当前位置: 首页 > news >正文

大模型WebUI:Gradio全解11——使用transformers.agents构建Gradio UI(3)

大模型WebUI:Gradio全解11——使用transformers.agents构建Gradio UI(3)

  • 前言
  • 本篇摘要
  • 11. 使用transformers.agents构建Gradio UI
    • 11.3 创建和使用工具Tools
      • 11.3.1 默认工具箱与load_tool
      • 11.3.2 创建新工具
      • 11.3.3 管理代理的工具箱toolbox
      • 11.3.4 使用工具集合ToolCollection
    • 参考文献

前言

本系列文章主要介绍WEB界面工具Gradio。Gradio是Hugging Face发布的简易WebUI开发框架,它基于FastAPI和svelte,可以使用机器学习模型、python函数或API开发多功能界面,并可部署人工智能模型,是当前热门的非常易于展示机器学习大语言模型LLM及扩散模型DM的WebUI框架。
本系列文章分为五部分:Gradio介绍、HuggingFace资源与工具库、Gradio基础功能实战、Gradio与大模型融合实战和Gradio高级功能实战。第一部分Gradio介绍,包括三章内容:第一章先介绍Gradio的概念,包括详细技术架构、历史、应用场景、与其他框架Gradio/NiceGui/StreamLit/Dash/PyWebIO的区别,然后详细介绍了Gradio的安装与运行,安装包括Linux/Win/Mac三类系统安装,运行包括普通方式和热重载方式;第二章介绍Gradio的4种部署方式,包括本地部署launch()、huggingface托管、FastAPI挂载和Gradio-Lite浏览器集成;第三章介绍Gradio的三种Client,包括python客户端、javascript客户端和curl客户端,方便读者对Gradio整体把握。第二部分介绍著名网站Hugging Face的各类资源和工具库,因为Gradio演示中经常用到Hugging Face的models及某些场景需要部署在spaces,包括两章内容:第四章详解三类资源models/datasets/spaces的使用,第五章实战六类工具库transformers/diffusers/datasets/PEFT/accelerate/optimum实战。第三部分是Gradio基础功能实战,进入本系列文章的核心,包括四章内容:第六章讲解Gradio库的模块架构和环境变量,第七章讲解Gradio高级抽象界面类Interface,第八章讲解Gradio底层区块类Blocks,第九章讲解补充特性Additional Features。第四部分是Gradio与大模型融合的实战,包括三章内容:第十章讲解融合大模型的多模态聊天机器人组件Chatbot,第十一章讲解使用Agents和Tools智能代理工具构建UI,第十二章讲述将Gradio用于LLM Agents的Gradio Tools。第五部分详解Gradio高级功能,包括三章内容:第十三章讲述Discord Bot/Slack Bot/Website Widget部署,第十四章讲述数据科学与绘图Data Science And Plots,第十五章讲述数据流Streaming。
本系列文章讲解细致,涵盖Gradio大部分组件和功能,代码均可运行并附有大量运行截图,方便读者理解并应用到开发中,Gradio一定会成为每个技术人员实现各种奇思妙想的最称手工具。

本系列文章目录如下:

  1. 《Gradio全解1——Gradio简介》
  2. 《Gradio全解1——Gradio的安装与运行》
  3. 《Gradio全解2——Gradio的3+1种部署方式实践》
  4. 《Gradio全解2——浏览器集成Gradio-Lite》
  5. 《Gradio全解3——Gradio Client:python客户端》
  6. 《Gradio全解3——Gradio Client:javascript客户端》
  7. 《Gradio全解3——Gradio Client:curl客户端》
  8. 《Gradio全解4——剖析Hugging Face:详解三类资源models/datasets/spaces》
  9. 《Gradio全解5——剖析Hugging Face:实战六类工具库transformers/diffusers/datasets/PEFT/accelerate/optimum》
  10. 《Gradio全解6——Gradio库的模块架构和环境变量》
  11. 《Gradio全解7——Interface:高级抽象界面类(上)》
  12. 《Gradio全解7——Interface:高级抽象界面类(下)》
  13. 《Gradio全解8——Blocks:底层区块类(上)》
  14. 《Gradio全解8——Blocks:底层区块类(下)》
  15. 《Gradio全解9——Additional Features:补充特性(上)》
  16. 《Gradio全解9——Additional Features:补充特性(下)》
  17. 《Gradio全解10——Chatbot:融合大模型的多模态聊天机器人(1)》
  18. 《Gradio全解10——Chatbot:融合大模型的多模态聊天机器人(2)》
  19. 《Gradio全解10——Chatbot:融合大模型的多模态聊天机器人(3)》
  20. 《Gradio全解10——Chatbot:融合大模型的多模态聊天机器人(4)》
  21. 《Gradio全解10——Chatbot:融合大模型的多模态聊天机器人(5)》
  22. 《Gradio全解11——使用Agents和Tools智能代理工具构建UI(1)》
  23. 《Gradio全解11——使用Agents和Tools智能代理工具构建UI(2)》
  24. 《Gradio全解11——使用Agents和Tools智能代理工具构建UI(3)》
  25. 《Gradio全解11——使用Agents和Tools智能代理工具构建UI(4)》
  26. 《Gradio全解12——Gradio Tools:将Gradio用于LLM Agents》
  27. 《Gradio全解系列13——Discord Bot/Slack Bot/Website Widget部署》
  28. 《Gradio全解系列14——Data Science And Plots:数据科学与绘图》
  29. 《Gradio全解15——Streaming:数据流(上)》
  30. 《Gradio全解15——Streaming:数据流(下)》

本篇摘要

Gradio的组件Chatbot原生支持显示中间思考过程和工具使用情况(参考其参数metadata用法),这使得它非常适合为LLM Agent、思维链(Chain-of-Thought, CoT)或推理演示创建用户界面,本章将展示如何使用gr.Chatbot和gr.ChatInterface来显示思考过程和工具使用情况。
本章开始讲解四种代理和工具方式构建用户界面,其中前三种为代理方式,包括transformers.agents、langchain agents和langgraph,第四种使用显示思考的思维链工具Gemini 2.0 Flash Thinking API构建UI。因为Agents作为连接各大模型和工具的桥梁,是打通人工通用智能(AGI)的最后一公里,对从业者和人工智能行业都是至关重要的一环,所以本章将重点放在Agents智能体的原理及应用步骤拆解,然后才是通过Gradio构建UI。作者为此阅读了大量文献,以尽量阐述清楚智能代理,请读者不吝三连和评论,共同进步变强。

11. 使用transformers.agents构建Gradio UI

本章讲述如何使用transformers.agents构建Gradio UI,内容包括代理概念类型和构建、定义大模型引擎Engines、创建和使用Tools、系统提示、其它设置和使用transformers.agents构建Gradio UI。关于库transformers的介绍请参考Hugging Face章节中的六大工具库实战。

11.3 创建和使用工具Tools

工具是代理使用的原子函数,包括各种属性和执行方法。例如PythonInterpreterTool:它有一个名称、描述、输入描述、输出类型,以及一个执行操作的 call 方法。当代理初始化时,工具属性会被用来生成工具描述,并将其嵌入到代理的系统提示中,这让代理知道它可以使用哪些工具以及为什么使用这些工具。工具是代理的核心部分,工具的好坏和数量决定了代理能力的大小。本节将从默认工具箱、创建新工具、管理工具箱及使用工具集等方面讲解如何使用工具。

11.3.1 默认工具箱与load_tool

Transformers附带了一个默认工具箱,用于增强代理的功能。构建Agent时需要一个tools参数,它接受一个工具列表(List[Tools])——这个列表可以是空的,但可以在代理初始化时,通过定义可选参数add_base_tools=True,将默认工具箱添加到工具列表。默认工具箱中工具如下:

  • 文档问答:给定一个图像格式的文档(如PDF),回答关于该文档的问题(Donut);
  • 图像问答:给定一张图像,回答关于该图像的问题(VILT);
  • 语音转文本:给定一段人声录音,将语音转录为文本(Whisper);
  • 文本转语音:将文本转换为语音(SpeechT5);
  • 翻译:将给定的句子从源语言翻译为目标语言;
  • DuckDuckGo搜索*:使用DuckDuckGo浏览器执行网络搜索;
  • Python代码解释器:在安全环境中运行由LLM生成的Python代码。此工具仅在初始化 ReactJsonAgent时通过add_base_tools=True添加,因为基于代码的代理已经可以原生执行Python代码。

我们还可以通过调用load_tool()函数并指定要执行的任务来手动使用工具,示例代码如下:

from transformers import load_tooltool = load_tool("text-to-speech")
audio = tool("This is a text to speech tool")

11.3.2 创建新工具

我们可以为Hugging Face默认工具未涵盖的用例创建自己的工具。以返回HF Hub上某个任务下载量最多的模型为例创建一个工具,步骤如下:

  1. 创建核心功能代码:
from huggingface_hub import list_modelstask = "text-classification"model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
print(model.id)
  1. 然后将核心代码封装为工具函数以快速将其转换为工具,操作时只需将其包装在一个函数中并添加工具装饰器@tool即可:
from transformers import tool@tool
def model_download_tool(task: str) -> str:"""This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub.It returns the name of the checkpoint.Args:task: The task for which"""model = next(iter(list_models(filter="text-classification", sort="downloads", direction=-1)))return model.id

此函数需要:

  • 清晰的函数名:名称通常描述工具的功能,由于代码返回某个任务下载量最多的模型,我们可以命名为model_download_tool;
  • 输入和输出的类型提示:输入的类型提示为函数的入参,输出类型提示为符号->后的类型,方便大模型调用;
  • 函数描述:描述函数的作用和返回说明,其中包括一个“Args:”部分,描述每个参数的作用(注意这里不需要类型指示,因为会从类型提示中提取)。所有这些将在初始化时自动嵌入到代理的系统提示中,因此请尽量使它们清晰易懂!
  1. 最后将工具直接添加到初始化代理的参数tools中。现在,我们可以创建一个代理,比如CodeAgent,并使用创建的工具model_download_tool,示例代码如下:
from transformers import CodeAgent, HfApiEnginellm_engine = HfApiEngine(model="meta-llama/Meta-Llama-3-70B-Instruct")
agent = CodeAgent(tools=[model_download_tool], llm_engine=llm_engine)
agent.run("Can you give me the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?"
)

运行后得到以下输出:

======== New task ========
Can you give me the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?
==== Agent is executing the code below:
most_downloaded_model = model_download_tool(task="text-to-video")
print(f"The most downloaded model for the 'text-to-video' task is {most_downloaded_model}.")
==== The output: 
"The most downloaded model for the 'text-to-video' task is ByteDance/AnimateDiff-Lightning."

11.3.3 管理代理的工具箱toolbox

当我们已经初始化了一个带有工具箱的代理时,从头开始重新初始化以添加想使用的工具会很不方便。此时可以使用Transformers代理,通过toolbox中函数add_tool()和update_tool()来添加或替换工具来管理代理的工具箱。

让我们将上面定义的model_download_tool添加到一个仅使用默认工具箱初始化的现有代理中,代码如下:

from transformers import CodeAgentagent = CodeAgent(tools=[], llm_engine=llm_engine, add_base_tools=True)
agent.toolbox.add_tool(model_download_tool)

现在我们可以同时利用新工具和之前的文本转语音工具:

agent.run("Can you read out loud the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub and return the audio?"
)

在为已经运行良好的代理添加工具时要小心,因为它可能会偏向选择你定义的工具,或者选择与原工具不同的工具。

我们还可以使用方法agent.toolbox.update_tool()替换代理工具箱中的现有工具,尤其是新工具一对一替换现有工具时将非常有用,因为代理已经知道如何执行该特定任务。替换时只需确保新工具遵循与被替换工具相同的API,或者调整系统提示模板以确保更新所有使用被替换工具的示例。

11.3.4 使用工具集合ToolCollection

我们还可以通过使用transformers中的对象ToolCollection来利用工具集合,并通过参数collection_slug指定想要使用的集合片,它们将作为列表传递给代理进行初始化,示例代码如下:

from transformers import ToolCollection, ReactCodeAgentimage_tool_collection = ToolCollection(collection_slug="huggingface-tools/diffusion-tools-6630bb19a942c2306a2cdb6f")
agent = ReactCodeAgent(tools=[*image_tool_collection.tools], add_base_tools=True)agent.run("Please draw me a picture of rivers and lakes.")

为了加快启动速度,工具只有在被代理调用时才会加载。另外,实际运行时可能会报错:ImportError: cannot import name ‘cached_download’ from ‘huggingface_hub’. Did you mean: ‘hf_hub_download’?。原因可能是工具内部调用有问题,只能等官方更新。运行正常时,上面代码将会产生以下类似图片:
在这里插入图片描述

参考文献

  1. Gradio - guides - Chatbots
  2. License to Call: Introducing Transformers Agents 2.0
  3. Hugging Face - Transformers - Agents and tools

相关文章:

大模型WebUI:Gradio全解11——使用transformers.agents构建Gradio UI(3)

大模型WebUI:Gradio全解11——使用transformers.agents构建Gradio UI(3) 前言本篇摘要11. 使用transformers.agents构建Gradio UI11.3 创建和使用工具Tools11.3.1 默认工具箱与load_tool11.3.2 创建新工具11.3.3 管理代理的工具箱toolbox11.3…...

Mybatis-Plus的使用

1. MyBatis-Plus介绍 MyBatis-Plus(简称 MP)是⼀个MyBatis的增强⼯具,在MyBatis的基础上只做增强不做改变,为简化开 发.提⾼效率⽽⽣ 特性: • 润物⽆声:只做增强不做改变,引⼊它不会对现有⼯程产⽣影响,如丝般顺滑. • 效率⾄上:只需简单配置&#…...

基于YOLO11深度学习的心脏超声图像间隔壁检测分割与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能

《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…...

什么是神经网络?

0 前言 神经网络是一种人工智能方法,用于教计算机以受人脑启发的方式处理数据。这是一种机器学习过程,称为深度学习,它使用类似于人脑的分层结构中的互连节点或神经元。它可以创建自适应系统,计算机使用该系统来从错误中进行学习…...

【第12章:深度学习与伦理、隐私—12.1 AI伦理原则与偏见检测的方法与实践】

凌晨三点,某法院的AI量刑系统突然将一桩盗窃案的刑期预测从6个月改为3年——只因被告人的居住地邮编关联到某个少数族裔聚居区。这场静默的算法叛乱,揭开了AI伦理问题的冰山一角。 一、AI伦理的五大天条 1.1 公平性原则:算法没有"完美中立" ![不同算法在COMPAS…...

运用先进的智能算法和优化模型,进行科学合理调度的智慧园区开源了

智慧园区场景视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。充分利用现有…...

Redis过期机制

const (cacheDuration 24 * time.Hour )func SetToCache(rdb *redis.Client, key string, data []byte) error {return rdb.Set(rdb.Context(), key, data, cacheDuration).Err() }以上函数中的rdb.Set(rdb.Context(), key, data, cacheDuration).Err()中的 cacheDuration一旦…...

Android ListPreference使用

Android ListPreference使用 参考 添加链接描述 导入 androidx.preference.ListPreferenceListPreference是Android中的一个Preference子类,用于显示一个可选择的列表,并且可以保存用户所选择的值。它继承自DialogPreference,可以在用户点击时弹出一个对话框,显示可选择的…...

10分钟上手DeepSeek开发:SpringBoot + Vue2快速构建AI对话系统

作者:后端小肥肠 目录 1. 前言 为什么选择DeepSeek? 本文技术栈 2. 环境准备 2.1. 后端项目初始化 2.2. 前端项目初始化 3. 后端服务开发 3.1. 配置文件 3.2. 核心服务实现 4. 前端服务开发 4.1. 聊天组件ChatWindow.vue开发 5. 效果展示及源…...

瑞芯微RV1126部署YOLOv8全流程:环境搭建、pt-onnx-rknn模型转换、C++推理代码、错误解决、优化、交叉编译第三方库

目录 1 环境搭建 2 交叉编译opencv 3 模型训练 4 模型转换 4.1 pt模型转onnx模型 4.2 onnx模型转rknn模型 4.2.1 安装rknn-toolkit 4.2.2 onn转成rknn模型 5 升级npu驱动 6 C++推理源码demo 6.1 原版demo 6.2 增加opencv读取图片的代码 7 交叉编译x264 ffmepg和op…...

泰山派RK3566移植QT,动鼠标时出现屏幕闪烁

总结: 交叉编译到 泰山派rk3566跑调海康摄像头的qt应用程序失败了。 X11无效窗口。 移植QT注意 屏幕分辨率不要改。改了执行QT的时候,framebuffer识别不出设备。 命令行安装QT-Creator sudo install 类似的指令安装Qt-Creator时,可能找不到编…...

一周学会Flask3 Python Web开发-post请求与参数获取

锋哥原创的Flask3 Python Web开发 Flask3视频教程: 2025版 Flask3 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili app.route 装饰器默认只支持get请求。假如我们要让绑定的视图函数支持其他请求方式,我们可以在methods属性里配置…...

Vue 3 中可读可写的计算属性(Computed Properties)的使用场景

在 Vue 3 中,计算属性(Computed Properties)是一种基于响应式依赖进行缓存的属性。它们通常用于处理复杂的逻辑,并且只有当依赖的响应式数据发生变化时,才会重新计算。计算属性非常适合用于处理模板中的复杂表达式&…...

EXCEL解决IF函数“您已为此函数输入太多个参数”的报错

IF函数的基本结构是IF(条件, 值为真时的结果, 值为假时的结果),所以标准的IF函数最多只能有三个参数。当用户输入的参数超过三个时,Excel就会报这个错误。比如多个IF语句叠加,但可能在嵌套的过程中没有正确关闭每个IF函数的括号,导…...

Redis7——基础篇(二)

前言:此篇文章系本人学习过程中记录下来的笔记,里面难免会有不少欠缺的地方,诚心期待大家多多给予指教。 基础篇: Redis(一) 接上期内容:上期完成了Redis环境的搭建。下面开始学习Redis常用命令…...

vue3 ref和reactive的区别

在 Vue 3 中,ref 和 reactive 是两种用于创建响应式数据的 API,但它们的使用场景和实现方式有一些区别。用大白话来说,它们的区别可以这样理解: 1. ref:适合处理简单数据 是什么:ref 是用来包装一个基本类…...

Elasticsearch7.1.1 配置密码和SSL证书

生成SSL证书 ./elasticsearch-certutil ca -out config/certs/elastic-certificates.p12 -pass 我这里没有设置ssl证书密码,如果需要设置密码,需要再配置给elasticsearch 在之前的步骤中,如果我们对elastic-certificates.p12 文件配置了密码…...

初识Redis

1.什么是Redis Redis是一种基于键值对(key-value)的NoSQL数据库。与很多键值对数据库不同的是,Redis中的value可以由String(字符串),hash(哈希),list(列表&a…...

Python Selenium自动化操作详解:从入门到实战

Python Selenium自动化操作详解:从入门到实战 一、Selenium简介 Selenium是一个用于Web应用程序自动化测试的工具,支持多种浏览器和编程语言。结合Python使用,可以实现: 自动化表单提交动态网页数据抓取功能测试网页交互模拟 二…...

第四天面试题

文章目录 1.什么叫 Java 的内存泄露与内存溢出?**1. 内存泄露(Memory Leak)****内存泄露的常见原因:****如何避免内存泄露:** **2. 内存溢出(Out Of Memory, OOM)****内存溢出的常见原因&#x…...

[论文阅读] SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution

文章目录 一、前言二、主要贡献三、Introduction四、Methodology4.1 Motivation :4.2Framework Overview.** 一、前言 通信作者是香港理工大学 & OPPO研究所的张磊教授,也是图像超分ISR的一个大牛了。 论文如下 SeeSR: Towards Semantics-Aware Rea…...

面试题之箭头函数和普通函数有什么区别?

箭头函数(Arrow Function)和普通函数(Regular Function)是 JavaScript 中两种不同的函数定义方式,它们在语法、上下文(this)、原型链等方面存在显著区别。以下是它们的主要区别: 1. …...

jQuery AJAX 方法详解

jQuery AJAX 方法详解 引言 随着互联网技术的不断发展,前端开发领域的技术也在不断更新迭代。jQuery 作为一种广泛使用的前端JavaScript库,极大地简化了DOM操作和事件处理。在众多jQuery功能中,AJAX(Asynchronous JavaScript and XML)方法尤为突出,它允许我们在不重新加…...

深度集成DeepSeek大模型:WebSocket流式聊天实现

目录 5分钟快速接入DeepSeek大模型:WebSocket实时聊天指南创建应用开发后端代码 (Python/Node.js)结语 5分钟快速接入DeepSeek大模型:WebSocket实时聊天指南 创建应用 访问DeepSeek官网 前往 DeepSeek官网。如果还没有账号,需要先注册一个。…...

千峰React:组件使用(1)

事件 添加点击事件 function App() {const handClick () > {console.log(123)}return (<><button onClick{handClick}>点击</button></>) } export default App在react里也可以添加事件对象e 合成e 这个e和js里的e不太一样&#xff0c;是合成的…...

ram的使用——初始化很重要

背景 ram是非常常用的ip&#xff0c;前人的经验告诉我们&#xff0c;如果不对ram进行初始化直接读写&#xff0c;不定态在实际上板时会出现不可预知的问题。 我们需要对ram进行初始化写0操作&#xff0c;代码如下。需要注意&#xff0c;复位释放时立马写入可能存在复位抖动的…...

JVM深入理解

目录 JVM介绍&#xff1a; 解释&#xff1a; 特点&#xff1a; 整体构成&#xff1a; 执行过程&#xff1a; 运行时数据区&#xff1a; Java堆剖析&#xff1a; 堆内存区域划分 为什么要分代呢&#xff1f; 内存分配&#xff1a; 新生区与老年区配置比例&#xff1a…...

DeepSeek 开放平台无法充值 改用其他平台API调用DeepSeek-chat模型方法

近几天DeepSeek开放平台无法充值目前已经关闭状态&#xff0c;大家都是忙着接入DeepSeek模型 &#xff0c;很多人想使用DeepSeek怎么办&#xff1f; 当然还有改用其他平台API调用方法&#xff0c;本文以本站的提供chatgpt系统为例&#xff0c;如何修改DeepSeek-chat模型API接口…...

ImportError: cannot import name ‘FixtureDef‘ from ‘pytest‘

错误信息表明 pytest 在尝试导入 FixtureDef 时出现了问题。通常是由于 pytest 版本不兼容 或 插件版本冲突 引起的。以下是详细的排查步骤和解决方案&#xff1a; 1. 检查 pytest 版本 首先&#xff0c;确认当前安装的 pytest 版本。某些插件可能需要特定版本的 pytest 才能…...

懒人精灵本地离线卡密验证系统教程(不联网、安全稳定、省钱、永久免费、无任何限制)

1.合集懒人精灵本地离线卡密验证系统教程(不联网、安全稳定、省钱、永久免费、无任何限制)&#xff1a;https://www.bilibili.com/video/BV1M6rdYEEog/ 备注&#xff1a; 1.本地离线卡密采用最安全的非对称加解密技术&#xff0c;设备id采用最安全多重混合加密不可逆技术生成&…...

Rust编程语言入门教程 (六)变量与可变性

Rust 系列 &#x1f380;Rust编程语言入门教程&#xff08;一&#xff09;安装Rust&#x1f6aa; &#x1f380;Rust编程语言入门教程&#xff08;二&#xff09;hello_world&#x1f6aa; &#x1f380;Rust编程语言入门教程&#xff08;三&#xff09; Hello Cargo&#x1f…...

ArcGis和Super Map

1.ArcGIS ArcGIS 是美国环境系统研究所&#xff08;ESRI&#xff09;开发的一系列地理信息系统&#xff08;GIS&#xff09;软件产品的总称&#xff0c;它提供了一套全面的工具和服务&#xff0c;可用于采集、存储、分析、管理和展示地理数据&#xff0c;在众多领域都有广泛的…...

POI优化Excel录入

57000单词原始录入时间258S 核心代码: List<Word> wordBookList ExcelUtil.getReader(file.getInputStream()).readAll(Word.class);if (!CollectionUtil.isEmpty(wordBookList)) {for (Word word : wordBookList) {//逐条向数据库中插入单词wordMapper.insert(word);}…...

Zookeeper和Kafka的依赖关系

Zookeeper 和 Kafka 是紧密相关的,它们在功能上相互协作,共同为分布式系统提供支持,以下是它们的关系具体介绍: Kafka 依赖 Zookeeper 进行元数据管理 主题信息存储:Kafka 中的主题(Topic)相关信息,如主题的名称、分区数量、副本分布等都存储在 Zookeeper 中。当 Kafk…...

驱动开发、移植

一、任务明确&#xff1a;把创龙MX8的驱动 按照我们的要求 然后移植到 我们的板子 1.Linux系统启动卡制作&#xff0c; sd卡 先按照 《用户手册—3-2-Linux系统启动卡制作及系统固化》 把创龙的Linux系统刷进去。 2. 把TLIMX8-EVM的板子过一遍 把刚刚烧好系统的sd卡插入 创…...

RT-Thread+STM32L475VET6实现红外遥控实验

文章目录 前言一、板载资源介绍二、具体步骤1. 确定红外接收头引脚编号2. 下载infrared软件包3. 配置infrared软件包4. 打开STM32CubeMX进行相关配置4.1 使用外部高速时钟&#xff0c;并修改时钟树4.2 打开定时器16(定时器根据自己需求调整)4.3 打开串口4.4 生成工程 5. 打开HW…...

分布式大语言模型服务引擎vLLM论文解读

论文地址&#xff1a;Efficient Memory Management for Large Language Model Serving with PagedAttention 摘要 大语言模型&#xff08;LLMs&#xff09;的高吞吐量服务需要一次对足够多的请求进行批处理。然而&#xff0c;现有系统面临困境&#xff0c;因为每个请求的键值…...

Bio-ORACLE数据分享[decade 2010-2020] [Surface layers]

Bio-ORACLE数据分享[decade 2010-2020] [Surface layers] 文章目录 Bio-ORACLE数据分享[decade 2010-2020] [Surface layers]前言一、文件分享&#xff08;主要&#xff09;二、相关代码&#xff08;选看&#xff09;总结 Bio-ORACLE数据分享[decade 2010-2020] [Surface layer…...

MySQL六大日志的功能介绍。

前言 首先&#xff0c;MySQL的日志应该包括二进制日志&#xff08;Binary Log&#xff09;、错误日志&#xff08;Error Log&#xff09;、查询日志&#xff08;General Query Log&#xff09;、慢查询日志&#xff08;Slow Query Log&#xff09;、重做日志&#xff08;Redo …...

ChatGPT客户端无法在微软应用商店下载的解决方法

最近网页端的GPT4o只会用how can I assist you 回复了&#xff0c;查了一下发现是类似IP封锁/模型降级等等问题&#xff0c;总之解决方法就是下载客户端。客户端需要通过微软应用商店下载&#xff0c;但是下载时总会出现如下情况&#xff1a; 1.区域和语言没有设置为美国/英语导…...

数仓搭建(hive):DWS层(服务数据层)

DWS层示例: 搭建日主题宽表 需求 维度 步骤 在hive中建数据库dws >>建表 CREATE DATABASE if NOT EXISTS DWS; 建表sql CREATE TABLE yp_dws.dws_sale_daycount( --维度 city_id string COMMENT 城市id, city_name string COMMENT 城市name, trade_area_id string COMME…...

Ollama+DeepSeek+Open-WebUi

环境准备 Docker Ollama Open-WebUi Ollama 下载地址&#xff1a;Ollama docker安装ollama docker run -d \ -v /data/ollama/data:/root/.ollama \ -p 11434:11434 \ --name ollama ollama/ollama 下载模型 Ollama模型仓库 # 示例&#xff1a;安装deepseek-r1:7b doc…...

【笔记】LLM|Ubuntu22服务器极简本地部署DeepSeek+联网使用方式

2025/02/18说明&#xff1a;2月18日~2月20日是2024年度博客之星投票时间&#xff0c;走过路过可以帮忙点点投票吗&#xff1f;我想要前一百的实体证书&#xff0c;经过我严密的计算只要再拿到60票就稳了。一人可能会有多票&#xff0c;Thanks♪(&#xff65;ω&#xff65;)&am…...

FreeSwitch中mod_dptools和mod_easyroute两个模块及应用场景

FreeSWITCH 中的 mod_dptools 和 mod_easyroute 是两个功能不同的模块&#xff0c;分别服务于呼叫控制和动态路由场景。以下是详细介绍&#xff1a; mod_dptools 功能概述 mod_dptools&#xff08;Dialplan Tools&#xff09;是 FreeSWITCH 最核心的模块之一&#xff0c;提供了…...

【Java】泛型与集合篇 —— Set 接口

目录 Set 接口及实现类HashSet 类特点内部实现构造方法LinkedHashSet 类基本概念特点构造方法常用方法适用场景用 Set 对象实现集合运算TreeSet 类特性构造方法常用方法注意事项对象顺序自然排序定制排序注意事项Set 接口及实现类 HashSet 类 HashSet 是 Java 集合框架中 Set…...

DeepSeek 助力 Vue 开发:打造丝滑的右键菜单(RightClickMenu)

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 Deep…...

数据结构与算法面试专题——堆排序

完全二叉树 完全二叉树中如果每棵子树的最大值都在顶部就是大根堆 完全二叉树中如果每棵子树的最小值都在顶部就是小根堆 设计目标&#xff1a;完全二叉树的设计目标是高效地利用存储空间&#xff0c;同时便于进行层次遍历和数组存储。它的结构使得每个节点的子节点都可以通过简…...

【Mysql】索引

【Mysql】索引 一、索引的简介二、索引结构2.1 Hash2.2 二叉搜索树2.3 B树2.4 B树 三、索引分类3.1 主键索引3.2 普通索引3.3 唯一索引3.4 全文索引3.5 聚集索引3.6 非聚集索引3.7 索引覆盖 四、使用索引4.1 自动创建索引4.2 手动创建索引4.2.1 主键索引4.2.2 唯一索引4.2.3 普…...

qt的下载安装详细介绍

下载 我们可以在国内的镜像网站上下载qt安装包&#xff0c;按需下载&#xff1a; 我的需求是在windows上运行&#xff0c;x64的qt5.15.2,所以我下载的是qt-unified-windows-x64-4.6.0-online.exe 下载完成之后&#xff0c;我们来到存放该exe文件的目录&#xff0c;打开命令窗…...

Eclipse插件开发六:使用Web前端技术开发AI助手页面

之前的过程中&#xff0c;我们都不怎么熟悉Eclipse的哪些API&#xff0c;样式也没发怎么去修改&#xff0c;现在我们要修改为用html的方式来编写. 准备一个AI助手聊天页面的html.css,js代码 效果如下所示。 1.快速demo 1.1.准备前端代码 确保准备的前端代码可以在浏览器正常…...