当前位置: 首页 > news >正文

【学习资源】时间序列数据分析方法(1)

时间序列数据分析是一个有趣的话题,让我们多花一些时间来研究。此篇为第一篇文章。主要介绍特征提取方法、深度学习时序数据分析模型、参考资源。期望能帮助大家解决工业领域的相关问题。

1 特征提取方法:信号处理

 (来源:INTELLIGENT FAULT DIAGNOSIS AND REMAINING USEFUL LIFE PREDICTION OF ROTATING MACHINERY,西安交通大学出版社)

时域数据的特征提取包括以下几种方法

提取时域特征:均值、方差、标准差、偏度、峭度、峰度等。

提取频域特征:频带能量比、MFCC等

时频域特征 :小波分析,求解各信号特定的小波带

时间序列分析:AR系数

以下特别介绍小波变换。

小波变换wavelet transform

本质特

时域转化为时+频域,有助于提取系列统计特征;

适用领

  • 滤波

小波变换具有时频局部化特性、多分辨特性、去相关特性和选基灵活性。前两个性质决定了小波滤波方法与传统方法相比具有独特的优势,即能够在去除噪声的同时,很好地保留信号的突变部分或图像的边缘。小波滤波的特点如下。(1)非平滑性。平滑是去除高频信息而保留低频信息;而小波滤波是要试图去除所有噪声,保留所有信号,并不考虑它们的频率范围。(2)它是小波变换域对小波系数进行非线性处理

  • 去除噪音

小波变换在时域和频域同时具有良好的局部化性质,不仅可将图像的结构和纹理分别表现在不同分辨率层次上,而且具有检测边沿(局域突变)的能力,因此,利用小波变换在去除噪声时,可提取并保存对视觉起主要作用的边沿信息

  • (1)低熵性。小波系数的稀疏分布使图像变换后的熵降低
  • (2)多分辨率特性。由于采用了多分辨率的方法,所以可以非常好地刻画信号的非平稳特征,如边缘、尖峰、断点等,可在不同分辨率下根据信号和噪声分布特点进行去噪
  • (3)去相关性。因小波变换可对信号去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪
  • (4)选基灵活性。由于小波变换可以灵活选择基,也可根据信号特点和去噪要求选择多带小波、小波包、平移不变小波等,对不同相应场合,可以选择不同的小波母函数

此外,小波变换还可以用于重构图像、压缩信号、识别和检索信号、检测边缘等。

2 深度学习时序数据分析模型

本文介绍ROCKET、TST和Inceptiontime,新的文章会介绍其他模型。

2.1 ROCKET(RandOm Convolutional KErnel Transform)

论文 https://arxiv.org/pdf/1910.13051.pdf ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

论文摘要:ROCKET 通过使用随机卷积核转换输入时间序列并使用转换后的特征来训练线性分类器,从而以大多数现有方法的一小部分计算费用实现了最先进的准确性。我们将 ROCKET 重新构造为一种新方法 MINIROCKET,使其在更大的数据集上的速度提高了 75 倍,并使其几乎是确定性的(并且可选地,通过额外的计算费用,完全确定性),同时保持基本相同的准确性。使用这种方法,可以在不到 10 分钟的时间内对来自 UCR 档案的所有 109 个数据集的分类器进行训练和测试,以达到最先进的准确度。 MINIROCKET 比具有可比精度的任何其他方法(包括 ROCKET)快得多,并且比任何其他计算成本甚至大致相似的方法都要准确得多。

代码文档 https://timeseriesai.github.io/tsai/models.ROCKET.html

参考代码https://github.com/timeseriesAI/tsai/blob/main/tutorial_nbs/02_ROCKET_a_new_SOTA_classifier.ipynb

具体方法:ROCKET 将大量固定的、不可训练的、独立的卷积应用于时间序列。然后从每个卷积输出(一种池化形式)中提取许多特征,每个样本通常生成 10000 个特征。 (这些功能只是浮点数。)特征被存储以便它们可以被多次使用。然后它学习一个简单的线性头部,根据其特征预测每个时间序列样本。典型的 PyTorch 头可能基于线性层。当训练样本数量较少时,经常使用sklearn的RidgeClassifier。通过实验选择了卷积的固定权重和池化方法,以有效预测广泛的现实世界时间序列。最初的 ROCKET 方法使用了一系列固定卷积,权重根据随机分布选择。基于从 ROCKET 吸取的经验教训,MiniRocket 将卷积细化为特定的预定义集合,该集合被证明至少与 ROCKET 一样有效。它的计算速度也比原来的 ROCKET 快得多。实际上,论文作者“建议现在应该考虑使用 MiniRocket 作为 Rocket 的默认变体。”MiniROCKET 是在 Python 中使用 numba 加速和特定于算法的数学加速实现的。它运行速度非常快,并行使用 CPU 内核。 MiniRocket 的 2 个实现:具有类似 sklearn 的 API 的 cpu 版本(可用于小数据集 - <10k 样本),以及MiniRocket 的 PyTorch 实现,针对 GPU 进行了优化。它的运行速度比 CPU 版本快(3-25 倍,具体取决于您的 GPU),并为进一步实验提供了一定的灵活性。

MINIRocket效果不好的原因在于:只有卷积特征,没有序列特征。

2.2 TST Time Series Transformer

论文 Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., & Eickhoff, C. (2020). A Transformer-based Framework for Multivariate Time Series Representation Learning. arXiv preprint arXiv:2010.02803v2

论文摘要:首次提出了一个基于变换器的框架,用于多元时间序列的无监督表示学习。预训练模型可用于下游任务,例如回归和分类、预测和缺失值插补。通过在多个用于多元时间序列回归和分类的基准数据集上评估我们的模型,我们表明我们的建模方法不仅代表了迄今为止对多元时间序列采用无监督学习的最成功的方法,而且还超越了当前的状态——监督方法的最先进性能;即使训练样本的数量非常有限,它也会这样做,同时提供计算效率。最后,我们证明了我们的 Transformer 模型的无监督预训练比完全监督学习提供了显着的性能优势,即使没有利用额外的未标记数据,即通过无监督目标重用相同的数据样本。 

代码文档 https://timeseriesai.github.io/tsai/models.TST.html

参考代码

tsai/tutorial_nbs/07_Time_Series_Classification_with_Transformers.ipynb at main · timeseriesAI/tsai · GitHub

图片来源:arXiv:2010.02803v2

2.3 Inceptiontime

论文 [1909.04939] InceptionTime: Finding AlexNet for Time Series Classification InceptionTime: Finding AlexNet for Time Series Classification

论文摘要:本文将深度学习置于时间序列分类 (TSC) 研究的前沿。 TSC 是机器学习领域,其任务是对时间序列进行分类(或标记)。该领域过去几十年的工作在分类器的准确性方面取得了重大进展,目前最先进的技术由 HIVE-COTE 算法代表。虽然非常准确,但 HIVE-COTE 不能应用于许多现实世界的数据集,因为它对于具有 N 个长度为 T 的时间序列的数据集的训练时间复杂度为 O(N2 * T4)。例如,它需要更多的 HIVE-COTE从一个 N = 1500 个短长度 T = 46 的时间序列的小数据集学习超过 8 天。同时深度学习因其高准确率和可扩展性而受到了极大的关注。最近的 TSC 深度学习方法具有可扩展性,但不如 HIVE-COTE 准确。介绍了 InceptionTime——受 Inception-v4 架构启发的深度卷积神经网络 (CNN) 模型的集合。实验表明,InceptionTime 在准确性方面与 HIVE-COTE 不相上下,同时具有更高的可扩展性:它不仅可以在一小时内从 1,500 个时间序列中学习,而且在 13 小时内也可以从 800 个时间序列中学习,数量为完全超出 HIVE-COTE 范围的数据。

代码文档 https://timeseriesai.github.io/tsai/models.InceptionTime.html

参考代码

tsai/tutorial_nbs/07_Time_Series_Classification_with_Transformers.ipynb at main · timeseriesAI/tsai · GitHub

3 参考资源

3.1 时序数据分析Python库 tsai

 tsai GitHub - timeseriesAI/tsai: Time series Timeseries Deep Learning Machine Learning Python Pytorch fastai | State-of-the-art Deep Learning library for Time Series and Sequences in Pytorch / fastai

3.2 书籍《时间序列分析及其应用》

Time Series Analysis and Its Applications

详细介绍可查看 【新书】时间序列分析及其应用:附 R 示例,第五版

3.3 时间序列预测:理论与实践

Forecasting Big Time Series: Theory and Practice | Tutorial for The Web Conference 2020

详细可查看 【CMU-Amazon】时间序列预测:理论与实践,379页ppt阐述大规模时序预测工具与方法

这里介绍了时间序列预测经典方法和现代方法,经典方法包括相似性搜索和索引、数字信号处理、线性预测方法和非线性预测,现代方法包括张量分析和深度学习。

代码仓库

GitHub - lovvge/Forecasting-Tutorials

3.4 相关视频

【专题4:时序分析技术在生产运营中的应用】1-2.2时序数据挖掘算法

【专题4:时序分析技术在生产运营中的应用】2.3-3时间序列预测方法和案例

视频对应课件在GitHub上

工业智能实战4-时序分析技术的应用.pdf

下次继续讨论时间序列数据分析相关话题,包括一些模型和工程技巧,敬请期待。

相关文章:

【学习资源】时间序列数据分析方法(1)

时间序列数据分析是一个有趣的话题&#xff0c;让我们多花一些时间来研究。此篇为第一篇文章。主要介绍特征提取方法、深度学习时序数据分析模型、参考资源。期望能帮助大家解决工业领域的相关问题。 1 特征提取方法&#xff1a;信号处理 (来源:INTELLIGENT FAULT DIAGNOSIS A…...

PHP 文件与目录操作

PHP 学习资料 PHP 学习资料 PHP 学习资料 在 PHP 编程中&#xff0c;文件与目录操作是一项基础且重要的技能。无论是处理用户上传文件、生成日志&#xff0c;还是管理项目中的各类资源&#xff0c;都离不开对文件和目录的操作。PHP 提供了丰富的内置函数&#xff0c;方便开发…...

PostgreSQL认证指南

PostgreSQL 作为一款强大的开源关系型数据库&#xff0c;深受开发者和企业的青睐。获得 PostgreSQL 专家认证&#xff0c;不仅能提升个人在数据库领域的专业能力&#xff0c;还能为职业发展增添有力筹码。下面为大家详细介绍 PostgreSQL 专家认证的学习路径。 一、深入理解基础…...

hive全量迁移脚本

#!/bin/bash #场景&#xff1a;数据在同一库下&#xff0c;并且hive是内部表&#xff08;前缀的hdfs地址是相同的&#xff09;#1.读取一个文件&#xff0c;获取表名#echo "时间$dt_jian_2-------------------------" >> /home/hadoop/qianyi_zengliang/rs.txt#…...

Qt5开发入门指南:从零开始掌握跨平台开发

目录 Qt框架概述 开发环境搭建 基础语法与核心机制 第一个Qt窗口程序 常见问题解答 一、Qt框架概述 1.1 什么是Qt&#xff1f; Qt是一个1995年由挪威Trolltech公司开发的跨平台C图形用户界面应用程序框架。最新Qt5版本主要包含&#xff1a; GUI模块&#xff1a;支持Wind…...

WPF的Prism框架的使用

安装Prism.DryIoc库&#xff1a; Prism的区域和模块化&#xff1a; 一个区域可以显示一个用户控件 一个模块就是一个项目&#xff0c;也就是一个类库 动态切换用户控件的案例&#xff1a; <Grid><Grid.RowDefinitions><RowDefinition Height"auto"…...

【机器学习】线性回归 线性回归模型的损失函数 MSE RMSE MAE R方

【机器学习系列】 KNN算法 KNN算法原理简介及要点 特征归一化的重要性及方式线性回归算法 线性回归与一元线性回归 线性回归模型的损失函数 多元线性回归 多项式线性回归 线性回归模型的损失函数 V1.0损失函数的计算方法损失函数的分类MSE (Mean Squared Error)RMSE (Root Mea…...

服务器部署DeepSeek,通过Ollama+open-webui部署

1. 安装ollama 1.1. linux 安装 Ollama是目前常用的AI模式部署的第三方工具&#xff0c;能一键部署deepSeek Ollama官方网址https://ollama.com/ 选择Download下载对应的服务版本 服务器选择Linux&#xff0c;下面是下载代码 curl -fsSL https://ollama.com/install.…...

Java 大视界 -- 开源社区对 Java 大数据发展的推动与贡献(91)

&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎来到 青云交的博客&#xff01;能与诸位在此相逢&#xff0c;我倍感荣幸。在这飞速更迭的时代&#xff0c;我们都渴望一方心灵净土&#xff0c;而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识&#xff0c;也…...

【Vue3源码解析】应用实例创建及页面渲染

下载源码 git clone https://github.com/vuejs/core.git写该文章时的Vue版本为&#xff1a; "version": "3.5.13",这里要注意 pnpm 的版本不能太低&#xff0c;我此时的版本为 9.15.4。更新 pnpm 版本&#xff1a; npm install -g pnpm然后安装依赖&…...

云原生AI Agent应用安全防护方案最佳实践(上)

当下&#xff0c;AI Agent代理是一种全新的构建动态和复杂业务场景工作流的方式&#xff0c;利用大语言模型&#xff08;LLM&#xff09;作为推理引擎。这些Agent代理应用能够将复杂的自然语言查询任务分解为多个可执行步骤&#xff0c;并结合迭代反馈循环和自省机制&#xff0…...

人工智能 - 主动视觉可能就是你所需要的:在双臂机器人操作中探索主动视觉

AV-ALOHA 系统使用用于 AV 的 VR 耳机实现直观的数据收集&#xff0c;并且 用于作的 VR 控制器或引线臂。这有助于捕捉全身和头部 远程作我们的真实和模拟系统的运动&#xff0c;记录来自 6 个的视频 不同的摄像头&#xff0c;并为我们的 AV 仿制学习策略提供训练数据。 加州大…...

Ubuntu 下 systemd 介绍

系列文章目录 Linux内核学习 Linux 知识&#xff08;1&#xff09; Linux 知识&#xff08;2&#xff09; WSL Ubuntu QEMU 虚拟机 Linux 调试视频 PCIe 与 USB 的补充知识 vscode 使用说明 树莓派 4B 指南 设备驱动畅想 Linux内核子系统 Linux 文件系统挂载 QEMU 通过网络实现…...

两个实用且热门的 Python 爬虫案例,结合动态/静态网页抓取和反爬策略,附带详细代码和实现说明

在这个瞬息万变的世界里&#xff0c;保持一颗探索的心&#xff0c;永远怀揣梦想前行。即使有时会迷失方向&#xff0c;也不要忘记内心深处那盏指引你前进的明灯。它代表着你的希望、你的信念以及对未来的无限憧憬。每一个不曾起舞的日子&#xff0c;都是对生命的辜负&#xff1…...

Softing线上研讨会 | 自研还是购买——用于自动化产品的工业以太网

| 线上研讨会时间&#xff1a;2025年1月27日 16:00~16:30 / 23:00~23:30 基于以太网的通信在工业自动化网络中的重要性日益增加。设备制造商正面临着一大挑战——如何快速、有效且经济地将工业以太网协议集成到其产品中。其中的关键问题包括&#xff1a;是否只需集成单一的工…...

Jetson Agx Orin平台preferred_stride调试记录--1924x720图像异常

1.问题描述 硬件: AGX Orin 在Jetpack 5.0.1和Jetpack 5.0.2上测试验证 图像分辨率在1920x720和1024x1920下图像采集正常 但是当采集图像分辨率为1924x720视频时,图像输出异常 像素格式:yuv_uyvy16 gstreamer命令如下 gst-launch-1.0 v4l2src device=/dev/video0 ! …...

从2025年起:数字化建站PHP 8.1应成为建站开发的基准线

在数字化浪潮席卷全球的今天,PHP语言仍然保持着Web开发领域的核心地位。根据W3Techs最新统计,PHP驱动着全球78.9%的已知服务端网站。当时间指向2025年,这个拥有28年历史的编程语言将迎来新的发展里程碑——PHP 8.1版本应成为网站开发的最低基准要求,这不仅是技术迭代的必然…...

电动汽车电池监测平台系统设计(论文+源码+图纸)

1总体设计 本次基于单片机的电池监测平台系统设计&#xff0c;其整个系统架构如图2.1所示&#xff0c;其采用STC89C52单片机作为控制器&#xff0c;结合ACS712电流传感器、TLC1543模数转换器、LCD液晶、DS18B20温度传感器构成整个系统&#xff0c;在功能上可以实现电压、电流、…...

20240914 天翼物联 笔试

文章目录 1、行测知识1.11.21.31.41.51.61.71.81.91.101.111.121.131.141.152、专业知识2.12.22.32.42.52.62.72.82.92.102.112.122.132.142.153、编程题3.13.2岗位:嵌入式开发工程师(上海) 题型:15 道行测知识,15 道专业知识,2 道编程题 注意:本文章暂无解析,谨慎分…...

前端高级面试题

以下是一些前端高级面试可能涉及到的内容: 一、前端工程化 如何构建一个适合大型团队的前端代码规范和构建流程? 答案: 代码规范方面: 使用ESLint结合Prettier来统一JavaScript和CSS(包括预处理器如Sass或Less)的语法风格。例如,规定变量命名采用驼峰命名法,函数名要有…...

【nvidia】NCCL禁用P2P后果权衡

通信bound还是计算bound&#xff1f; 计算bound场景&#xff1a; 模型参数量较小&#xff08;如参数量未超出单卡显存容量&#xff0c;使用纯数据并行&#xff09;或计算密度极高&#xff08;如大batch size下的矩阵运算&#xff09;时&#xff0c;A100的计算能力&#xff08…...

哈希表(C语言版)

文章目录 哈希表原理实现(无自动扩容功能)代码运行结果 分析应用 哈希表 如何统计一段文本中&#xff0c;小写字母出现的次数? 显然&#xff0c;我们可以用数组 int table[26] 来存储每个小写字母出现的次数&#xff0c;而且这样处理&#xff0c;效率奇高。假如我们想知道字…...

unity学习46:反向动力学IK

目录 1 正向动力学和反向动力学 1.1 正向动力学 1.2 反向动力学 1.3 实现目标 2 实现反向动力 2.1 先定义一个目标 2.2 动画层layer&#xff0c;需要加 IK pass 2.3 增加头部朝向代码 2.3.1 专门的IK方法 OnAnimatorIK(int layerIndex){} 2.3.2 增加朝向代码 2.4 …...

夜莺监控发布 v8.beta5 版本,优化 UI,新增接口认证方式便于鉴权

以防读者不了解夜莺&#xff0c;开头先做个介绍&#xff1a; 夜莺监控&#xff0c;英文名字 Nightingale&#xff0c;是一款侧重告警的监控类开源项目。类似 Grafana 的数据源集成方式&#xff0c;夜莺也是对接多种既有的数据源&#xff0c;不过 Grafana 侧重在可视化&#xff…...

asio的使用

1、下载 性能测试&#xff1a;https://github.com/huyuguang/asio_benchmark 2、基本使用 2.1 TCP 1、客户端&#xff1a; 2、服务端&#xff1a; 2.2 UDP单揪 boost的asio接收单路大数据量udp包的方法 1、发送&#xff1a; 2、接收&#xff1a; #include "Circled…...

PHP语法完全入门指南:从零开始掌握动态网页

本文专为零基础新手设计,通过5000字详细讲解带你系统学习PHP语法。包含环境搭建、基础语法、实战案例,并附20+代码示例。阅读后你将能独立开发简单动态网页! 一、PHP开发环境搭建(新手必看) 1.1 为什么需要搭建环境? PHP是服务器端脚本语言,需要运行在服务器环境中。推…...

WPF快速创建DeepSeek本地自己的客户端-基础思路版本

开发工具&#xff1a;VS 2015 开发环境&#xff1a;.Net 4.0 使用技术&#xff1a;WPF 本篇文章内容&#xff1a; 本地部署DeepSeek以后一般使用网页工具&#xff08;如Chatbox&#xff09;或者DOS窗口与其对话。本篇文章使用WPF创建一个基础版的对话工具。 一、搭建本地DeepS…...

Win7本地化部署deepseek-r1等大模型详解

参考链接 在Windows 7操作系统&#xff0c;基于llama.cpp本地化部署 deepseek-r1模型的方法 2025-02-08 2G内存Windows7运行deepseek-r1:1.5b 这两个链接写的可能不够详细&#xff0c;有同学私信问实现过程&#xff0c;这里进一步解释一下。 一、准备 需要准备的大模型、工具…...

分享一个解梦 Chrome 扩展 —— 周公 AI 解梦

一、插件简介 周公 AI 解梦是一款基于 Chrome 扩展的智能解梦工具&#xff0c;由灵机 AI 提供技术支持。它能运用先进的 AI 技术解析梦境含义&#xff0c;为用户提供便捷、智能的解梦服务。无论你是对梦境充满好奇&#xff0c;还是想从梦境中获取一些启示&#xff0c;这款插件都…...

国产Linux OS:网络性能调优关键内核参数

国产Linux OS&#xff1a;网络性能调优关键内核参数 参数列表 这些参数是Linux系统中用于网络性能调优的关键内核参数&#xff0c;它们控制了网络接口和TCP协议栈的行为。合理调整这些参数可以根据具体的应用场景和网络条件优化系统的网络性能。 sysctl net.core.rmem_max sy…...

DeepSeek接口联调(postman版)

第一步&#xff1a;获取API key 获取APIkeys链接https://platform.deepseek.com/api_keys 点击创建 API key 即可免费生成一个key值&#xff0c;别忘记保存。 第二步&#xff1a;找到deepseek官方接口文档 文档地址&#xff1a;https://api-docs.deepseek.com/zh-cn/ 第三步…...

算法19(力扣244)反转字符串

1、问题 编写一个函数&#xff0c;其作用是将输入的字符串反转过来。输入字符串以字符数组 s 的形式给出。 不要给另外的数组分配额外的空间&#xff0c;你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。 2、示例 &#xff08;1&#xff09; 示例 1&a…...

Svelte 最新中文文档翻译(10)—— use: 与 Actions

前言 Svelte&#xff0c;一个非常“有趣”、用起来“很爽”的前端框架。从 Svelte 诞生之初&#xff0c;就备受开发者的喜爱&#xff0c;根据统计&#xff0c;从 2019 年到 2024 年&#xff0c;连续 6 年一直是开发者最感兴趣的前端框架 No.1&#xff1a; Svelte 以其独特的编…...

iptables网络安全服务详细使用

iptables防火墙概念说明 开源的基于数据包过滤的网络安全策略控制工具。 centos6.9 --- 默认防火墙工具软件iptables centos7 --- 默认防火墙工具软件firewalld&#xff08;zone&#xff09; iptables主要工作在OSI七层的二、三、四层&#xff0c;如果重新编译内核&…...

node.js + html调用ChatGPTApi实现Ai网站demo(带源码)

文章目录 前言一、demo演示二、node.js 使用步骤1.引入库2.引入包 前端HTML调用接口和UI所有文件总结 前言 关注博主&#xff0c;学习每天一个小demo 今天是Ai对话网站 又到了每天一个小demo的时候咯&#xff0c;前面我写了多人实时对话demo、和视频转换demo&#xff0c;今天…...

Vue 3最新组件解析与实践指南:提升开发效率的利器

目录 引言 一、Vue 3核心组件特性解析 1. Composition API与组件逻辑复用 2. 内置组件与生命周期优化 3. 新一代UI组件库推荐 二、高级组件开发技巧 1. 插件化架构设计 2. 跨层级组件通信 三、性能优化实战 1. 惰性计算与缓存策略 2. 虚拟滚动与列表优化 3. Tree S…...

DeepSeek 助力 Vue 开发:打造丝滑的日期选择器(Date Picker),未使用第三方插件

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 Deep…...

kubernetes源码分析 kubelet

简介 从官方的架构图中很容易就能找到 kubelet 执行 kubelet -h 看到 kubelet 的功能介绍&#xff1a; kubelet 是每个 Node 节点上都运行的主要“节点代理”。使用如下的一个向 apiserver 注册 Node 节点&#xff1a;主机的 hostname&#xff1b;覆盖 host 的参数&#xff1…...

PostgreSQL的学习心得和知识总结(一百六十八)|深入理解PostgreSQL数据库之PostgreSQL 规划器开发与调试(翻译)

目录结构 注&#xff1a;提前言明 本文借鉴了以下博主、书籍或网站的内容&#xff0c;其列表如下&#xff1a; 1、参考书籍&#xff1a;《PostgreSQL数据库内核分析》 2、参考书籍&#xff1a;《数据库事务处理的艺术&#xff1a;事务管理与并发控制》 3、PostgreSQL数据库仓库…...

React创建项目实用教程

✍请将整篇文章阅读完再开始使用create-react-app react-project创建项目 检查node版本 node -v // node版本&#xff1a;v22.10.0使用nvm降版本修改到了node V20.11.1之后再进行一系列操作的 react脚手架安装&#xff1a; npm install -g create-react-app// node版本&…...

STM32 外部中断和NVIC嵌套中断向量控制器

目录 背景 外部中断/事件控制器(EXTI) 主要特性 功能说明 外部中断线 嵌套向量中断控制器 特性 ‌中断线&#xff08;Interrupt Line&#xff09; 中断线的定义和作用 STM32中断线的分类和数量 优先级分组 抢占优先级&#xff08;Preemption Priority&#xff09; …...

讯飞唤醒+VOSK语音识别+DEEPSEEK大模型+讯飞离线合成实现纯离线大模型智能语音问答。

在信息爆炸的时代&#xff0c;智能语音问答系统正以前所未有的速度融入我们的日常生活。然而&#xff0c;随着数据泄露事件的频发&#xff0c;用户对于隐私保护的需求日益增强。想象一下&#xff0c;一个无需联网、即可响应你所有问题的智能助手——这就是纯离线大模型智能语音…...

【MediaTek】 T750 openwrt-23.05编 cannot find dependency libexpat for libmesode

MediaTek T750 T750 采用先进的 7nm 制程,高度集成 5G 调制解调器和四核 Arm CPU,提供较强的功能和配置,设备制造商得以打造精巧的高性能 CPE 产品,如固定无线接入(FWA)路由器和移动热点。 MediaTek T750 平台是一款综合的芯片组,集成了 5G SoC MT6890、12nm 制程…...

如何通过 prometheus-operator 实现服务发现

在之前的章节中,我们讲解了如何编写一个自定义的 Exporter,以便将指标暴露给 Prometheus 进行抓取。现在,我们将进一步扩展这个内容,介绍如何使用 prometheus-operator 在 Kubernetes 集群中自动发现并监控这些暴露的指标。 部署应用 在 Kubernetes 集群中部署我们的自定…...

VBA学习:将文本中的\n替换为换行符

目录 一、问题描述 二、解决方法 三、代码 四、注意事项 五、总结 一、问题描述 一个字符串&#xff0c;包含多个\n&#xff0c;现在利用VBA写一段程序&#xff0c;把\n替换为换行符。 二、解决方法 1、Replace函数&#xff1a;直接替换换行符 在Word 中 使用vbCrLf或者…...

(8/100)每日小游戏平台系列

项目地址位于&#xff1a;小游戏导航 新增一个打地鼠游戏&#xff01; 打地鼠&#xff08;Whack-a-Mole&#xff09;是一款经典的休闲游戏&#xff0c;玩家需要点击随机出现的地鼠&#xff0c;以获取分数。游戏时间有限&#xff0c;玩家需要在规定时间内尽可能多地击中地鼠&am…...

【设计模式】 建造者模式和原型模式

建造者模式&#xff08;Builder Pattern&#xff09; 概述 建造者模式是一种创建型设计模式&#xff0c;它允许逐步构建复杂对象。通过将构造过程与表示分离&#xff0c;使得同样的构建过程可以创建不同的表示。这种模式非常适合用于创建那些具有很多属性的对象&#xff0c;尤…...

【Python 学习 / 4】基本数据结构之 字符串 与 集合

文章目录 1. 字符串概念1.1 字符串的创建1.2 字符串的访问和操作1.2.1 下标访问1.2.2 切片操作1.2.3 字符串的拼接和重复1.2.4 字符串的长度 1.3 字符串的方法1.4 字符串的查找和替换1.5 字符串格式化1.5.1 使用 % 运算符1.5.2 使用 str.format()1.5.3 使用 f-string&#xff0…...

Spring框架中都用到了哪些设计模式?

大家好&#xff0c;我是锋哥。今天分享关于【Spring框架中都用到了哪些设计模式&#xff1f;】面试题。希望对大家有帮助&#xff1b; Spring框架中都用到了哪些设计模式&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Spring框架中使用了大量的设计模…...

HBuilderX中uni-app打开页面时,如何用URL传递参数,Query参数传递

HBuilderX中uni-app打开页面时&#xff0c;如何用URL传递参数,Query参数传递&#xff1f; URL是一种描述文件在计算机网络中位置的方式。在web开发中&#xff0c;可以通过query string来传递参数。使用uniapp进行开发&#xff0c;打开不同的页面时&#xff0c;本文介绍给所要打…...