当前位置: 首页 > news >正文

支持向量机原理

        支持向量机(简称SVM)虽然诞生只有短短的二十多年,但是自一诞生便由于它良好的分类性能席卷了机器学习领域。如果不考虑集成学习的算法,不考虑特定的训练数据集,尤其在分类任务中表现突出。在分类算法中的表现SVM说是排第一估计是没有什么异议的。

        SVM是一个二元分类算法,线性分类和非线性分类都支持。经过演进,现在也可以支持多元分类,同时经过扩展,也能应用于回归问题。

        支持向量机是一种强大的分类和回归工具,尤其适用于高维数据和小样本问题。通过选择合适的核函数和参数,SVM可以处理复杂的非线性问题,并在许多实际应用中表现出色。

        SVM的核心思想是找到一个最优超平面(可以理解为分界线),将不同类别的数据分开,并最大化类别之间的边界。换句话说,SVM不仅要把数据分开,还要让分界线到最近的数据点之间的距离最大化,这个距离称为“间隔”。

超平面:在n维空间中,超平面是一个n-1维的子空间。对于二维空间,超平面是一条直线;对于三维空间,超平面是一个平面。

间隔:超平面与最近的数据点之间的距离称为间隔。SVM的目标是找到间隔最大的超平面。

支持向量:距离超平面最近的那些数据点称为支持向量,它们是决定超平面的关键。

线性可分和非线性可分

线性可分情况:

当数据是线性可分时,SVM的目标是找到一个超平面,使得两类数据点之间的间隔最大。

非线性可分情况:

        如果数据在原始空间中无法用一条直线分开,SVM可以通过“核技巧”将数据映射到更高维的空间,在那里数据可能变得线性可分。比如,原本在二维空间中无法用直线分开的数据,映射到三维空间后可能可以用一个平面分开。

核技巧:对于非线性可分的数据,可以通过核函数将数据映射到高维空间,使其在高维空间中线性可分。常用的核函数包括:

举个例子:

假设我们有一组二维数据点,红色点分布在一个圆圈内部,蓝色点分布在圆圈外部。这种情况下,无法用一条直线将两类点分开。SVM可以通过核技巧将数据映射到更高维的空间,比如三维空间,在那里可能可以用一个平面将两类点分开。

        在实际应用中,数据可能并非完全线性可分,或者存在噪声。为此,SVM引入了软间隔概念,允许一些数据点位于间隔之内甚至错误分类。软间隔SVM的目标是找到一个超平面,使得超平面到最近的数据点的距离最大化,同时允许一些数据点违反约束条件,但需要对违反程度进行惩罚。

区别总结:

线性可分SVM:假设数据是线性可分的,所有数据点都必须正确分类,没有误分类的容忍度。

软间隔SVM:允许一些数据点误分类,通过引入松弛变量和正则化参数 C 来平衡间隔最大化和误分类点的惩罚,适用于非线性可分或存在噪声的数据。


SVM的训练通常通过求解对偶问题来实现,利用拉格朗日乘数法将原始问题转化为对偶问题。

常用的优化算法包括:

序列最小优化(SMO):一种高效的算法,特别适用于大规模数据集。

梯度下降:适用于某些变种的SVM。


优缺点

优点

  • 泛化能力强:通过最大化间隔,SVM能够找到一个具有较好泛化能力的决策边界,即使在数据量较少的情况下也能表现出色。

  • 适用于高维空间:通过核技巧,SVM可以处理高维数据,甚至在特征维度远大于样本数量时也能有效工作。

  • 鲁棒性强:对噪声和异常值有一定的容忍能力,通过调整正则化参数 C 可以平衡误分类和间隔大小。

缺点

  • 计算复杂度高:在大规模数据集上,SVM的训练过程可能非常耗时,尤其是当数据量较大时。

  • 对核函数的选择敏感:非线性SVM的性能高度依赖于核函数的选择及其参数的调整。选择不当的核函数可能导致模型性能下降。

  • 内存占用大:在训练过程中,需要存储大量的拉格朗日乘子和核函数值,尤其是在使用非线性核函数时,内存占用可能较大。

  • 不适用于多分类问题SVM本身是二分类器,对于多分类问题,需要通过“一对多”或“一对一”等方法将其扩展为多分类器,这增加了模型的复杂度和计算量。

应用

支持向量机因其在高维数据和小样本数据上的优异表现,被广泛应用于许多领域。


1. 文本分类

        假设我们有一堆邮件,需要分类为“垃圾邮件”和“正常邮件”。每封邮件可以表示为一个高维向量(比如通过词频统计)。SVM可以找到一个超平面,将垃圾邮件和正常邮件分开。支持向量就是那些最难分类的邮件(比如既包含垃圾邮件特征又包含正常邮件特征的邮件)。


2. 医学

  • 应用场景:疾病诊断

  • 示例:在癌症诊断中,SVM可以根据基因表达数据将样本分类为“健康”或“患病”。

  • 优势:SVM能够处理高维数据,并且在小样本数据上表现优异。


3. 金融领域

  • 应用场景:股票市场预测、信用评分

  • 示例:在信用评分中,SVM可以根据用户的收入、负债、信用历史等特征,预测用户是否可能违约。

  • 优势:SVM能够处理非线性关系,适合复杂的金融数据。


4. 自然语言处理(NLP)

  • 应用场景:文本分类、命名实体识别、语义分析等。

  • 示例:在情感分析中,SVM可以根据文本内容判断评论是“正面”还是“负面”。

  • 优势:SVM能够处理高维稀疏数据(如文本向量),并且对噪声数据具有鲁棒性。


5. 遥感与地理信息系统

  • 应用场景:土地利用分类、植被监测、灾害评估等。

  • 示例:在土地利用分类中,SVM可以根据卫星图像将土地分类为“森林”、“农田”、“城市”等类型。

  • 优势:SVM能够处理高维遥感数据,并且对噪声数据具有鲁棒性。

相关文章:

支持向量机原理

支持向量机(简称SVM)虽然诞生只有短短的二十多年,但是自一诞生便由于它良好的分类性能席卷了机器学习领域。如果不考虑集成学习的算法,不考虑特定的训练数据集,尤其在分类任务中表现突出。在分类算法中的表现SVM说是排…...

E8移动建模关联建模表单,写入无数据

场景:移动建模新建一个招聘页面,每次通过移动建模写入建模表数据,建模表的值都要权限重构才可看见,且明细无数据。 排查原因:移动建模提交后返回的ID值为空 正常情况下提交数据应该要返回一个ID值如下: 解…...

一文深入了解DeepSeek-R1:模型架构

本文深入探讨了 DeepSeek-R1 模型架构。让我们从输入到输出追踪 DeepSeek-R1 模型,以找到架构中的新发展和关键部分。DeepSeek-R1 基于 DeepSeek-V3-Base 模型架构。本文旨在涵盖其设计的所有重要方面。 📝 1. 输入上下文长度 DeepSeek-R1的输入上下文长…...

腿足机器人之二- 运动控制概览

腿足机器人之二运动控制概览 高层运动规划MPCRL 中层逆运动学和逆动力学底层执行器控制传感器校正 上一篇博客是腿足机器人的骨架和关节的机械和电气组件,关节不仅需要通过机械设计实现复杂的运动能力,还必须通过电子组件和控制系统来精确控制这些运动。…...

前端面试大全

前端面试大全 一、htmlcss1、垂直定位的实现方式 二、javascript1、深拷贝浅拷贝2、作用域3、原型原型链4、防抖节流5、设计模式 三、ES61、 四、typescript五、vue1、vue2和vue3的区别2、生命周期3、computedwatch 六、react七、uni-app八、Cesiumopenlayer九、Threejs十、ngi…...

如何使用智能化RFID管控系统,对涉密物品进行安全有效的管理?

载体主要包括纸质文件、笔记本电脑、优盘、光盘、移动硬盘、打印机、复印机、录音设备等,载体(特别是涉密载体)是各保密、机要单位保证涉密信息安全、防止涉密信息泄露的重要信息载体。载体管控系统主要采用RFID射频识别及物联网技术&#xf…...

Python 调用 DeepSeek API 案例详细教程

本案例为以 Python 为例的调用 DeepSeek API 的小白入门级详细教程 步骤 先注册并登录 DeepSeek 官网:https://www.deepseek.com/ 手机号验证码注册或登录即可 创建 API KEY 注意保存,写代码时必须提供的 打开 Pycharm 创建工程 并安装 OpenAI 库编写代…...

牛客面筋学习

准备阶段: 楼主其实很早就开始准备了,大概从年初开始,陆陆续续总结自己的项目,复盘,然后复习数电模电信号电路等,复习完后,便开始刷题;顺便说一下,如果需要发小论文的也…...

对指针的深入运用-通讯录的初步实现

1.通讯录的功能 手机里的通讯录,是能够存放联系人的信息,包括姓名,性别,地址,电话号码,也可以加上性别。而且手机中的通讯录肯定有增删查改的功能,而且在list里是按照顺序排序的,可以…...

VUE环境搭建

node.js安装 node npm – node Package Management 安装完成后,需要设置: npm config set prefix "D:\nodejs"注意:“D:\nodejs” 此处为自己安装的node.js路径。管理员身份运行 切换镜像源 npm config set registry https://r…...

DeepSeek应用——与PyCharm的配套使用

目录 一、配置方法 二、使用方法 三、注意事项 1、插件市场无continue插件 2、无结果返回,且在本地模型报错 记录自己学习应用DeepSeek的过程,使用的是自己电脑本地部署的私有化蒸馏模型...... (举一反三,这个不单单是可以用…...

C# ASP.NET的未来发展趋势

.NET学习资料 .NET学习资料 .NET学习资料 在快速发展的技术浪潮中,C# ASP.NET不断顺应时代潮流,展现出一系列令人瞩目的未来发展趋势。这些趋势不仅反映了技术的进步,也为开发者带来了更多的机遇和挑战。 云原生应用开发 随着云计算的普及…...

leetcode 416. 分割等和子集

题目如下 数据范围 本题和leetcode 2915. 和为目标值的最长子序列的长度类似&#xff0c;这里不过多赘述。leetcode 2915. 和为目标值的最长子序列的长度 通过代码 class Solution { public:bool canPartition(vector<int>& nums) {int n nums.size();int an…...

WPF进阶 | 深入 WPF 依赖项属性:理解其强大功能与应用场景

WPF进阶 | 深入 WPF 依赖项属性&#xff1a;理解其强大功能与应用场景 前言一、依赖项属性基础概念1.1 什么是依赖项属性1.2 依赖项属性与 CLR 属性的区别1.3 依赖项属性的定义与注册 二、依赖项属性的原理深入剖析2.1 依赖项属性系统的工作机制2.2 元数据&#xff08;Metadata…...

浅聊MQ之Kafka与RabbitMQ简用

Kafka与RabbitMQ的使用举例 Kafka的使用举例 安装与启动&#xff1a; 从Apache Kafka官网下载Kafka中间件的运行脚本。解压后&#xff0c;通过命令行启动Zookeeper&#xff08;Kafka的运行依赖于Zookeeper&#xff09;。启动Kafka的服务器进程。 基本功能实现&#xff1a; 生…...

2.1 JUnit 5 测试发现机制详解

JUnit 5 测试发现机制详解 JUnit 5 的测试发现机制是框架的核心功能之一&#xff0c;负责识别测试类、方法和其他可执行元素&#xff0c;并构建出可执行的测试计划。该机制通过模块化设计支持高度扩展性&#xff0c;允许开发者自定义测试发现规则。以下是其工作原理的详细解析…...

【Elasticsearch】match查询

Elasticsearch 的match查询是全文搜索中最常用和最强大的查询类型之一。它允许用户在指定字段中搜索文本、数字、日期或布尔值&#xff0c;并提供了丰富的功能来控制搜索行为和结果。以下是match查询的详细解析&#xff0c;包括其工作原理、参数配置和使用场景。 1.match查询的…...

【开发心得】CentOS7编译Redis7.4.2打包RPM完整方案

概述 由于最近客户需要解决redis版本升级问题&#xff0c;故而全网寻找安全版本&#xff0c;redis7.4.x版本求而为果&#xff0c;只能自己编译了。 截止发文时间2025-02-12 最新稳定版的redis版本号为7.4.2 Security fixes (CVE-2024-46981) Lua script commands may lead t…...

云计算——AWS Solutions Architect – Associate(saa)6.CloudWatch

Amazon CloudWatch 是一种面向开发运营工程师、开发人员、站点可靠性工程师(SRE)和 IT 经理的监控和可观测性服务。CloudWatch 为我们提供相关数据和切实见解&#xff0c;以监控应用程序、响应系统范围的性能变化、优化资源利用率&#xff0c;并在统一视图中查看运营状况。 Clo…...

面试实战题:手写一个队列和介绍Stream流怎么使用

手写一个队列 思路解析&#xff1a; 队列要有入队和出队操作&#xff0c;还要有查看队列大小&#xff0c;查看队头元素&#xff0c;查看队列是否为空&#xff0c;查看队列是否满了这些功能 package com.example.transational.MyQueue;public class MyQueue<T> {privat…...

Jmeter+Influxdb+Grafana平台监控性能测试过程

一、Jmeter自带插件监控 下载地址&#xff1a;https://jmeter-plugins.org/install/Install/ 安装&#xff1a;下载后文件为jmeter-plugins-manager-1.3.jar&#xff0c;将其放入jmeter安装目录下的lib/ext目录&#xff0c;然后重启jmeter&#xff0c;即可。 启动Jmeter&…...

【现代深度学习技术】深度学习计算 | GPU

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈PyTorch深度学习 ⌋ ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上&#xff0c;结合当代大数据和大算力的发展而发展出来的。深度学习最重…...

基于斜坡单元的机器学习模型预测滑坡易发性,考虑条件因素的异质性

&#xff11;、引用 Chang Z, Catani F, Huang F, et al. Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023…...

Node.js调用DeepSeek Api 实现本地智能聊天的简单应用

在人工智能快速发展的今天&#xff0c;如何快速构建一个智能对话应用成为了开发者们普遍关注的话题。本文将为大家介绍一个基于Node.js的命令行聊天应用&#xff0c;它通过调用硅基流动&#xff08;SiliconFlow&#xff09;的API接口&#xff0c;实现了与DeepSeek模型的智能对话…...

实战 - 编写一个最简单的 Hello World 内核模块

实战 - 编写一个最简单的 Hello World 内核模块 在嵌入式开发中&#xff0c;编写 Linux 内核模块是设备驱动开发的重要基础。内核模块可以帮助我们在不修改内核源码的情况下扩展内核功能。本篇博客将指导你如何编写并运行一个简单的 Hello World 内核模块&#xff0c;让你快速…...

面向对象程序设计-实验七

6-1 计算捐款总量 这里需要设计一个捐款人类Donator及一个相关函数getMaxName( )&#xff0c;Donator类中包含捐款人的姓名及其捐款额 代码清单&#xff1a; #include <iostream> using namespace std; class Donator { private: string name; float money; //单位&…...

JVM组成

JVM是什么&#xff1f; JVM&#xff08;Java Virtual Machine&#xff09;&#xff1a;Java程序的运行环境(java二进制字节码的运行环境) 好处&#xff1a; 1.一次编写&#xff0c;到处运行 Java代码是如何做到一次编写&#xff0c;到处运行&#xff1f; 计算机的最底层是计…...

java.lang.NoClassDefFoundError: javax/xml/bind/ValidationException

Java8升级到17之后, 启动报错, :LocalValidatorFactoryBean]: Factory method defaultValidator threw exception; nested exception is java.lang.NoClassDefFoundError: javax/xml/bind/ValidationException 报错原因:这个错误通常是由于缺少 javax.xml.bind 相关的依赖引起…...

Electron 实现自定义系统托盘菜单

效果如下&#xff1a; 其实实现自定义托盘菜单的本质上&#xff0c;就是开一个新窗口&#xff0c;下面直接给出核心代码。 // 加载窗口 const loadWindow (example, path) > {if (is.dev && process.env[ELECTRON_RENDERER_URL]) {example.loadURL(process.env[EL…...

HCIA-路由器相关知识和面试问题

二、 路由器 2.1 关于路由器的知识 2.1.1 什么是路由器 路由器是一种网络层互联设备&#xff0c;主要用于连接多个逻辑上分开的网络&#xff0c;实现不同网络之间的数据路由和通信。它能根据网络层地址&#xff08;如 IP 地址&#xff09;来转发数据包&#xff0c;在网络中起…...

2.【BUUCTF】bestphp‘s revenge

进入题目页面如下 进行代码审计 <?php // 1. 高亮显示当前PHP文件的源代码&#xff0c;方便开发者查看代码内容&#xff0c;在生产环境中不应使用此函数&#xff0c;可能会导致代码泄露。 highlight_file(__FILE__);// 2. 定义变量 $b &#xff0c;其值为字符串 implode &…...

wx060基于springboot+vue+uniapp的宿舍报修系统小程序

开发语言&#xff1a;Java框架&#xff1a;springbootuniappJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#…...

使用 meshgrid函数绘制网格点坐标的原理与代码实现

使用 meshgrid 绘制网格点坐标的原理与代码实现 在 MATLAB 中&#xff0c;meshgrid 是一个常用函数&#xff0c;用于生成二维平面网格点的坐标矩阵。本文将详细介绍如何利用 meshgrid 函数生成的矩阵绘制网格点的坐标&#xff0c;并给出具体的代码实现和原理解析。 实现思路 …...

快速上手Vim的使用

Vim Linux编辑器-vim使用命令行模式下所有选项都可以带数字底行模式可视块模式&#xff08;ctrlV进入&#xff09; Linux编辑器-vim使用 Vim有多种模式的编辑器。能帮助我们很快的进行代码的编辑&#xff0c;甚至完成很多其他事情。 默认情况下我们打开vim在命令模式下&#x…...

HCIA项目实践---ACL访问控制列表相关知识和配置过程

十 ACL访问控制列表 1 策略的概念 在网络连通之后&#xff0c; 把所有为了追求控制而实现的技术都叫策略 2 访问控制 在路由器流量流入或者流出的接口上&#xff0c;匹配流量&#xff0c;执行相应的动作。&#xff08;流量流入或者流出的接口并不是一个固定的概念而是一个相对的…...

机器学习核心算法解析

机器学习核心算法解析 机器学习是人工智能的核心技术之一&#xff0c;它通过从数据中学习模式并做出预测或决策。本文将深入解析机器学习的核心算法&#xff0c;包括监督学习、无监督学习和强化学习&#xff0c;并通过具体案例和代码示例帮助读者理解这些算法的实际应用。 1. …...

Oracle 12c 并发统计信息收集功能:技术解析与实践指南

一、功能背景与核心价值 在Oracle数据库的早期版本中&#xff0c;统计信息收集&#xff08;如通过DBMS_STATS包&#xff09;是串行执行的&#xff0c;即一次仅处理一个表或分区。对于大规模数据库或数据仓库环境&#xff0c;这种串行模式可能导致统计信息收集耗时过长&#xf…...

Android Studio:EditText常见4种监听方式

1. 文本变化监听&#xff08;TextWatcher&#xff09; TextWatcher 主要用于监听 EditText 里的文本变化&#xff0c;它有三个方法&#xff1a; beforeTextChanged&#xff08;文本变化前&#xff09;onTextChanged&#xff08;文本正在变化时&#xff09;afterTextChanged&a…...

【第2章:神经网络基础与实现——2.3 多层感知机(MLP)的构建与调优技巧】

在当今科技飞速发展的时代,人工智能早已不是一个陌生的词汇,它已经渗透到我们生活的方方面面,从智能语音助手到自动驾驶汽车,从图像识别到自然语言处理。而支撑这一切的核心技术之一,就是神经网络。作为机器学习领域的璀璨明星,神经网络已经在众多任务中取得了令人瞩目的…...

C++ 网络编程

1. socket Socket 是一种用于网络通信的编程接口&#xff0c;它提供了一种类似于文件描述符的接口&#xff0c;允许不同计算机之间的进程进行通信。Socket 可以工作在多种协议上&#xff0c;最常用的是 TCP/IP 和 UDP/IP 协议 1.1 UDP 1.1.1 概念 UDP&#xff08;用户数据报协…...

SQL-leetcode—1683. 无效的推文

1683. 无效的推文 表&#xff1a;Tweets ----------------------- | Column Name | Type | ----------------------- | tweet_id | int | | content | varchar | ----------------------- 在 SQL 中&#xff0c;tweet_id 是这个表的主键。 content 只包含美式键盘上的字符&am…...

vue前端可视化大屏页面适配方案

参考了其他博主的代码&#xff0c;但发现会有滚动条&#xff0c;并且居中的位置不太对&#xff0c;所以改了一下css&#xff0c;修复了这些问题&#xff0c;直接上代码 <template> <div class"ScaleBoxA"><divclass"ScaleBox"ref"Sca…...

mars3d接入到uniapp的时候ios上所有地图的瓦片都无法加载解决方案

用的是【Mars3d】官网的uniapp的仓库&#xff0c;安卓没有问题&#xff0c;但是ios的不行 相关链接 mars3d-uni-app: uni-app技术栈下的Mars3D项目模板 解决方案&#xff1a;感觉所有图片请求全被拦截了 uniapp的ios内核不允许跨域&#xff0c;需要先把瓦片下载后转base64&…...

Dockfile语法

目录 dockerfile的作用 1. 构建 Docker 映像 2. 提高开发和运维效率 3. 版本控制 4. 提供可移植性和灵活性 使用示例 总结 dockerfile应该放的位置 为什么放在根目录&#xff1f; 例外情况 调用构建 dockerfile的基本结构和常用指令 基本结构和常用指令 示例 Dock…...

Nginx负载均衡

一。Nginx负载均衡的算法以及过程 二。nginx四层负载均衡的配置&#xff08;四层&#xff09; 1.vi /etc/nginx/conf.d/lb.conf 比较常见&#xff1a;weight&#xff1a;设置权重&#xff0c;backup&#xff1a;当其他主机全部用不了&#xff0c;这个作为备份 2.systemctl r…...

【C】初阶数据结构5 -- 栈

前面学习了两种最基本的数据结构 -- 顺序表和链表&#xff0c;接下来就可以基于这两种数据结构来实现其他数据结构了。其实&#xff0c;其他的数据结构的物理结构要么是数组&#xff0c;要么就是链表&#xff0c;所以学好顺序表和链表是学好其他数据结构的基础。接下里&#xf…...

Linux查找占用的端口,并杀死进程的简单方法

在Linux系统管理中&#xff0c;识别并管理占用特定端口的进程是一项常见且重要的任务。以下是优化过的步骤指南&#xff0c;帮助您高效地完成这一操作&#xff0c;同时提供了一个简洁的命令参考表。 Linux下识别并终止占用端口的进程 1. 探寻端口占用者 使用 lsof命令 lsof…...

为什么Pytorch中实例化模型会直接调用forward方法?

在 PyTorch 中&#xff0c;为何定义一个继承自 nn.Module 的自定义类并实现 forward 方法后&#xff0c;直接调用模型实例时&#xff0c;便会自动调用其 forward 方法&#xff1f;例如使用 output model(x) 这种形式。 因为自定义的神经网络类所继承的 nn.Module 类对 __call_…...

easyexcel快速使用

1.easyexcel EasyExcel是一个基于ava的简单、省内存的读写Excel的开源项目。在尽可能节约内存的情况下支持读写百M的Excel 即通过java完成对excel的读写操作&#xff0c; 上传下载 2.easyexcel写操作 把java类中的对象写入到excel表格中 步骤 1.引入依赖 <depen…...

DeepSeek的出现会对百度有多大影响?

当DeepSeek与ChatGPT等大模型接管搜索入口&#xff0c;我们正见证百年一遇的信息革命。 01 传统搜索已死&#xff1f;AI助手正在重写游戏规则&#xff01; 当DeepSeek与ChatGPT等大模型接管搜索入口&#xff0c;我们正见证百年一遇的信息革命。 就像汽车淘汰马车、触屏终结按键…...