基于YOLO11深度学习的心脏超声图像间隔壁检测分割与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能
《------往期经典推荐------》
一、AI应用软件开发实战专栏【链接】
项目名称 | 项目名称 |
---|---|
1.【人脸识别与管理系统开发】 | 2.【车牌识别与自动收费管理系统开发】 |
3.【手势识别系统开发】 | 4.【人脸面部活体检测系统开发】 |
5.【图片风格快速迁移软件开发】 | 6.【人脸表表情识别系统】 |
7.【YOLOv8多目标识别与自动标注软件开发】 | 8.【基于YOLOv8深度学习的行人跌倒检测系统】 |
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】 | 10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】 |
11.【基于YOLOv8深度学习的安全帽目标检测系统】 | 12.【基于YOLOv8深度学习的120种犬类检测与识别系统】 |
13.【基于YOLOv8深度学习的路面坑洞检测系统】 | 14.【基于YOLOv8深度学习的火焰烟雾检测系统】 |
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】 | 16.【基于YOLOv8深度学习的舰船目标分类检测系统】 |
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】 | 18.【基于YOLOv8深度学习的血细胞检测与计数系统】 |
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】 | 20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】 |
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】 | 22.【基于YOLOv8深度学习的路面标志线检测与识别系统】 |
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】 | 24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】 |
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】 | 26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】 |
27.【基于YOLOv8深度学习的人脸面部表情识别系统】 | 28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】 |
29.【基于YOLOv8深度学习的智能肺炎诊断系统】 | 30.【基于YOLOv8深度学习的葡萄簇目标检测系统】 |
31.【基于YOLOv8深度学习的100种中草药智能识别系统】 | 32.【基于YOLOv8深度学习的102种花卉智能识别系统】 |
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】 | 34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】 |
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】 | 36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】 |
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】 | 38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】 |
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】 | 40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】 |
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】 | 42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】 |
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】 | 44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】 |
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】 | 46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】 |
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】 | 48.【基于深度学习的车辆检测追踪与流量计数系统】 |
49.【基于深度学习的行人检测追踪与双向流量计数系统】 | 50.【基于深度学习的反光衣检测与预警系统】 |
51.【基于深度学习的危险区域人员闯入检测与报警系统】 | 52.【基于深度学习的高密度人脸智能检测与统计系统】 |
53.【基于深度学习的CT扫描图像肾结石智能检测系统】 | 54.【基于深度学习的水果智能检测系统】 |
55.【基于深度学习的水果质量好坏智能检测系统】 | 56.【基于深度学习的蔬菜目标检测与识别系统】 |
57.【基于深度学习的非机动车驾驶员头盔检测系统】 | 58.【太基于深度学习的阳能电池板检测与分析系统】 |
59.【基于深度学习的工业螺栓螺母检测】 | 60.【基于深度学习的金属焊缝缺陷检测系统】 |
61.【基于深度学习的链条缺陷检测与识别系统】 | 62.【基于深度学习的交通信号灯检测识别】 |
63.【基于深度学习的草莓成熟度检测与识别系统】 | 64.【基于深度学习的水下海生物检测识别系统】 |
65.【基于深度学习的道路交通事故检测识别系统】 | 66.【基于深度学习的安检X光危险品检测与识别系统】 |
67.【基于深度学习的农作物类别检测与识别系统】 | 68.【基于深度学习的危险驾驶行为检测识别系统】 |
69.【基于深度学习的维修工具检测识别系统】 | 70.【基于深度学习的维修工具检测识别系统】 |
71.【基于深度学习的建筑墙面损伤检测系统】 | 72.【基于深度学习的煤矿传送带异物检测系统】 |
73.【基于深度学习的老鼠智能检测系统】 | 74.【基于深度学习的水面垃圾智能检测识别系统】 |
75.【基于深度学习的遥感视角船只智能检测系统】 | 76.【基于深度学习的胃肠道息肉智能检测分割与诊断系统】 |
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
《------正文------》
目录
- 基本功能演示
- 前言
- 一、软件核心功能介绍及效果演示
- 软件主要功能
- 界面参数设置说明
- (1)图片检测演示
- (2)视频检测演示
- (3)摄像头检测演示
- (4)检测结果保存
- 二、目标分割模型的训练、评估与推理
- 1.YOLO11简介
- 2. 数据集准备与训练
- 3. 训练结果评估
- 4. 模型推理
- 四、可视化系统制作
- Pyqt5详细介绍
- 系统制作
- 【获取方式】
基本功能演示
基于YOLO11深度学习的心脏超声图像间隔壁检测分割与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能
摘要:心脏间隔壁的健康状况对于维持正常的心脏功能至关重要。心脏间隔壁异常可能导致严重的疾病,如肥厚型心肌病或房间隔缺损等。传统上,心脏间隔壁的评估依赖于经验丰富的医疗专业人员对超声影像的手动分析,这种方法不仅耗时而且容易受到主观因素的影响。本文基于
YOLO11深度学习框架
,通过3092心脏超声图像间隔壁相关图片
,训练了一个进行心脏超声图像间隔壁
的目标分割模型
,可以检测分割出心脏间隔壁的具体位置及大小
。最终基于此模型开发了一款带UI界面的心脏超声图像间隔壁检测分割与分析系统
,可用于实时检测场景中的心脏间隔壁的分割与分析
。该系统是基于python
与PyQT5
开发的,支持图片、批量图片、视频以及摄像头
进行目标检测分割,并保存检测结果
。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末。
文章目录
- 基本功能演示
- 前言
- 一、软件核心功能介绍及效果演示
- 软件主要功能
- 界面参数设置说明
- (1)图片检测演示
- (2)视频检测演示
- (3)摄像头检测演示
- (4)检测结果保存
- 二、目标分割模型的训练、评估与推理
- 1.YOLO11简介
- 2. 数据集准备与训练
- 3. 训练结果评估
- 4. 模型推理
- 四、可视化系统制作
- Pyqt5详细介绍
- 系统制作
- 【获取方式】
点击跳转至文末《完整相关文件及源码》获取
前言
心脏间隔壁的健康状况对于维持正常的心脏功能至关重要。心脏间隔壁异常,如厚度增加或结构缺陷,可能导致严重的疾病,例如肥厚型心肌病或房间隔缺损等。传统上,心脏间隔壁的评估依赖于经验丰富的医疗专业人员对超声影像的手动分析,这种方法不仅耗时而且容易受到主观因素的影响。基于YOLO深度学习框架开发的心脏间隔壁智能检测分割与诊断系统,能够自动分割超声影像中的心脏间隔壁,并精确分析其厚度与长度。该系统的应用极大地提高了心脏病诊断的准确性和效率,有助于早期发现潜在的心脏问题,改善患者的治疗效果和生活质量。
应用场景:
临床辅助诊断
:在日常诊疗中为医生提供快速、准确的间隔壁测量结果,支持更精准的诊断决策,尤其是在处理复杂病例时。
术前规划与术后评估
:帮助外科医生在手术前更好地了解患者心脏间隔壁的具体情况,制定个性化的手术方案;术后也可用于评估治疗效果。
大规模筛查项目
:在心血管疾病的预防与控制中,可用于大规模人群的心脏健康筛查,通过自动化分析提高筛查效率。
医学研究
:为研究人员提供大量标准化的数据集,促进关于心脏间隔壁变化及其与各种心脏疾病关系的研究。
远程医疗服务
:结合远程医疗技术,使偏远地区的患者也能获得高质量的心脏健康评估服务,缩小城乡医疗服务差距。
个性化健康管理
:针对高风险个体或已有心脏疾病史的患者,定期监测心脏间隔壁的变化,实现早期干预和个性化健康管理。
总的来说,心脏超声图像中的间隔壁检测与分割是心血管疾病精准诊疗的核心技术,其重要性在于通过数字化手段精准界定解剖边界,揭示心脏结构与功能的动态变化,为先天性心脏病(如室间隔缺损、房间隔缺损)的定位与量化、心肌病(如肥厚型心肌病)的厚度评估、手术规划及预后监测提供客观依据。该技术不仅克服了传统超声主观判读的局限性,还推动了AI辅助诊断的发展,实现了从形态观察到功能量化分析的跨越,显著提升疾病早期识别、风险分层和个性化治疗的临床效能。
博主通过搜集心脏超声图像间隔壁
的相关图片,根据最前沿的YOLO11目标分割技术,基于python与Pyqt5
开发了一款界面简洁的心脏超声图像间隔壁检测分割与分析系统
,能够检测分割出心脏间隔壁的具体区域大小、面积占比、长宽等信息
,可支持图片、视频以及摄像头检测
,同时可以将图片、视频以及摄像头的检测结果进行保存
。本文详细的介绍了此系统的核心功能以及所使用到的技术原理与制作流程。
软件初始界面如下图所示:
检测结果界面如下:
一、软件核心功能介绍及效果演示
软件主要功能
1. 可进行心脏超声图像间隔壁检测分割
,分割一个类别:间隔壁
;
2. 支持图片、图片批量、视频及摄像头
进行检测分割;
3. 可显示总分割面积占比
以及单个目标的分割面积占比
;
4. 界面可实时显示目标位置
、分割结果
、分割面积占比
、置信度
、用时
、长宽
等信息;
5. 结果保存:支持图片
、视频
及摄像头
的分割结果保存
;
界面参数设置说明
置信度阈值
:也就是目标检测时的conf参数
,只有检测出的目标置信度大于该值,结果才会显示;交并比阈值
:也就是目标检测时的iou参数
,只有目标检测框的交并比大于该值,结果才会显示;
IoU:全称为Intersection over
Union,表示交并比。在目标检测中,它用于衡量模型生成的候选框与原标记框之间的重叠程度。IoU值越大,表示两个框之间的相似性越高。通常,当IoU值大于0.5时,认为可以检测到目标物体。这个指标常用于评估模型在特定数据集上的检测准确度。
窗口1:显示分割结果
:表示是否在检测图片中显示分割结果,默认勾选;窗口1:显示检测框与标签
:表示是否在检测图片中显示检测框与标签,默认勾选;
窗口2:显示Mask或者显示原始分割图片
:表示在窗口2中显示分割的Mask
或者原始图片分割内容
;
显示Mask
或者显示原始分割图片
选项的功能效果如下:
显示Mask选项效果:
显示原始分割图片效果:
分割面积占比
:表示所选择分割目标的面积占整张图片的百分比;
置信度
:表示所选择分割目标的结果置信度大小;
分割宽度px
:表示所选择分割目标的最小外接矩形框的宽度大小,单位为像素px;
分割长度px
:表示所选择分割目标的最小外接矩形框的长度大小,单位为像素px;
分割中心点坐标
:表示所选择分割目标的最小外接矩形框的中心点坐标信息;
检测框位置
:表示所选择分割目标的yolov8检测框坐标信息,框左上角坐标(xmin,ymin),框右下角坐标(xmax,ymax);
表格信息包括
:文件路径、目标编号、类别、置信度、检测框位置、分割占比、分割宽度、分割长度、分割中心点坐标。
(1)图片检测演示
1.点击打开图片
按钮,选择需要检测的图片,或者点击打开文件夹
按钮,选择需要批量检测图片所在的文件夹,操作演示如下:
2.点击目标下拉框后,可以选定指定目标的结果信息进行显示。
3. 点击保存
按钮,会对图片检测结果进行保存,存储路径为:save_data
目录下。
4.点击表格中的指定行,界面会显示该行表格所写的信息内容。
注:右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行信息切换。所有检测结果均在表格中显示。
点击保存
按钮,会对图片的检测结果进行保存,共会保存3种类型结果,分别是:检测分割结果标识图片、分割的Mask图片以及原图分割后的图片
。存储在save_data
目录下,保存结果如下:
(2)视频检测演示
1.点击打开视频
图标,打开选择需要检测的视频,就会自动显示检测结果。再次点击该按钮,会关闭视频
。
2.点击保存
按钮,会对视频检测结果进行保存,同样会保存3种类型结果,分别是:检测分割结果标识视频、分割Mask视频以及原视频分割后的视频
,存储路径为:save_data
目录下。
视频检测保存结果如下:
(3)摄像头检测演示
1.点击打开摄像头
按钮,可以打开摄像头,可以实时进行检测,再次点击该按钮,可关闭摄像头
;
2.点击保存
按钮,可以进行摄像头实时图像的检测结果保存
。
(4)检测结果保存
点击保存
按钮后,会将当前选择的图片【含批量图片】、视频或者摄像头
的分割结果进行保存。结果会存储在save_data
目录下,保存内容如下:
图片检测保存的csv文件信息内容如下:
包括:'文件名', '目标编号', '类别', '置信度', '检测框位置','分割占比', '分割宽度','分割长度','分割中心坐标'
信息。
二、目标分割模型的训练、评估与推理
1.YOLO11简介
YOLO11源码地址:https://github.com/ultralytics/ultralytics
Ultralytics YOLO11是一款尖端的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。
YOLO11创新点如下:
YOLO 11主要改进包括:
增强的特征提取
:YOLO 11采用了改进的骨干和颈部架构,增强了特征提取功能,以实现更精确的目标检测。
优化的效率和速度
:优化的架构设计和优化的训练管道提供更快的处理速度,同时保持准确性和性能之间的平衡。
更高的精度,更少的参数
:YOLO11m在COCO数据集上实现了更高的平均精度(mAP),参数比YOLOv8m少22%,使其在不影响精度的情况下提高了计算效率。
跨环境的适应性
:YOLO 11可以部署在各种环境中,包括边缘设备、云平台和支持NVIDIA GPU的系统。
广泛的支持任务
:YOLO 11支持各种计算机视觉任务,如对象检测、实例分割、图像分类、姿态估计和面向对象检测(OBB)。
2. 数据集准备与训练
通过网络上搜集关于胃肠道息肉相关图片
,并使用Labelme标注工具对每张图片中的分割结果及类别进行标注。一共包含3092张图片
,其中训练集包含2724张图片
,验证集包含243张图片
,测试集包含125张图片
,部分图像及标注如下图所示。
数据集的各类别具体分布如下所示:
图片数据的存放格式如下,在项目目录中新建datasets
目录,同时将检测的图片分为训练集、验证集放入Data
目录下。
同时我们需要新建一个data.yaml
文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml
的具体内容如下:
train: D:\2MyCVProgram\3.SegmentProgram\SeptalWallSeg_v11\datasets\Data\train
val: D:\2MyCVProgram\3.SegmentProgram\SeptalWallSeg_v11\datasets\Data\valid
test: D:\2MyCVProgram\3.SegmentProgram\SeptalWallSeg_v11\datasets\Data\test
nc: 1
names: ['Septal Wall']
注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py
文件进行模型训练,epochs
参数用于调整训练的轮数,batch
参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:
#coding:utf-8
from ultralytics import YOLO
import matplotlib
matplotlib.use('TkAgg')if __name__ == '__main__':# 训练模型配置文件路径yolo_yaml_path = 'ultralytics/cfg/models/11/yolo11-seg.yaml'# 数据集配置文件路径data_yaml_path = 'datasets/Data/data.yaml'# 官方预训练模型路径pre_model_path = "yolo11n-seg.pt"# 加载配置文件和预训练模型model = YOLO(yolo_yaml_path).load(pre_model_path)# 模型训练model.train(data=data_yaml_path,epochs=150,batch=4)
模型常用训练超参数参数说明:
YOLO11 模型的训练设置包括训练过程中使用的各种超参数和配置
。这些设置会影响模型的性能、速度和准确性。关键的训练设置包括批量大小、学习率、动量和权重衰减。此外,优化器、损失函数和训练数据集组成的选择也会影响训练过程。对这些设置进行仔细的调整和实验对于优化性能至关重要。
以下是一些常用的模型训练参数和说明:
参数名 | 默认值 | 说明 |
---|---|---|
model | None | 指定用于训练的模型文件。接受指向 .pt 预训练模型或 .yaml 配置文件。对于定义模型结构或初始化权重至关重要。 |
data | None | 数据集配置文件的路径(例如 coco8.yaml ).该文件包含特定于数据集的参数,包括训练数据和验证数据的路径、类名和类数。 |
epochs | 100 | 训练总轮数。每个epoch代表对整个数据集进行一次完整的训练。调整该值会影响训练时间和模型性能。 |
patience | 100 | 在验证指标没有改善的情况下,提前停止训练所需的epoch数。当性能趋于平稳时停止训练,有助于防止过度拟合。 |
batch | 16 | 批量大小,有三种模式:设置为整数(例如,’ Batch =16 ‘), 60% GPU内存利用率的自动模式(’ Batch =-1 ‘),或指定利用率分数的自动模式(’ Batch =0.70 ')。 |
imgsz | 640 | 用于训练的目标图像尺寸。所有图像在输入模型前都会被调整到这一尺寸。影响模型精度和计算复杂度。 |
device | None | 指定用于训练的计算设备:单个 GPU (device=0 )、多个 GPU (device=0,1 )、CPU (device=cpu ),或苹果芯片的 MPS (device=mps ). |
workers | 8 | 加载数据的工作线程数(每 RANK 多 GPU 训练)。影响数据预处理和输入模型的速度,尤其适用于多 GPU 设置。 |
name | None | 训练运行的名称。用于在项目文件夹内创建一个子目录,用于存储训练日志和输出结果。 |
pretrained | True | 决定是否从预处理模型开始训练。可以是布尔值,也可以是加载权重的特定模型的字符串路径。提高训练效率和模型性能。 |
optimizer | 'auto' | 为训练模型选择优化器。选项包括 SGD , Adam , AdamW , NAdam , RAdam , RMSProp 等,或 auto 用于根据模型配置进行自动选择。影响收敛速度和稳定性 |
lr0 | 0.01 | 初始学习率(即 SGD=1E-2 , Adam=1E-3 ) .调整这个值对优化过程至关重要,会影响模型权重的更新速度。 |
lrf | 0.01 | 最终学习率占初始学习率的百分比 = (lr0 * lrf ),与调度程序结合使用,随着时间的推移调整学习率。 |
3. 训练结果评估
在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)、动态特征损失(dfl_loss)以及分割损失(seg_loss),在训练结束后,可以在runs/
目录下找到训练过程及结果文件,如下所示:
各损失函数作用说明:
定位损失box_loss
:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss
:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss)
:DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLO11训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
分割损失(seg_loss)
:预测的分割结果与标定分割之前的误差,越小分割的越准确;
本文训练结果如下:
我们通常用PR曲线
来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP
表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP。
定位结果的PR曲线如下:
分割结果的PR曲线如下:
从上面图片曲线结果可以看到:定位的平均精度为0.984
,分割的平均精度为0.992
,结果还是非常不错的。
4. 模型推理
模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt
文件,在runs/trian/weights
目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:
#coding:utf-8
from ultralytics import YOLO
import cv2# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/AM1-1-_00000_jpg.rf.bea63d3a6d0938870edcc83e5eacfdef.jpg"# 加载预训练模型
# conf 0.25 object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='segment')
# model = YOLO(path, task='segment',conf=0.5)# 检测图片
results = model(img_path)
res = results[0].plot()# res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("Res", res)
cv2.imwrite("res.jpg", res)
cv2.waitKey(0)
执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
更多检测结果展示如下:
四、可视化系统制作
基于上述训练出的分割模型,为了给此检测系统提供一个用户友好的操作平台,使用户能够便捷、高效地进行检测任务。博主基于Pyqt5开发了一个可视化的系统界面,通过图形用户界面(GUI),用户可以轻松地在图片、视频和摄像头实时检测之间切换,无需掌握复杂的编程技能即可操作系统。【系统详细展示见第一部分内容】
Pyqt5详细介绍
关于Pyqt5的详细介绍可以参考之前的博客文章:《Python中的Pyqt5详细介绍:基本机构、部件、布局管理、信号与槽、跨平台》
,地址:
https://a-xu-ai.blog.csdn.net/article/details/143273797
系统制作
博主基于Pyqt5框架开发了此款心脏超声图像间隔壁检测分割与分析
,即文中第一部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存
。
通过图形用户界面(GUI),用户可以轻松地在图片、视频和摄像头实时检测之间切换,无需掌握复杂的编程技能即可操作系统。这不仅提升了系统的可用性和用户体验,还使得检测过程更加直观透明,便于结果的实时观察和分析。此外,GUI还可以集成其他功能,如检测结果的保存与导出、检测参数的调整,从而为用户提供一个全面、综合的检测工作环境,促进智能检测技术的广泛应用。
关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。
【获取方式】
关注末尾名片G-Z-H:【阿旭算法与机器学习】,发送【源码】即可获取下载方式
本文涉及到的完整全部程序文件:包括环境配置文档说明、python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
注意:该代码基于Python3.9开发,运行界面的主程序为
MainProgram.py
,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt
配置软件运行所需环境。
好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!
相关文章:
基于YOLO11深度学习的心脏超声图像间隔壁检测分割与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能
《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…...
什么是神经网络?
0 前言 神经网络是一种人工智能方法,用于教计算机以受人脑启发的方式处理数据。这是一种机器学习过程,称为深度学习,它使用类似于人脑的分层结构中的互连节点或神经元。它可以创建自适应系统,计算机使用该系统来从错误中进行学习…...
【第12章:深度学习与伦理、隐私—12.1 AI伦理原则与偏见检测的方法与实践】
凌晨三点,某法院的AI量刑系统突然将一桩盗窃案的刑期预测从6个月改为3年——只因被告人的居住地邮编关联到某个少数族裔聚居区。这场静默的算法叛乱,揭开了AI伦理问题的冰山一角。 一、AI伦理的五大天条 1.1 公平性原则:算法没有"完美中立" ![不同算法在COMPAS…...
运用先进的智能算法和优化模型,进行科学合理调度的智慧园区开源了
智慧园区场景视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。充分利用现有…...
Redis过期机制
const (cacheDuration 24 * time.Hour )func SetToCache(rdb *redis.Client, key string, data []byte) error {return rdb.Set(rdb.Context(), key, data, cacheDuration).Err() }以上函数中的rdb.Set(rdb.Context(), key, data, cacheDuration).Err()中的 cacheDuration一旦…...
Android ListPreference使用
Android ListPreference使用 参考 添加链接描述 导入 androidx.preference.ListPreferenceListPreference是Android中的一个Preference子类,用于显示一个可选择的列表,并且可以保存用户所选择的值。它继承自DialogPreference,可以在用户点击时弹出一个对话框,显示可选择的…...
10分钟上手DeepSeek开发:SpringBoot + Vue2快速构建AI对话系统
作者:后端小肥肠 目录 1. 前言 为什么选择DeepSeek? 本文技术栈 2. 环境准备 2.1. 后端项目初始化 2.2. 前端项目初始化 3. 后端服务开发 3.1. 配置文件 3.2. 核心服务实现 4. 前端服务开发 4.1. 聊天组件ChatWindow.vue开发 5. 效果展示及源…...
瑞芯微RV1126部署YOLOv8全流程:环境搭建、pt-onnx-rknn模型转换、C++推理代码、错误解决、优化、交叉编译第三方库
目录 1 环境搭建 2 交叉编译opencv 3 模型训练 4 模型转换 4.1 pt模型转onnx模型 4.2 onnx模型转rknn模型 4.2.1 安装rknn-toolkit 4.2.2 onn转成rknn模型 5 升级npu驱动 6 C++推理源码demo 6.1 原版demo 6.2 增加opencv读取图片的代码 7 交叉编译x264 ffmepg和op…...
泰山派RK3566移植QT,动鼠标时出现屏幕闪烁
总结: 交叉编译到 泰山派rk3566跑调海康摄像头的qt应用程序失败了。 X11无效窗口。 移植QT注意 屏幕分辨率不要改。改了执行QT的时候,framebuffer识别不出设备。 命令行安装QT-Creator sudo install 类似的指令安装Qt-Creator时,可能找不到编…...
一周学会Flask3 Python Web开发-post请求与参数获取
锋哥原创的Flask3 Python Web开发 Flask3视频教程: 2025版 Flask3 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili app.route 装饰器默认只支持get请求。假如我们要让绑定的视图函数支持其他请求方式,我们可以在methods属性里配置…...
Vue 3 中可读可写的计算属性(Computed Properties)的使用场景
在 Vue 3 中,计算属性(Computed Properties)是一种基于响应式依赖进行缓存的属性。它们通常用于处理复杂的逻辑,并且只有当依赖的响应式数据发生变化时,才会重新计算。计算属性非常适合用于处理模板中的复杂表达式&…...
EXCEL解决IF函数“您已为此函数输入太多个参数”的报错
IF函数的基本结构是IF(条件, 值为真时的结果, 值为假时的结果),所以标准的IF函数最多只能有三个参数。当用户输入的参数超过三个时,Excel就会报这个错误。比如多个IF语句叠加,但可能在嵌套的过程中没有正确关闭每个IF函数的括号,导…...
Redis7——基础篇(二)
前言:此篇文章系本人学习过程中记录下来的笔记,里面难免会有不少欠缺的地方,诚心期待大家多多给予指教。 基础篇: Redis(一) 接上期内容:上期完成了Redis环境的搭建。下面开始学习Redis常用命令…...
vue3 ref和reactive的区别
在 Vue 3 中,ref 和 reactive 是两种用于创建响应式数据的 API,但它们的使用场景和实现方式有一些区别。用大白话来说,它们的区别可以这样理解: 1. ref:适合处理简单数据 是什么:ref 是用来包装一个基本类…...
Elasticsearch7.1.1 配置密码和SSL证书
生成SSL证书 ./elasticsearch-certutil ca -out config/certs/elastic-certificates.p12 -pass 我这里没有设置ssl证书密码,如果需要设置密码,需要再配置给elasticsearch 在之前的步骤中,如果我们对elastic-certificates.p12 文件配置了密码…...
初识Redis
1.什么是Redis Redis是一种基于键值对(key-value)的NoSQL数据库。与很多键值对数据库不同的是,Redis中的value可以由String(字符串),hash(哈希),list(列表&a…...
Python Selenium自动化操作详解:从入门到实战
Python Selenium自动化操作详解:从入门到实战 一、Selenium简介 Selenium是一个用于Web应用程序自动化测试的工具,支持多种浏览器和编程语言。结合Python使用,可以实现: 自动化表单提交动态网页数据抓取功能测试网页交互模拟 二…...
第四天面试题
文章目录 1.什么叫 Java 的内存泄露与内存溢出?**1. 内存泄露(Memory Leak)****内存泄露的常见原因:****如何避免内存泄露:** **2. 内存溢出(Out Of Memory, OOM)****内存溢出的常见原因&#x…...
[论文阅读] SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution
文章目录 一、前言二、主要贡献三、Introduction四、Methodology4.1 Motivation :4.2Framework Overview.** 一、前言 通信作者是香港理工大学 & OPPO研究所的张磊教授,也是图像超分ISR的一个大牛了。 论文如下 SeeSR: Towards Semantics-Aware Rea…...
面试题之箭头函数和普通函数有什么区别?
箭头函数(Arrow Function)和普通函数(Regular Function)是 JavaScript 中两种不同的函数定义方式,它们在语法、上下文(this)、原型链等方面存在显著区别。以下是它们的主要区别: 1. …...
jQuery AJAX 方法详解
jQuery AJAX 方法详解 引言 随着互联网技术的不断发展,前端开发领域的技术也在不断更新迭代。jQuery 作为一种广泛使用的前端JavaScript库,极大地简化了DOM操作和事件处理。在众多jQuery功能中,AJAX(Asynchronous JavaScript and XML)方法尤为突出,它允许我们在不重新加…...
深度集成DeepSeek大模型:WebSocket流式聊天实现
目录 5分钟快速接入DeepSeek大模型:WebSocket实时聊天指南创建应用开发后端代码 (Python/Node.js)结语 5分钟快速接入DeepSeek大模型:WebSocket实时聊天指南 创建应用 访问DeepSeek官网 前往 DeepSeek官网。如果还没有账号,需要先注册一个。…...
千峰React:组件使用(1)
事件 添加点击事件 function App() {const handClick () > {console.log(123)}return (<><button onClick{handClick}>点击</button></>) } export default App在react里也可以添加事件对象e 合成e 这个e和js里的e不太一样,是合成的…...
ram的使用——初始化很重要
背景 ram是非常常用的ip,前人的经验告诉我们,如果不对ram进行初始化直接读写,不定态在实际上板时会出现不可预知的问题。 我们需要对ram进行初始化写0操作,代码如下。需要注意,复位释放时立马写入可能存在复位抖动的…...
JVM深入理解
目录 JVM介绍: 解释: 特点: 整体构成: 执行过程: 运行时数据区: Java堆剖析: 堆内存区域划分 为什么要分代呢? 内存分配: 新生区与老年区配置比例:…...
DeepSeek 开放平台无法充值 改用其他平台API调用DeepSeek-chat模型方法
近几天DeepSeek开放平台无法充值目前已经关闭状态,大家都是忙着接入DeepSeek模型 ,很多人想使用DeepSeek怎么办? 当然还有改用其他平台API调用方法,本文以本站的提供chatgpt系统为例,如何修改DeepSeek-chat模型API接口…...
ImportError: cannot import name ‘FixtureDef‘ from ‘pytest‘
错误信息表明 pytest 在尝试导入 FixtureDef 时出现了问题。通常是由于 pytest 版本不兼容 或 插件版本冲突 引起的。以下是详细的排查步骤和解决方案: 1. 检查 pytest 版本 首先,确认当前安装的 pytest 版本。某些插件可能需要特定版本的 pytest 才能…...
懒人精灵本地离线卡密验证系统教程(不联网、安全稳定、省钱、永久免费、无任何限制)
1.合集懒人精灵本地离线卡密验证系统教程(不联网、安全稳定、省钱、永久免费、无任何限制):https://www.bilibili.com/video/BV1M6rdYEEog/ 备注: 1.本地离线卡密采用最安全的非对称加解密技术,设备id采用最安全多重混合加密不可逆技术生成&…...
Rust编程语言入门教程 (六)变量与可变性
Rust 系列 🎀Rust编程语言入门教程(一)安装Rust🚪 🎀Rust编程语言入门教程(二)hello_world🚪 🎀Rust编程语言入门教程(三) Hello Cargo…...
ArcGis和Super Map
1.ArcGIS ArcGIS 是美国环境系统研究所(ESRI)开发的一系列地理信息系统(GIS)软件产品的总称,它提供了一套全面的工具和服务,可用于采集、存储、分析、管理和展示地理数据,在众多领域都有广泛的…...
POI优化Excel录入
57000单词原始录入时间258S 核心代码: List<Word> wordBookList ExcelUtil.getReader(file.getInputStream()).readAll(Word.class);if (!CollectionUtil.isEmpty(wordBookList)) {for (Word word : wordBookList) {//逐条向数据库中插入单词wordMapper.insert(word);}…...
Zookeeper和Kafka的依赖关系
Zookeeper 和 Kafka 是紧密相关的,它们在功能上相互协作,共同为分布式系统提供支持,以下是它们的关系具体介绍: Kafka 依赖 Zookeeper 进行元数据管理 主题信息存储:Kafka 中的主题(Topic)相关信息,如主题的名称、分区数量、副本分布等都存储在 Zookeeper 中。当 Kafk…...
驱动开发、移植
一、任务明确:把创龙MX8的驱动 按照我们的要求 然后移植到 我们的板子 1.Linux系统启动卡制作, sd卡 先按照 《用户手册—3-2-Linux系统启动卡制作及系统固化》 把创龙的Linux系统刷进去。 2. 把TLIMX8-EVM的板子过一遍 把刚刚烧好系统的sd卡插入 创…...
RT-Thread+STM32L475VET6实现红外遥控实验
文章目录 前言一、板载资源介绍二、具体步骤1. 确定红外接收头引脚编号2. 下载infrared软件包3. 配置infrared软件包4. 打开STM32CubeMX进行相关配置4.1 使用外部高速时钟,并修改时钟树4.2 打开定时器16(定时器根据自己需求调整)4.3 打开串口4.4 生成工程 5. 打开HW…...
分布式大语言模型服务引擎vLLM论文解读
论文地址:Efficient Memory Management for Large Language Model Serving with PagedAttention 摘要 大语言模型(LLMs)的高吞吐量服务需要一次对足够多的请求进行批处理。然而,现有系统面临困境,因为每个请求的键值…...
Bio-ORACLE数据分享[decade 2010-2020] [Surface layers]
Bio-ORACLE数据分享[decade 2010-2020] [Surface layers] 文章目录 Bio-ORACLE数据分享[decade 2010-2020] [Surface layers]前言一、文件分享(主要)二、相关代码(选看)总结 Bio-ORACLE数据分享[decade 2010-2020] [Surface layer…...
MySQL六大日志的功能介绍。
前言 首先,MySQL的日志应该包括二进制日志(Binary Log)、错误日志(Error Log)、查询日志(General Query Log)、慢查询日志(Slow Query Log)、重做日志(Redo …...
ChatGPT客户端无法在微软应用商店下载的解决方法
最近网页端的GPT4o只会用how can I assist you 回复了,查了一下发现是类似IP封锁/模型降级等等问题,总之解决方法就是下载客户端。客户端需要通过微软应用商店下载,但是下载时总会出现如下情况: 1.区域和语言没有设置为美国/英语导…...
数仓搭建(hive):DWS层(服务数据层)
DWS层示例: 搭建日主题宽表 需求 维度 步骤 在hive中建数据库dws >>建表 CREATE DATABASE if NOT EXISTS DWS; 建表sql CREATE TABLE yp_dws.dws_sale_daycount( --维度 city_id string COMMENT 城市id, city_name string COMMENT 城市name, trade_area_id string COMME…...
Ollama+DeepSeek+Open-WebUi
环境准备 Docker Ollama Open-WebUi Ollama 下载地址:Ollama docker安装ollama docker run -d \ -v /data/ollama/data:/root/.ollama \ -p 11434:11434 \ --name ollama ollama/ollama 下载模型 Ollama模型仓库 # 示例:安装deepseek-r1:7b doc…...
【笔记】LLM|Ubuntu22服务器极简本地部署DeepSeek+联网使用方式
2025/02/18说明:2月18日~2月20日是2024年度博客之星投票时间,走过路过可以帮忙点点投票吗?我想要前一百的实体证书,经过我严密的计算只要再拿到60票就稳了。一人可能会有多票,Thanks♪(・ω・)&am…...
FreeSwitch中mod_dptools和mod_easyroute两个模块及应用场景
FreeSWITCH 中的 mod_dptools 和 mod_easyroute 是两个功能不同的模块,分别服务于呼叫控制和动态路由场景。以下是详细介绍: mod_dptools 功能概述 mod_dptools(Dialplan Tools)是 FreeSWITCH 最核心的模块之一,提供了…...
【Java】泛型与集合篇 —— Set 接口
目录 Set 接口及实现类HashSet 类特点内部实现构造方法LinkedHashSet 类基本概念特点构造方法常用方法适用场景用 Set 对象实现集合运算TreeSet 类特性构造方法常用方法注意事项对象顺序自然排序定制排序注意事项Set 接口及实现类 HashSet 类 HashSet 是 Java 集合框架中 Set…...
DeepSeek 助力 Vue 开发:打造丝滑的右键菜单(RightClickMenu)
前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 Deep…...
数据结构与算法面试专题——堆排序
完全二叉树 完全二叉树中如果每棵子树的最大值都在顶部就是大根堆 完全二叉树中如果每棵子树的最小值都在顶部就是小根堆 设计目标:完全二叉树的设计目标是高效地利用存储空间,同时便于进行层次遍历和数组存储。它的结构使得每个节点的子节点都可以通过简…...
【Mysql】索引
【Mysql】索引 一、索引的简介二、索引结构2.1 Hash2.2 二叉搜索树2.3 B树2.4 B树 三、索引分类3.1 主键索引3.2 普通索引3.3 唯一索引3.4 全文索引3.5 聚集索引3.6 非聚集索引3.7 索引覆盖 四、使用索引4.1 自动创建索引4.2 手动创建索引4.2.1 主键索引4.2.2 唯一索引4.2.3 普…...
qt的下载安装详细介绍
下载 我们可以在国内的镜像网站上下载qt安装包,按需下载: 我的需求是在windows上运行,x64的qt5.15.2,所以我下载的是qt-unified-windows-x64-4.6.0-online.exe 下载完成之后,我们来到存放该exe文件的目录,打开命令窗…...
Eclipse插件开发六:使用Web前端技术开发AI助手页面
之前的过程中,我们都不怎么熟悉Eclipse的哪些API,样式也没发怎么去修改,现在我们要修改为用html的方式来编写. 准备一个AI助手聊天页面的html.css,js代码 效果如下所示。 1.快速demo 1.1.准备前端代码 确保准备的前端代码可以在浏览器正常…...
Jackson使用
Jackson 是一个功能强大的 JSON 处理库,除了基本的序列化和反序列化功能外,它还提供了许多其他功能,以满足不同的需求。以下是一些常用的高级功能: 0.普通序列化反序列化 序列化 import com.fasterxml.jackson.databind.ObjectM…...
Maven——Maven开发经验总结(1)
摘要 本文总结了 Maven 开发中的多个关键经验,包括如何根据版本号决定推送到 releases 或 snapshots 仓库,如何在构建过程中跳过测试,父项目如何控制子项目依赖版本,父项目依赖是否能传递到子项目,如何跳过 Maven dep…...