响之前的预测。
  • 训练目标:对于每个预测深度,MTP计算一个交叉熵损失,并将这些损失平均后乘以一个权重因子,作为整体的MTP损失。
  • 推理优化:在推理阶段,MTP模块可以被丢弃,主模型可以独立运行,或者MTP模块可以用于推测解码以加速生成。

在这里插入图片描述

3.4 GRPO强化学习策略

核心思想:通过组内相对奖励来优化策略模型,而不是依赖传统的批评模型(critic model)。具体来说,GRPO 会在每个状态下采样一组动作,然后根据这些动作的相对表现来调整策略,而不是依赖一个单独的价值网络来估计每个动作的价值。

具体步骤

  • 采样动作组:对于每个输入提示,模型根据当前策略生成一组不同的输出。这些输出的多样性为后续的相对奖励计算提供了基础。
  • 奖励评估:使用奖励模型对每个输出进行评分,这些评分可以基于任务的特定标准,如数学题的正确性、代码的可运行性等。核心点在于:使用的奖励模型是一个基于规则的奖励系统(准确性奖励+格式奖励),而不是一个预训练的深度学习模型。显著降低了计算和存储需求,提高了训练效率。
  • 计算相对优势:将每个输出的奖励值进行归一化处理,得到相对优势。通过组内相对优势的计算,GRPO 减少了策略更新的方差,确保了更稳定的学习过程。
  • KL散度:最后,使用相对优势更新策略;GRPO 引入了KL散度约束,能够更精细地控制策略更新的幅度,保持策略分布的稳定性。
    在这里插入图片描述

三、2个重要思考

3.1 大规模强化学习

在后训练阶段,不一定需要用SFT作为初始步骤,通过纯强化学习的方式,也能到达不错的推理性能,DeepSeek-R1-Zero首次验证了这一路径。

  • 直接在基础模型上应用 RL,而不依赖于有监督的微调(SFT)作为初步步骤。这种方法允许模型探索解决复杂问题的链式思考(CoT),从而开发出 DeepSeek-R1-Zero。DeepSeek-R1-Zero 展示了自我验证、反思和生成长链式思考的能力,这标志着研究社区的一个重要里程碑。值得注意的是,这是首次公开研究验证 LLMs 的推理能力可以通过纯 RL 激励,而无需 SFT。这一突破为该领域的未来发展铺平了道路。
  • DeepSeek-R1 训练流程:该流程包含两个 RL 阶段,旨在发现改进的推理模式并与人类偏好对齐,以及两个 SFT 阶段,作为模型推理和非推理能力的种子。我们相信这一流程将有助于行业开发更好的模型。

3.2 蒸馏方法:小模型也可以很强大

大型模型的推理模式可以被蒸馏到小模型中,其表现优于通过在小模型上应用 RL 的效果。

  • 证明了大型模型的推理模式可以被蒸馏到小模型中,其表现优于通过在小模型上应用 RL 发现的推理模式。开源的 DeepSeek-R1 及其 API 将有助于研究社区在未来蒸馏出更好的小模型。
  • 使用 DeepSeek-R1 生成的推理数据,我们微调了研究社区广泛使用的几种密集模型。评估结果表明,蒸馏后的小型密集模型在基准测试中表现出色。例如,DeepSeek-R1-Distill-Qwen-7B 在 AIME 2024 上达到了 55.5%,超过了 QwQ-32B-Preview。此外,DeepSeek-R1-Distill-Qwen-32B 在 AIME 2024 上达到了 72.6%,在 MATH-500 上达到了 94.3%,在 LiveCodeBench 上达到了 57.2%。这些结果显著优于之前的开源模型,并且与 o1-mini 相当。我们开源了基于 Qwen2.5 和 Llama3 系列的 1.5B、7B、8B、14B、32B 和 70B 检查点,供社区使用。

相关文章:

【DeepSeek系列】05 DeepSeek核心算法改进点总结

文章目录 一、DeepSeek概要二、4个重要改进点2.1 多头潜在注意力2.2 混合专家模型MoE2.3 多Token预测3.4 GRPO强化学习策略 三、2个重要思考3.1 大规模强化学习3.2 蒸馏方法:小模型也可以很强大 一、DeepSeek概要 2024年~2025年初,DeepSeek …...

Java基础常见的面试题(易错!!)

面试题一:为什么 Java 不支持多继承 Java 不支持多继承主要是为避免 “菱形继承问题”(又称 “钻石问题”),即一个子类从多个父类继承到同名方法或属性时,编译器无法确定该调用哪个父类的成员。同时,多继承…...

山东大学软件学院nosql实验四

实验题目: 使用Java做简单数据插入 实验内容 用API方式,做数据插入。 使用Java语言实现数据插入界面,为实验一建立的学生、教师、课程表插入数据,可以在前端界面中录入数据之后保存,也可以导入Excel中的数据。 实…...

Linux | man 手册使用详解

注&#xff1a;本文为 “Linux man 手册” 相关文章合辑。 略作重排。 man 手册常用命令 1. 查看和搜索手册页 查看特定软件包的手册页&#xff0c;并使用 grep 命令过滤出包含特定关键字的行&#xff1a; man <package> | grep <keyword>在整个系统的手册页中…...

初阶数据结构(C语言实现)——1数据结构前言

1. 什么是数据结构 数据结构(Data Structure)是计算机存储、组织数据的方式&#xff0c;指相互之间存在一种或多种特定关系的数据元素的集合。 2.什么是算法&#xff1f; 算法(Algorithm):就是定义良好的计算过程&#xff0c;他取一个或一组的值为输入&#xff0c;并产生出一…...

Windows - 通过ssh打开带有图形界面的程序 - 一种通过计划任务的曲折实现方式

Windows(奇思妙想) - 通过ssh打开带有图形界面的程序 - 一种通过计划任务的曲折实现方式 前言 Windows启用OpenSSH客户端后就可以通过SSH的方式访问Windows了。但是通过SSH启动的程序&#xff1a; 无法显示图形界面会随着SSH进程的结束而结束 于是想到了一种通过执行“计划…...

基于 SpringBoot 的 “电影交流平台小程序” 系统的设计与实现

大家好&#xff0c;今天要和大家聊的是一款基于 SpringBoot 的 “电影交流平台小程序” 系统的设计与实现。项目源码以及部署相关事宜请联系我&#xff0c;文末附上联系方式。 项目简介 基于 SpringBoot 的 “电影交流平台小程序” 系统设计与实现的主要使用者分为 管理员 和…...

工具方法 - 合规性矩阵

Compliance matrix &#xff08;合规性矩阵&#xff09;是产品需求管理中的一个重要工具&#xff0c;它是用来识别、跟踪、监控和组织所有客户和利益相关方需求是否被满足的工具。具体来说&#xff0c;Compliance matrix需要用一行一行的证据来证明被设计的产品针对每个需求的实…...

2.2 STM32F103C8T6最小系统板的四种有关固件的开发方式

2.2.1 四种有关固件的开发方式 四种有关于固件的开发方式从时间线由远及近分别是&#xff1a;寄存器开发、标准外设驱动库开发、硬件抽象层库开发、底层库开发。 四种开发方式各有优缺点&#xff0c;可以参考ST官方的测试与说明。 1.寄存器开发 寄存器编程对于从51等等芯片过渡…...

go 环境准备

配置路径&#xff1a; GOROOT&#xff1a;D:\GoGOPATH&#xff1a;go的工作目录 D:\workspacego 验证版本&#xff1a;go version 配置第三方仓库&#xff1a; GO111MODULE&#xff1a;开启mod模式GOPROXY&#xff1a;go语言三方库地址GOSUMDB&#xff1a;go语言软件包的M…...

VMware安装Centos 9虚拟机+设置共享文件夹+远程登录

一、安装背景 工作需要安装一台CentOS-Stream-9的机器环境&#xff0c;所以一开始的安装准备工作有&#xff1a; vmware版本&#xff1a;VMware Workstation 16 镜像版本&#xff1a;CentOS-Stream-9-latest-x86_64-dvd1.iso &#xff08;kernel-5.14.0&#xff09; …...

高中数学基础-平面向量

文章目录 1、平面向量2、复数 高中数学-平面向量、复数 1、平面向量 向量&#xff1a;具有大小和方向的量称为向量&#xff1b;物理学中向量也称矢量&#xff0c;只有大小没有方向的量称为标量&#xff1b;向量的大小称为模&#xff0c;大小为1的是单位向量&#xff0c;长度为0…...

v4l2子系统学习(三)编写虚拟摄像头驱动

文章目录 1、声明2、前言3、虚拟摄像头驱动编写3.1、编写硬件相关代码3.2、程序示例 1、声明 本文是在学习韦东山《驱动大全》V4L2子系统时&#xff0c;为梳理知识点和自己回看而记录&#xff0c;全部内容高度复制粘贴。 韦老师的《驱动大全》&#xff1a;商品详情 其对应的…...

堆排序(详解)c++

堆排序 &#xff08;可以⽤ ppt 演⽰流程&#xff09; 堆排序(Heap Sort)是指利⽤堆这种数据结构所设计的⼀种排序算法。本质上是优化了选择排序算法&#xff0c;选择排序的思想是在堆排序元素中拿出最大值或最小值&#xff0c;然后把这个位置的值放在它该放的位置上就可以了&a…...

API测试工具:Swagger vs Postman 2025最新全面对比

随着微服务架构的普及和云原生应用的激增&#xff0c;高效的 API 开发、测试和文档管理工具变得越来越重要。在众多 API 工具中&#xff0c;Swagger 和 Postman 各自以不同的方式解决着 API 开发生命周期中的关键问题&#xff0c;本文将从多个维度深入对比这两款工具&#xff0…...

算法-图-数据结构(邻接矩阵)-BFS广度优先遍历

邻接矩阵广度优先遍历&#xff08;BFS&#xff09;是一种用于遍历或搜索图的算法&#xff0c;以下是具体介绍&#xff1a; 1. 基本概念 图是一种非线性的数据结构&#xff0c;由顶点和边组成&#xff0c;可分为无向图、有向图、加权图、无权图等。邻接矩阵是表示图的一种数…...

List的模拟实现(2)

前言 上一节我们讲解了list的基本功能&#xff0c;那么本节我们就结合底层代码来分析list是怎么实现的&#xff0c;那么废话不多说&#xff0c;我们正式进入今天的学习&#xff1a;&#xff09; List的底层结构 我们先来看一下list的底层基本结构&#xff1a; 这里比较奇怪的…...

【C++设计模式】观察者模式(1/2):从基础到优化实现

1. 引言 在 C 软件与设计系列课程中&#xff0c;观察者模式是一个重要的设计模式。本系列课程旨在深入探讨该模式的实现与优化。在之前的课程里&#xff0c;我们已对观察者模式有了初步认识&#xff0c;本次将在前两次课程的基础上&#xff0c;进一步深入研究&#xff0c;着重…...

可狱可囚的爬虫系列课程 13:Requests使用代理IP

一、什么是代理 IP 代理 IP&#xff08;Proxy IP&#xff09;是一个充当“中间人”的服务器IP地址&#xff0c;用于代替用户设备&#xff08;如电脑、手机等&#xff09;直接与目标网站或服务通信。用户通过代理IP访问互联网时&#xff0c;目标网站看到的是代理服务器的IP地址&…...

冒险岛079 V8 整合版源码搭建教程+IDEA启动

今天教大家来部署下一款超级怀旧游戏冒险岛&#xff0c;冒险岛源码是开源的&#xff0c;但是开源的代码会有各种&#xff0c;本人进行了加工整合&#xff0c;并且用idea进行了启动测试&#xff0c;经过修改后没有任何问题。 启动截图 后端控制台 前端游戏界面 声明 冒险岛源码…...

Web刷题之PolarDN(中等)

1.到底给不给flag呢 代码审计 一道典型的php变量覆盖漏洞 相关知识 什么是变量覆盖漏洞 自定义的参数值替换原有变量值的情况称为变量覆盖漏洞 经常导致变量覆盖漏洞场景有&#xff1a;$$使用不当&#xff0c;extract()函数使用不当&#xff0c;parse_str()函数使用不当&…...

[250224] Yaak 2.0:Git集成、WebSocket支持、OAuth认证等 | Zstandard v1.5.7 发布

目录 Yaak 2.0 发布&#xff1a;Git 集成、WebSocket 支持、OAuth 认证等众多功能&#xff01;Zstandard v1.5.7 发布&#xff1a;性能提升&#xff0c;稳定性增强 Yaak 2.0 发布&#xff1a;Git 集成、WebSocket 支持、OAuth 认证等众多功能&#xff01; Yaak&#xff0c;一款…...

插入排序:一种简单而直观的排序算法

大家好&#xff01;今天我们来聊聊一个简单却非常经典的排序算法——插入排序&#xff08;Insertion Sort&#xff09;。在所有的排序算法中&#xff0c;插入排序是最直观的一个。 一、插入排序的基本思想 插入排序的核心思想是&#xff1a;将一个待排序的元素&#xff0c;插…...

vue2响应式数据原理

1. 核心原理 Vue 2 的响应式系统基于 Object.defineProperty&#xff0c;通过 依赖收集 和 派发更新 来实现数据的响应式 依赖收集&#xff1a;在读取数据时&#xff0c;记录哪些函数&#xff08;或组件&#xff09;依赖了该数据。派发更新&#xff1a;在修改数据时&#xff…...

对免认证服务提供apikey验证

一些服务不带认证&#xff0c;凡是可以访问到服务端口&#xff0c;都可以正常使用该服务&#xff0c;方便是方便&#xff0c;但是不够安全。 比如ollama默认安装后就是这样。现在据说网上扫一下端口11434&#xff0c;免apikey的ollama服务一大堆。。。 那我们怎样将本机安装的o…...

算法——Trie 树

Trie 树&#xff08;前缀树或字典树&#xff09;是一种高效处理字符串集合的树形数据结构&#xff0c;核心思想是通过共享公共前缀来优化存储和查询。以下是 Trie 树的详细介绍&#xff1a; 1. Trie 树的基本概念 结构特点&#xff1a; 每个节点表示一个字符。从根节点到某一节…...

python中的JSON数据格式

文章目录 什么是json主要功能Python数据和Json数据的相互转化 什么是json JSON是一种轻量级的数据交互格式。可以按照JSON指定的格式去组织和封装数据。JSON本质上是一个带有特定格式的字符串。 主要功能 json就是一种在各个编程语言中流通的数据格式&#xff0c;负责不同编…...

服务器能否拒绝非浏览器发起的HTTP请求?

互联网各领域资料分享专区(不定期更新): Sheet 前言 服务器可以采取多种方法来拒绝非浏览器发起的HTTP请求,但需要明确的是:HTTP协议本身并不限制客户端类型,任何符合协议规范的请求都会被处理。因此,拒绝非浏览器请求需依赖额外策略。 正文 一、基于请求头过滤 1、Us…...

深度学习之图像分类(二)

前言 文章主要是通过实战项目——食品分类来理解分类项目的整体流程。除此之外&#xff0c;还需要对半监督学习&#xff0c;迁移学习&#xff0c;数据增广&#xff0c;Adam和AdamW进行了解。 数据增广 图片增广&#xff08;Image Data Augmentation&#xff09;是深度学习中一种…...

数据库高安全—openGauss安全整体架构安全认证

openGauss作为新一代自治安全数据库&#xff0c;提供了丰富的数据库基础安全能力&#xff0c;并逐步完善各类高阶安全能力。这些安全能力涵盖了访问登录认证、用户权限管理、审计与追溯及数据安全隐私保护等。本章节将围绕openGauss安全机制进行源码解读&#xff0c;以帮助数据…...

利用开源小智AI制作桌宠机器狗

本文主要介绍如何利用开源小智AI制作桌宠机器狗 1 源码下载 首先下载小智源码,下载地址, 下载源码后,使用vsCode打开,需要在vscode上安装esp-idf,安装方式请自己解决 2 源码修改 2.1添加机器狗控制代码 在目录main/iot/things下添加dog.cc文件,内容如下; #include…...

uniapp在app下使用mqtt协议!!!支持vue3

什么&#xff1f;打包空白&#xff1f;分享一下我的解决方法&#xff01; 第一步 找大师算过了&#xff0c;装4.1版本运气好&#xff01; 所以根目录执行命令… npm install mqtt4.1.0第二步 自己封装一个mqtt文件方便后期开坛做法&#xff01; // utils/mqtt.js import mqt…...

Orange 开源项目 - 集成阿里云大模型

1 阿里云的大模型服务平台百炼 阿里云的大模型服务平台百炼是一站式的大模型开发及应用构建平台。不论是开发者还是业务人员&#xff0c;都能深入参与大模型应用的设计和构建。您可以通过简单的界面操作&#xff0c;在5分钟内开发出一款大模型应用&#xff0c;或在几小时内训练…...

DSP芯片C6678的SRIO及其中断跳转的配置

C6678SRIO读写测试门铃中断跳转测试 SRIO简述代码前言SRIO配置原始代码1.使能电源2.初始化SRIO回环修改 3.SRIO测试 Doorbell门铃中断1.初始化中断函数2.中断向量表建立3.中断向量表的链接 本博客基于创龙“678ZH产品线”的SRIO代码&#xff0c;部分参考于网友们的博客&#xf…...

MongoDB#常用脚本

批量插入数据脚本 const oneDayAgo new Date(Date.now() - 1 * 24 * 60 * 60 * 1000);const documents []; for (let i 1; i < 100; i) {documents.push({id: i, // 递增的 idcreateTime: oneDayAgo, // 1天前的日期data: Sample data ${i} // 其他字段&#xff08;可选…...

MySQL 主从集群同步延迟问题分析与解决方案

MySQL 主从复制&#xff08;Replication&#xff09;是构建高可用架构的核心技术&#xff0c;但在实际应用中&#xff0c;主从同步延迟&#xff08;Replication Lag&#xff09;是常见且棘手的问题。延迟会导致从库数据不一致、读请求返回旧数据&#xff0c;甚至引发业务逻辑错…...

论文笔记(七十二)Reward Centering(五)

Reward Centering&#xff08;五&#xff09; 文章概括摘要附录B 理论细节C 实验细节D 相关方法的联系 文章概括 引用&#xff1a; article{naik2024reward,title{Reward Centering},author{Naik, Abhishek and Wan, Yi and Tomar, Manan and Sutton, Richard S},journal{arX…...

FFmpeg 是什么?为什么?怎么用?

摘要&#xff1a;本文介绍了 FFmpeg&#xff0c;一个功能强大的开源多媒体处理工具&#xff0c;广泛应用于视频和音频文件的处理。FFmpeg 支持多种多媒体格式&#xff0c;能够实现视频编码/解码、格式转换、裁剪、合并、音频提取、流媒体处理等功能。本文详细阐述了 FFmpeg 的主…...

雷池WAF动态防护技术实测

作者&#xff1b; Hacker / 0xh4ck3r 介绍 长亭雷池&#xff08;SafeLine&#xff09;是由北京长亭科技有限公司耗时近10年研发并推出的Web应用防火墙&#xff08;WAF&#xff09;&#xff0c;其核心检测能力由智能语义分析算法驱动。雷池旨在为用户提供高质量的Web攻击防护、…...

BUU40 [CSCCTF 2019 Qual]FlaskLight1【SSTI】

模板&#xff1a; {{.__class__.__base__.__subclasses__()[80].__init__.__globals__[__builtins__].eval("__import__(os).popen(type flag.txt).read()")}} 是个空字符串&#xff0c;.__class__代表这个空字符串的类是什么&#xff08;这里是单引号双引号都行&a…...

【每日八股】Redis篇(二):数据结构

Redis 数据类型&#xff1f; 主要有 STRING、LIST、ZSET、SET 和 HASH。 STRING String 类型底层的数据结构实现主要是 SDS&#xff08;简单动态字符串&#xff09;&#xff0c;其主要应用场景包括&#xff1a; 缓存对象&#xff1a;可以用 STRING 缓存整个对象的 JSON&…...

VScode+stfp插件,实现文件远程同步保存【2025实操有效】

目录 1 痛点2 准备工作3 操作步骤3.1 第一步&#xff0c;下载STFP插件3.2 第二步&#xff0c;修改配置文件3.3 第三步&#xff0c;测试是否成功 4 后记 1 痛点 我一直用vscode远程连接服务器&#xff0c;传代码文件等到服务器上面&#xff0c;突然有一次服务器那边尽心维修&am…...

115 道 MySQL 面试题,从简单到深入!

1. 什么是数据库事务&#xff1f; 数据库事务是一个作为单个逻辑工作单元执行的一系列操作。事务具有ACID属性&#xff0c;即原子性&#xff08;Atomicity&#xff09;、一致性&#xff08;Consistency&#xff09;、隔离性&#xff08;Isolation&#xff09;和持久性&#xf…...

不同安装路径重复R包清理

df <- as.data.frame(installed.packages()) table(duplicated(df$Package)) ids <- df$Package[duplicated(df$Package)] df2 <- subset(df, df$Package %in% ids)...

Grouped-Query Attention(GQA)详解: Pytorch实现

Grouped-Query Attention&#xff08;GQA&#xff09;详解 Grouped-Query Attention&#xff08;GQA&#xff09; 是 Multi-Query Attention&#xff08;MQA&#xff09; 的改进版&#xff0c;它通过在 多个查询头&#xff08;Query Heads&#xff09;之间共享 Key 和 Value&am…...

选择排序:简单高效的选择

大家好&#xff0c;今天我们来聊聊选择排序&#xff08;Selection Sort&#xff09;算法。这是一个非常简单的排序算法&#xff0c;适合用来学习排序的基本思路和操作。选择排序在许多排序算法中以其直观和易于实现的特点著称&#xff0c;虽然它的效率不如其他高效算法&#xf…...

(教程)PDF 字体技术入门

PDF字体技术 许多人觉得PDF字体令人困惑的主要原因在于PDF文件可以使用多种不同的字体技术。PDF文件规范已经存在16年&#xff0c;在此期间&#xff0c;出现了多种不同的字体技术&#xff08;既有技术方面的原因&#xff0c;也有商业方面的原因&#xff09;。因此&#xff0c;…...

LabVIEW中CFURL.llb 工具库说明

CFURL.llb 是 LabVIEW 2019 安装目录下 C:\Program Files (x86)\National Instruments\LabVIEW 2019\vi.lib\Platform\ 路径下的工具库&#xff0c;主要用于处理 LabVIEW 与 URL 相关的操作&#xff0c;涵盖 URL 解析、HTTP 请求发送、数据传输等功能模块&#xff0c;帮助开发者…...

BGP配置华为——路径优选验证

实验拓扑 实验要求 实现通过修改AS-Path属性来影响路径选择实现通过修改Local_Preference属性来影响路径选择实现通过修改MED属性来影响路径选择实现通过修改preferred-value属性来影响路径选择 实验配置与效果 1.改名与IP配置 2.as300配置OSPF R3已经学到R2和R4的路由 3.…...

Linux8-互斥锁、信号量

一、前情回顾 void perror(const char *s);功能&#xff1a;参数&#xff1a; 二、资源竞争 1.多线程访问临界资源时存在资源竞争&#xff08;存在资源竞争、造成数据错乱&#xff09; 临界资源&#xff1a;多个线程可以同时操作的资源空间&#xff08;全局变量、共享内存&a…...